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Abstract

This article studies a new class of nonlocal boundary value problems of nonlinear

differential equations and inclusions of fractional order with strip conditions. We

extend the idea of four-point nonlocal boundary conditions

x0)=0x(n),x(1)=nx), o,neR, 0 <u,v<1) tononlocal strip conditions
B

. B —

of the form: x(0) = o [ x(s)ds, x(1) = nfy x(s)ds, 0 < @ <B <y <8 < 1.

These strip conditions may be regarded as six-point boundary conditions. Some new
existence and uniqueness results are obtained for this class of nonlocal problems by
using standard fixed point theorems and Leray-Schauder degree theory. Some
illustrative examples are also discussed.
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1 Introduction

The subject of fractional calculus has recently evolved as an interesting and popular
field of research. A variety of results on initial and boundary value problems of frac-
tional order can easily be found in the recent literature on the topic. These results
involve the theoretical development as well as the methods of solution for the frac-
tional-order problems. It is mainly due to the extensive application of fractional calcu-
lus in the mathematical modeling of physical, engineering, and biological phenomena.

For some recent results on the topic, see [1-19] and the references therein.

In this article, we discuss the existence and uniqueness of solutions for a boundary

value problem of nonlinear fractional differential equations and inclusions of order g
(1, 2] with nonlocal strip conditions. As a first problem, we consider the following
boundary value problem of fractional differential equations

‘Dix(t) =f(t,x(t), O0<t<l1l, 1<g=< 2

B 5 (1.1)
x(0) =0 [x(s)ds, x(1)=n[x(s)ds, O<a<B<y<d<l,
a 14
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where “D7? denotes the Caputo fractional derivative of order ¢, f : [0,1] x R —> R
is a given continuous function and &, 1 are appropriately chosen real numbers.

The boundary conditions in the problem (1.1) can be regarded as six-point nonlocal
boundary conditions, which reduces to the typical integral boundary conditions in the
limit o, y —> 0, B, 6 — 1. Integral boundary conditions have various applications in
applied fields such as blood flow problems, chemical engineering, thermoelasticity,
underground water flow, population dynamics, etc. For a detailed description of the
integral boundary conditions, we refer the reader to the articles [20,21] and references
therein. Regarding the application of the strip conditions of fixed size, we know that
such conditions appear in the mathematical modeling of real world problems, for
example, see [22,23].

As a second problem, we study a two-strip boundary value problem of fractional dif-
ferential inclusions given by

‘Dix(t) € F(t, x(t)), O0<t<1l, 1l<g=< 2
s

g (1.2)
x(0) =0 [x(s)ds, x(1)=n[x(s)ds, O<a<B<y<d<l,
o4 14

where F : [0,1] x R - P (R) is a multivalued map, P (R) is the family of all sub-
sets of R.

We establish existence results for the problem (1.2), when the right-hand side is con-
vex as well as non-convex valued. The first result relies on the nonlinear alternative of
Leray-Schauder type. In the second result, we shall combine the nonlinear alternative
of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan
and Colombo for lower semicontinuous multivalued maps with nonempty closed and
decomposable values, while in the third result, we shall use the fixed point theorem for
contraction multivalued maps due to Covitz and Nadler.

The methods used are standard, however their exposition in the framework of pro-
blems (1.1) and (1.2) is new.

2 Linear problem
Let us recall some basic definitions of fractional calculus [24-26].
Definition 2.1 For at least n-times continuously differentiable function

g : [0,00) = R, the Caputo derivative of fractional order q is defined as
1 t
‘Dig(t) = / t—s)" T gM(5)ds, n—-1<q<n n=[q]+1,
O g [ €870

where [q] denotes the integer part of the real number gq.
Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

ft 3(s)

qu(t) = r'(q) (t—S)l_q S,

q>0,

provided the integral exists.

By a solution of (1.1), we mean a continuous function x() which satisfies the equa-
tion “Dx(t) = f (¢, x()), 0 < ¢ <1, together with the boundary conditions of (1.1).



Ahmad and Ntouyas Boundary Value Problems 2012, 2012:55
http://www.boundaryvalueproblems.com/content/2012/1/55

To define a fixed point problem associated with (1.1), we need the following lemma,
which deals with the linear variant of problem (1.1).
Lemma 2.3 For a given § € C([0,1],R), the solution of the fractional differential

equation
‘Dix(t) =g(1), 1<q=2 (2.1)

subject to the boundary conditions in (1.1) is given by

€0 = gy [ =9 s

ﬂ S —
+Z [_ (Z(52 -y - 1) +t(n(s —y)— 1)]/ (/ (s _F?;))ti 1g(m)dm)ds
0

o

(2.2)
§ s _ g-1
- - ee-a -1y [nf (/ ¢ F’(’;’) g(m)dm)ds
14 0
/1 (19!
-5
- 8(S)dS] ,
| rw
where
A==y -1]leB-a) 1] =B - )| [16 - ) - 1] £0.
Proof. It is well known that the solution of (2.1) can be written as [24]
t _ g-1
x(t) = Ig(t) — co — 1t = 0/ (¢ F(S;) 8(s)ds — co —c1t. (2.3)

where ¢y, ¢c; € R are constants. Applying the boundary conditions given in (1.1), we

find that
B s -1
(o(B—a)—1)co + ;(,32 —a?)e, = o/ (/ (s _FZ’;)) g(m)dm)dS,
o 0
(16 = 7) = Do + (367 = ¥?) = D = f ( E }Z);_lg(m)dm)ds
y ; (Ol — )7t
- ) g(s)ds.

Solving these equations simultaneously, we find that
1 (= my
=, (2(32 —y?) - 1) a/ / ) g(m)dm | ds
o4 0
o 5= m)yr! F (1 =)0
-, (B2 —a?) ,7/ / @) g(m)dm | ds — / ) g(s)dsy¢ |,
v \o 0

Page 3 of 21
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B /s -1
a-, [—(n(ﬁ—y)—l)vf( R g(m)dm) @
o 0
- myr F sy
+o(B—a)—1) n/ () g(m)dm ds—/ ) g(s)ds .
Y 0 (4]

Substituting the values of ¢y and ¢; in (2.3), we obtain the solution (2.2). D

3 Existence results for single-valued case
Let C = C([0,1],R) denotes the Banach space of all continuous functions from [0, 1]
— R endowed with the norm defined by |lx|| = sup {|x(t)|, ¢t € [0, 1]}.

In view of Lemma 2.3, we define an operator F : C — C by

(Ex)(1)

_ )11
- ) ] (=97 s +(6)ds

s

B
+Alf‘7(q) [— (Z_(BZ —y?) - 1) +t(n(—y) — 1)]/ (/(5 — m)"f(m, x(m))dm) ds .

a 0

8 s
“ i L2 —e) =B =a) = 1] [ (/ (s = m)f(m, x(m))dm)
v

1
~ arig L2~ = o8 —a) = 1] [(1 =976 )i
0

Observe that the problem (1.1) has solutions if and only if the operator equation Fx
= x has fixed points.

For the forthcoming analysis, we need the following assumptions:

(A [f (6, 2) - (6, 9)| < Lix -5, Vee [0,1], L 50, %, ye &

(Ag) [f (& x)| < u®), V(¢ x) € [0,1] x R, and u € C([0, 1], R™).

For convenience, let us set

» (32)

1 ( Aslo| (BT — a1 + Aq|n| (89! —y”’+1)+(q+l)A1)
= 1+
I(g+1) (q+ 1A

where

|5 (B> —a)|+l(o(p ) = 1)] = Ay,

(162 =32 = 1) sl o = ) - 1) = o

Theorem 3.1 Assume that f : [0,1] x R — R is a jointly continuous function and

satisfies the assumption (Ay) with L <1/A, where A is given by (3.2). Then the boundary
value problem (1.1) has a unique solution.

AM
Proof. Setting sup,o; |f (t,0)] =M < oo and choosing r > 1_n Ve show that

FB, € B,, where B, ={x € C: |x|| <r}. For x € B,, we have
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te[0,1]

(9N = sup I” ) / (=" (s ()l

+‘A:(q) [_<2(52_” )- 1)”(’7(5—7/)—1)H

B s
x / (/(sm)"llf(m, x(m))dm) ds

o

“argg [ ¥ —«) = B=a -1 ‘/ (/ (s = m)™1f(m, x(m))mm)
|Ar1(q)[ (52—a2)—(0(ﬂ—a)—1)t }/(1—5)‘7 LG, x(s))|dsl

< 1 _ )1 _ .
_‘:BEI[W) 0/ (=9 (s +(6)) = s, O)1+ s, Ol

o]

B [ s

RNINO) Azaf (O/S—’”)”‘(tf(m, x(m)) = £(m, 0+ If(m, on)dm) ds
B s

Ll e B .

IAIF(q)AIV/ (0/ s = m)" (I (m, x(m) = f(m, 0)|+1f(m, 0)|)dm)ds

1
1 —
+\A|r(q)A10/(1 USROS (G omds]

< + 1 \ _ 41 lo] -1

< (r M)fzﬁﬂl{”‘”o/(t ot /(/(s m) dm)ds
L Ml ; o L] o
A|r(q)A1/(0/“ ) d’")ds |A|F(q)A10/(1 5) ds]

q+1 _ ,q+1 q+1 __ ,,q+1
S(Lr+M)<1+A2|a|(ﬂ @) Al —y )+A1)

I(g+1) (a+1)IA] (a+1)1A] 1A
=(Lr+ M)A <.

Now, for x,y € C we obtain

[1(Fx) () — ()l

K [r(lq) [ =5 1rts ) = £t s

te[0,1]

|A:?‘|(q) / (/ (s =m)™f (m, x(m)) — f(m, y(m))|dm)

+|A||111| /(/(S—m)’l YIf(m, x(m)) — f(m, y(m))|dm) ]

IAIF(q) /(1—5)" (s x() — (s, ¥(s)lds
L N A2|g|(ﬂq+l _ !]+1) + A1|n|(5q+1 . q+1) F(g+ 1A )
= I'(g+1) (1 (q+1)|A] >||x il
= LAllx —yll,
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where A is given by (3.2). Observe that A depends only on the parameters involved
in the problem. As L <1/A, therefore F is a contraction. Thus, the conclusion of the
theorem follows by the contraction mapping principle (Banach fixed point theorem). &

Now, we prove the existence of solutions of (1.1) by applying Krasnoselskii’s fixed
point theorem [27].

Theorem 3.2 (Krasnoselskii’s fixed point theorem). Let M be a closed, bounded, con-
vex, and nonempty subset of a Banach space X. Let A, B be the operators such that (i)
Ax + By € M whenever x, y € M; (ii) A is compact and continuous; (iii) B is a contrac-
tion mapping. Then there exists z € M such that z = Az + Bz.

Theorem 3.3 Let f : [0,1] x R — R be a jointly continuous function satisfying the
assumptions (A,) and (A,) with

L (Aﬂﬂka«Wﬂ+Ammwﬂ—yﬁw+w+HM><1

rg+1) (q+ DA (5.2)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Letting sup,cjo,17 It (O] = llll, we fix

oo lull ( Azlffl(ﬂ"”—Ot"”)+A1|nI(5”’”—V”’”)+(fi+1)A1>
~ g+ 1) (a+1)IA| ’

and consider B; = {x € C : [[x|| <T7}. We define the operators P and Q on B; as

Lo
(Px)(t) = f (tr (2) (s, x(s))ds,

(Q)(1)

B s
o L e R YR R (/ (s = m)™f(m, x(m))dm) “

o 0

) s
. Arij(q) [‘;(ﬂz —at)—(o(B—a) — l)t]/ (/(s m)4=1f (m, x(m))dm) ds

1

_ o
AT(q) (1= 5)77 (s, x(s))ds.

[ (8? —a®) = (0(B— )~ 1)]

St~

For x,y € B;, we find that

||[Px + Qyl|
- [pel] ( Azlcrl(ﬁ"”—Ot‘7+1)+A1|n|(5‘7”—J/‘7*1)+(q+1)A1)<F
T I(g+1) (g+1)IA| -

Thus, Px + Qy € B;. It follows from the assumption (4;) together with (3.3) that Q
is a contraction mapping. Continuity of f implies that the operator P is continuous.
Also, P is uniformly bounded on B; as

gl
[Pxl| = Fg+1)

Now we prove the compactness of the operator P.

Page 6 of 21
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In view of (A;), we define sup(, yejo,11x5, If (: x) = f, and consequently we have

|(Px)(t1) = (Px)(&2)] = r(lq) f [(t2 = )" = (11 = )T If (5, x(s))ds
0

ty

+/ (ta — )7 (s, x(s5))ds

4L

< 2ty — 1)+ ¢ — ),
_F(q+l)| (2 —t)"+6; — 5]

which is independent of x. Thus, P is equicontinuous. Hence, by the Arzeld-Ascoli
Theorem, P is compact on B;. Thus all the assumptions of Theorem 3.2 are satisfied.
So the conclusion of Theorem 3.2 implies that the boundary value problem (1.1) has
at least one solution on [0, 1]. ©

Our next existence result is based on Leray-Schauder degree theory.

Theorem 3.4 Let f : [0,1]1x R— R. Assume that there exist constants
0<k< 11\, where A is given by (3.2) and M >0 such that |f(t, x)| <k|x|+M for all t €

[0, 1], x € C[O, 1]. Then the boundary value problem (1.1) has at least one solution.
Proof. Consider the fixed point problem

x = Fx, (3.4)

where F is defined by (3.1). In view of the fixed point problem (3.4), we just need to
prove the existence of at least one solution x € C[0, 1] satisfying (3.4). Define a suita-
ble ball B € C[0, 1] with radius R >0 as

Br={xe(C[0,1]: trerllglxll lx(t)] < R},

where R will be fixed later. Then, it is sufficient to show that F : By — C[0, 1] satis-

fies

x #MFx, Vxe€ dBg and Vi e€|[0,1]. (3.5)

Let us set
H(A, x) =AFx, xeC(R) xe]0,1].

Then, by the Arzeld-Ascoli Theorem, i, (x) = x - H (A, x) = x - AFx is completely
continuous. If (3.5) is true, then the following Leray-Schauder degrees are well defined
and by the homotopy invariance of topological degree, it follows that

deg(h;, Br, 0) = deg(I — AF, Bgr, 0) = deg(h;, Bgr, 0)
= deg(hOI BR/ 0) = deg([, BRr O) =1 7'( 0/ 0e Brr

where I denotes the unit operator. By the nonzero property of Leray-Schauder
degree, ,(t) = x - AFx = 0 for at least one x € Bp. In order to prove (3.5), we assume
that x = AFx, A € [0, 1]. Then for x € dBg and t € [0, 1] we have

Page 7 of 21
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[x(£)] = 1A(Fx)(1)]

1 \ _
< ) Of (=915, x(9)lds

B /s
sy - (GO =7 1) it =) =] ‘ / (/ (s = m)*If(m, x(m))ld'") ds
o 0

3 s
7 7 2—a?)—(o(f—a)— - -1
st 3B =a) =@ -0 - 1] | [ (0/ (s = m)"™" f(m, x(m))mm) @

+

+

v

1
* Al"l(q) [Z (B —a’)—(o(B—a)— 1)J }/(1 = )" (s, x(s))1ds
0

B

1 s
< (il M) H) fo-gmas s f ( /(sm)qldm) -

b s 1
ol VR P o
|A|F(4)A1! (Of(s m) dm)ds |A|F(4)A10/(1 9 dsi|
M () Salol(B ) MG ) 4 1000
~“T(g+1) (g + 1)|A|
= (x|l x|l +M)A,

which, on taking norm (sup,¢( 17 1% ()| = [|x[|) and solving for llxll, yields

MA
[lx]] < :
1—«kA

MA
Letting R = ) At 1, (3.5) holds. This completes the proof. O
—K

Example 3.5 Counsider the following strip fractional boundary value problem

1 |x]
c3/2 -
D32x(t) ((+2) 141 tel0,1],
1/2 3/4 (3.6)
x(0) = [ x(s)ds, x(1) = [ x(s)ds.
13 2/3

Here, ¢ = 3/2, 0 =1, n =1, aa = 1/3, f = 1/2, y = 2/3, 6 = 3/4 and

1 |x]| 1
t, x) = ) _ _ o
f(t x) (t+ 2)2 1+ ] As |f(t, x)—f(t, y)| < 4Ix yl, therefore, (A;) is satisfied

with L = 411 Further, A; = 65/72, A, = 535/288, A = 4945/5184, and

Al ! ( Aolo| (BT — @)+ Aginl(3! — y#1) + (g + 1) A
T(g+1) (g+1)|A]

Clearly, LA = 0.282191 <1. Thus, by the conclusion of Theorem 3.1, the boundary
value problem (3.6) has a unique solution on [0, 1].

Example 3.6 Conusider the following boundary value problem

1 ||
(4m) 1+ |x]

1/2 3/4 (3.7)

x(0) = /x(s)ds, x(1) = /x(s)ds.

1/3 2/3

) =1.128765.

‘D32x(t) = sin(27x) + , telo,1], 1<g<2,

Page 8 of 21
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Here,

. 1
sin(2mx) + < x|+ 1.

I, )1 = AN

1
(47)
Clearly M = 1 and

1 1
Kk=_<  =0.885924.
2 A

Thus, all the conditions of Theorem 3.4 are satisfied and consequently the problem
(3.7) has at least one solution.

4 Existence results for multi-valued case
4.1 Preliminaries
Let us recall some basic definitions on multi-valued maps [28,29].

For a normed space (X, I.l), let PygX) = {Y ePX) : Yis closed},
Py (X) ={Y e P(X) : Yiscompact}, Py X)={Y e P(X) : Yiscompact}, and
Py (X) = {Y € P(X) : Y iscompactand convex} . A multi-valued map
G : X —> P (X) is convex (closed) valued if G(x) is convex (closed) for all x € X. The
map G is bounded on bounded sets if G(B) = UyepG(x) is bounded in X for all
B € Py(X) (i.e., sup,episup{lyl :y € G(x)}} < 00). G is called upper semi-continuous
(us.c.) on X if for each xp € X, the set G(xo) is a nonempty closed subset of X, and if
for each open set N of X containing G(x,), there exists an open neighborhood N of
xo such that G (Np) € N. G is said to be completely continuous if G(B) is relatively
compact for every B € Py(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e.,
Xy = X+, Yy —> Vs, ¥ € G(x,) imply y. € G(x:). G has a fixed point if there is x € X
such that x € G(x). The fixed point set of the multivalued operator G will be denoted
by FixG. A multivalued map G : [0; 1] — Py (R) is said to be measurable if for every
y € R, the function

t—d(y, G(t)) =inf{ly —z| : z € G(t)}

is measurable.
Let C([0, 1]) denotes a Banach space of continuous functions from [0, 1] into R with
the norm [lx|| = sup,(o 1) [x (¥)|. Let L'([0, 1], R) be the Banach space of measurable

functions x : [0, 1] — R which are Lebesgue integrable and normed by

1
Il = f () dt .
0

Definition 4.1 A multivalued map F : [0,1] x R — P (R) is said to be Carathéod-
ory if

(i) t » F (t, x) is measurable for each x € R;

(ii) x — F (¢, x) is upper semicontinuous for almost all t € [0, 1];

Further a Carathéodory function F is called L'-Carathéodory if
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(iii) for each o >0, there exists ¢, € L! ([O, 11, R*)such that
[IF(t, x)|| =sup{lv] : veF(t x)} < @alt)

for all |xll.. < & and for a. e. t € [0, 1].
For each y € C([0, 1], R) , define the set of selections of F by

Sky :={v € L'([0, 1], R) : v(t) € F(t,y(t)) fora.e.t € [0, 1]}.

Let X be a nonempty closed subset of a Banach space E and G : X — P (E) be a
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {y € X : G(y) n B = &} is open for any open set B in E. Let A be a subset of
[0, 1] x R. A is £ ® B measurable if A belongs to the o-algebra generated by all sets
of the form 7 x D, where J is Lebesgue measurable in [0, 1] and D is Borel mea-
surable in R. A subset 4 of L'([0, 1], R) is decomposable if for all u,v € A and mea-
surable 7 C [0,1] =], the function uyxs +vy—7 € A, where X7 stands for the
characteristic function of 7.

Definition 4.2 Let Y be a separable metric space and let
N:Y->P (L1 ([0, 1] ,R)) be a multivalued operator. We say N has a property (BC) if
N is lower semi-continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : [0,1] x R - P (R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0,1] x R) = P (L1 ([0, 1] ,R)) associated with
Fas

F(x) = {w e L}([0, 1], R) : w(t) € F(t, x(t)) fora.e.t € [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 4.3 Let F : [0,1] x R — P (R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its associated
Nemytskii operator F is lower semi-continuous and has nonempty closed and decompo-
sable values.

Let (X, d) be a metric space induced from the normed space (X; Il.ll). Consider
Hy:PX) x P(X) - RU/{oo} given by

Hy(A, B) = max{supd(a, B), supd(A, b)},
acA beB

where d(A, b) = inf,. 4 d(a; b) and d(a, B) = inf,. p d(a; b). Then (P, (X), Hy) is a
metric space and (P.(X), H,) is a generalized metric space (see [30]).

Definition 4.4 A multivalued operator N : X — P.(X) is called:

(a) y-Lipschitz if and only if there exists y >0 such that

Hy(N(x), N(y)) < yd(x, y) for each x, y € X;

(b) a contraction if and only if it is y-Lipschitz with y <1.

The following lemmas will be used in the sequel.

Lemma 4.5 (Nonlinear alternative for Kakutani maps) [31]. Let E be a Banach space,
C is a closed convex subset of E, U is an open subset of C and 0 € U. Suppose
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that F: U — P.(C)is a upper semicontinuous compact map; here P, (C) denotes
the family of nonempty, compact convex subsets of C. Then either

(i) F has a fixed point in ], or

(ii) there is a u € oU and A € (0, 1) with u € AF(u).

Lemma 4.6 [32]Let X be a Banach space. Let F : [0,T] x R > Py (X) be an L'-
Carathéodory multivalued map and let © be a linear continuous mapping from L'([0,
1], X) to C([0, 1], X). Then the operator

® 08k : C([0,1], X) = Pepe(C([0,1], X)), x> (O 0 S)(x) = O(Sk,)

is a closed graph operator in C([0, 1], X) x C([0, 1], X).

Lemma 4.7 [33]Let Y be a separable metric space and let
N:Y — P (L' ([0,1],R)) be a multivalued operator satisfying the property (BC). Then
N has a continuous selection, that is, there exists a continuous function (single-valued)
g:Y — L' ([0,1],R) such that g(x) € N(x) for every x e Y .

Lemma 4.8 [34]Let (X, d) be a complete metric space. If N : X — P(X) is a contrac-
tion, then FixN = &.

Definition 4.9 A function x € C2([0, 1], R) is a solution of the problem (1.2) if

B 8
x(0)=0 /x(s)ds, x(1) = n/x(s)ds, and there exists a function fe L'([0, 1], R) such
o ¥
that
fit) e F (¢ x(t)) a.e. on [0, 1] and

ORI (ER O
0

B s
* arge [ GE 1) B -1 - n] [ (/(s - m)"lf(m)dm) s
a \0
5 /s (4.1)
* Al‘n(q) (58 —a’) = (e (8 —) - 1)t]f (/(s - m)"lf(m)dm) ds

1

- argg L2 B =) = @8- - 1] [0 -9
0

4.2 The Carathéodory case
Theorem 4.10 Assume that:
(Hy) F : [0,1] x R — P (R) is Carathéodory and has nonempty compact and convex

values;
(Hy) there exists a continuous nondecreasing function y : [0, ) — (0, ) and a func-

tion p e L' ([0, 1], R*) such that

IIE(t, x)l|p = sup{lyl : yeF(t, x)} <p()y(llxll) foreach (¢, x)€[0,1] x R.
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(H5) there exists a constant M >0 such that

o 105 2 (oo )

) s -1
+'|’7'AA|1 (/(s - m)qlp(m)dm) ds] } 1
14 0

Then the boundary value problem (1.2) has at least one solution on [0, 1].
Proof. Define the operator Q5 : C([0, 1], R) — P(C([0, 1], R)) by
hec([0,1],R) :

r(lq)/ (1= 9" f(s)ds
0
+A;(q) [_ <Z(82 _ ]/2) - 1) +t(n(—y)— 1)] «

B s
X (s— m)"lf(m)dm) ds
Qp(x) = / (/

hry={ °

Ar(q)[ (B = o) = (o (B —a) = )] x

x y/ ( 0/ (s—m)‘“f(m)dm) ds

1
1 -
~ arig L2 = @) = (=)~ 1)] Of (1= ()

for fe Sp.. We will show that Q satisfies the assumptions of the nonlinear alterna-
tive of Leray-Schauder type. The proof consists of several steps. As a first step, we
show that QF is convex for each x € C([0, 1], R). This step is obvious since Sg, is con-
vex (F has convex values), and therefore we omit the proof.

In the second step, we show that Qr maps bounded sets (balls) into bounded sets in
C([0, 1], R). For a positive number p, let B, = {x € C([0, 1], R): llxll < p} be a bounded
ball in C([0, 1], R). Then, for each 1 € Qf (x), x € B,, there exists fe Sg, such that

) = gy [ =9 F0ds
0

B s
*arte -G =1 rie - -] f ( Jo- m)"‘lf(m)dm) ds
a 0

) s
AF(q)[ (ﬂz_“z)—("(ﬂ—a)—l)t /(/(S—m)qlf(m)dm) ds

Y

- ar(g L2 B =)~ (@B =0~ 1) /(1—s)q 'f(s)ds.
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Then for te [0, 1] we have

Ol = pgy [ 6= 97 G ()] ds
0

B s
+ (f (" =y —1) 4t -y -1 ( (s — mT'f ( )d)d
Al"(q)[ (2 Y ) n 14 Ha/ b/s m m)dm s
8

] / (Z (s — m)"_lf(m)dm) ds

Y

n 0 (p2 2
“largg L2 @ - ) —@@ - -

1
1 [y, 2 -1
*| ar() [5G —(X)—(a(ﬂ—a)—l)t]‘of(l—s)“ f ) ds

; B s
! _ g4t o] / / o
< v (el {F(q) O/(z o s s S [ [ m i) a
Inl H
n o o
+|A|F(q)A1 / ([(s m)1~"p (m) dm) ds + IAI I Al /(1 s) p(s)d{|
B s
v ol A, -
Torg {( IAI> /p(s)dH A (/(5 m) f(m)dm)ds
@ \0

+|77‘|AA‘1 [ (/ (s—m)qlp(m)dm) ds].
V2 0

Thus,

1 B s
v () Ay 012, o
Al < I‘(q) I(l + |A|>0/p(s)ds+ Al /(O/ (s —m) p(m)dm) ds

o

|77|A1 .
Al / (f (s — m)? p(m)dm) ds].

Now we show that QF maps bounded sets into ’equicontinuous sets of C([0, 1], R).
Let ¢, t” e [0, 1] with £ < " and x € B, For each 1 € Q(x), we obtain

[h(t") = h(t)]
_ )it A v — q-1
wmm/[ ; S)}p®$+¢mm/(rg p (s) ds
J
¥ (Il .
Xio _ _ ooy _ -1
*| AT (@) Mm@ —y)— D" =7 / (/ (s — m)T'p(m) dm) ds
§ s
nyr (llx[) " g-1
- - d
+ AT () [(c(B—a)+1)|t y/(/(s m)7p (m) m)

¥ (llxl)
AF()

[0 —a)+1) | —1]]

1
/(1 — )71 p(s) ds.
0

Obviously the right-hand side of the above inequality tends to zero independently of
x€ Byast’ -1 — 0. As O satisfies the above three assumptions, therefore it follows
by the Ascoli-Arzeld theorem that Qf: C([0,1],R) — P (C([0,1],R)) is completely
continuous.
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In our next step, we show that Qr has a closed graph. Let x, — x., hy € QF (xn) ,

and h, — h,. Then we need to show that h, € Qr(x,) . Associated with /%, € Qf
(%), there exists f, € Spy, such that for each ¢ e [0, 1],

1 t
- _ g1
hy (1) r () O/ (t — )T fu(s) ds

a

B s
o N 5 y
+ AT (g) [— (2(5 —-v ) - 1)+I(77(5—}/) - 1)]/([(S—m)” fn(M)dm)ds
0
17 s

§
o 2 2 —
+ Ar(q)[z(ﬂ —a’) = (0 (B —a)— l)t] /(/(sm)" lfn(m)dm)ds
Y

0
1
o

AT () [2 (B2 =) — (0B —a) — 1) t] /(1 — 9TV (s) ds,
0
Thus it suffices to show that there exists f, € Sp,, such that for each ¢t € [0, 1],

t
1
B (1) = / = 97 ) ds
r)

B s
+ A:(q) |:— (Z (52 _ yl)— 1) +tm@ —y) — 1)] / (/ (s — m)qlﬁ(m)dm) ds

a 0
n

8 s
VPSR N _ _ -1
+ AT () [2 (B R CACEE)) l)t] / (/ (s — m)?'f, (m)dm) ds

14 0

1
B 1 A N N _ _ /‘ gt
AT () [2 (B2 — e?) — (o (B — ) 1)r] (1 — 1 (s) ds,

0

Let us consider the linear operator 0: L*([0, 1], R) — C([0, 1], R) given by

t
1
f0(f)o-= /(: - 9" f(s)ds

s
o

B
" ar@) [-G6=r)-1) v tme -y -] / (/ - m)“f(rn)dm) ds

0

@

8 s

nooqo -
* ALl [2(,32708) — @B —a) — 1)z]/(0/(sm)q lf(m)dm)ds

14

1
1 o 2 2 -1
AT () [2(/3 fa)fw(ﬂfa)fl)t}of(lfs)' () ds,

Observe that

t
1
Iha (8 — he O] = /(t =" () — fu () ds
Hr(q) J G )

B
Sk P GE =) =) siwe -] [

(/ = m"" (fu(m) - fi (M))drn) ds
a 0

8 s
* AL [5 (=) = @B - - 1] / (/ (s — m)" (fu (m) — f, (m) dm) ds

14 0

1
1 o -
AT (q) [5 (B —a®) — B -a - 1)[]/(1 — 9T (fa®) — £ ®)) ds

0

— 0,

as 711 —> oo,
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Thus, it follows by Lemma 4.6 that 6 o Sr is a closed graph operator. Further, we

have h, (t) € ® (Sp/xn), Since X, — X, therefore, we have

t
1
- _ gt
h (1) r () O/ (t =) fu(s)ds

B s
" A:(q) [_ (2(82 -7 - 1) +t(n @ —y) — 1)] / (/(s — m)y"'f, (m) dm) ds

o 0

8 s
n o _
" AL (g) [2 (B> —a?) = (@ (B —a) - 1)z] y/ (/(s - m)f 1J;(m)alm) ds

0

1

1
9 (52 2 -1
= ar(g 2@ —a)—(a(ﬁ—a)—l)z]ofa—sw f. @ ds,

for some f, € Spy,.

Finally, we show there exists an open set U € C([0, 1], R) with x ¢ Qx(x) for any A €
(0,1) and all x € AU Let A € (0, 1) and x € AQx(x). Then there exists fe L'([0, 1], R)
with f € Sgy such that, for £ € [0, 1], we have

t
1
h(t) = /(t — )T f(s)ds
r) )

s

B
’ AFG(Q) [_ (Z (* v’ - 1) +tn @G —y) - 1>] / (f (s — m)T f (m) dm) ds

0
s

§
n 0 2 2 -1
* AL [2(/3 —a)—(a(ﬁ—a)—m]y/(/(s—m)q f(m)dm)ds

0

1

1
O 2 —1
_AF(q) [2(5 —a)—(o(ﬁ—a)—l)t]()/(l—s)q f(s)ds,

and using the computations of the second step above we have.

B

1 s
¥ () Ay o1 A i
lh(t)| < F(q) {(1 + |A|> b/-p(s)ds + N / (b/ (s — m) p(m)dm) ds

8

+ lnl‘AAll /(0[(5 — m)"‘lp(m)dm) ds} )

Y

Consequently, we have

B

1 s
¥ (i) Ay o1 A o
llxll - { F(q) [(1 + |A|> O/p(s)ds + Al /(O/ (s —m) p(m)dm)ds

8 s -1
+|]7||AA|1 / (f (s — m)"_lp(m)dm) ds }} < 1.
14 0
In view of (A;0), there exists M such that ||x|| # M. Let us set

U={x e C(0, 1], R) : [Ix]| < M}.
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Note that the operator Qf : U — P (C([0, 1], R)) is upper semicontinuous and
completely continuous. From the choice of U, there is no x € 9l such that x € AQp
(%) for some A € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder
type (Lemma 4.5), we deduce that QF has a fixed point x ¢ [ which is a solution of
the problem (1.1). This completes the proof. O

Example 4.11 Consider the following strip fractional boundary value problem

‘D2x(t) e Ft, x(1), 0 <t < 1,

1/2 3/4
x(0) = [x(9)ds, x(1) = [ x(s)ds. (4.2)
1/3 2/3

Here, ¢ = 3/2, 6 =1, n =1, a = 1/3, B = 1/2, y = 2/3, 6 = 3/4, and
F : [0,1] x R — P (R) is a multivalued map given by

3
X x
x — F(t, x)€|:|||3| 3+3t3+5, |x|||1+t+1]
x° + +
For fe F, we have
3
X X
‘f’fmax<|||3| 3+3t3+5, ||||1+t+1>§9, x € R.
X7 + X| +

Thus,
IF (i, ©llp :=suplly| :y e F, 0} <9 =p@® ¢ (lxl), x € R,

with p() = 1, w(||*[|) = 9.

Further, we see that (H3) is satisfied with M >20.679031. Clearly, all the conditions of
Theorem 4.10 are satisfied. So there exists at least one solution of the problem (4.2) on
[0, 1].

4.3 The lower semicontinuous case
As a next result, we study the case when F is not necessarily convex valued. Our strat-
egy to deal with this problem is based on the nonlinear alternative of Leray Schauder
type together with the selection theorem of Bressan and Colombo [35] for lower semi-
continuous maps with decomposable values.

Theorem 4.12 Assume that (Ay), (H,) and the following condition holds:

(Hg) F : [0,1] x R — P (R) is a nonempty compact-valued multivalued map such
that

(a) (¢, x) » F (t, x) is A L ® B measurable,
(b) x » F (¢, x) is lower semicontinuous for each t € [0, 1];

Then the boundary value problem (1.2) has at least one solution on [0, 1].

Proof. It follows from (H,) and (H,) that F is of Ls.c. type. Then from Lemma 4.7,
there exists a continuous function f : C([0, 1], R) — L'([0, 1], R) such that
fx) e F(x) foralwxe C(0, 1], R).
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Consider the problem

‘Dix@) = f(x@), telo0 1]
8
x(0)=afx(s)ds, x(1)=n/x(s)ds, O<a<fB<y<é<l

o 14

(4.3)

Observe that if x € C*([0, 1], R) is a solution of (4.3), then « is a solution to the pro-
blem (1.2). In order to transform the problem (4.3) into a fixed point problem, we
define the operator Qp as

t

1
Qpx (t) = r () /(t — 997 f (x(s)) ds
0
B

v arg FGE == ciwa—pn -] [ ( - mwlf(x(m))d'") §
0

a

8

noo[o s )
Ar(g) [2 (B —a®) =@ (B - - 1)z] / (O/(s - m ‘f(x(m))dm)ds

14

1
1 o5 2 —1
~argg LF - @@ fl)t]of(l — 97 () ds.

It can easily be shown that Qp is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 3.1. So we omit it. This com-

pletes the proof. O

4.4 The Lipschitz case
Now we prove the existence of solutions for the problem (1.2) with a nonconvex
valued right-hand side by applying a fixed point theorem for multivalued map due to
Covitz and Nadler [34].

Theorem 4.13 Assume that the following conditions hold:

(Hs) F: [0, 1] x R — P,(R) is such that F(., x): [0, 1] — P,(R) is measurable for
each x € R.

(He) Ha(F(, x), F(t, X)) < m(@)|x — X|for almost all t € [0, 1] and x,
x € Rwith m e LY[0, 1], R*) and d(0, E(t, 0)) < m(t) for almost all t € [0, 1].

Then the boundary value problem (1.2) has at least one solution on [0, 1] if

B

. N
r0 i<l i) 0/(1 -ortmeds s 0 / (0/ =" m dr) ds

8

+ Il Ar / (/ s — N 'm@) dr) ds; < 1.
JAY 7 \s

Proof. Observe that the set Sg, is nonempty for each x € C([0, 1], R) by the
assumption (Hs), so F has a measurable selection (see Theorem II1.6 [36]). Now we
show that the operator QF, defined in the beginning of proof of Theorem 4.10, satisfies
the assumptions of Lemma 4.8. To show that Qg(x) € P,((C[0, 1], R)) for each x € C
([0, 1], R), let {un}y>0 € Kr(x) be such that u, — u (n — ) in C([0, 1], R). Then u
e C([0, 1], R) and there exists v, € Sgy, such that, for each t € [0, 1],
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1

Un (t) =
r(q

t
f (t — 99 vy (s) ds
) 0

B

o n S -
(" -y -1)rtmE -y -1 ((—)“H()d)ds
Targ G s o] [{ e

o

s

s
n o _
+ AT (g) [2(52_0[2)_(0 B —a) — l)t]y/ (f(s—m)q 1vn(m)d1n)ds

0
1

(9) [Z B —a®) = (0B —a)— l)t] f(l =) vy (s) ds.

0

1
AT

As F has compact values, we pass onto a subsequence to obtain that v, converges to
v in LY([0, 1], R). Thus, v € Sex and for each £ € [0, 1],

t
U () — u(t) = qu) f(t — 9" u(s) ds
0

o

B s
(M2 _ 2y _ _ a1
+M(q)[ (2(5 3 1)+z(n(s » 1)]/(](5 ) un(m)dm)ds
0

«

s

8
n a —
* Ar(g) [2(52 —d’) (@ (B-a) - m],/(f(s_ m)? 1mrn)dm)ds

0

1
1 o, ) 7
_Al"(q) [2(5 —?) = (0 (B—a) - l)t]of(l — Ty, (5) ds.

Hence, u € Q(x).
Next, we show that there exists y <1 such that

Hy (Qp(x), QX)) < yllx —x|| foreach x, xeC([0, 1], R).

Let x, x € C([0, 1], R) and %; € O(x). Then there exists v,(¢) € F(¢, x(¢)) such
that, for each ¢ € [0, 1],

t
1
hy (0) = r (q) /(t — )11y, (5)ds
0
B

’ AFU(fl) [FGE =) -1)stae -y -] / (/S(S — Ty (m)dm) ds
0

a

8 s
+ M”(q) [Z B —a?) = (B —a)— 1)t] V/ ([ (s — m)T vy (m)dm) ds

0

1
1 o5 2 -1
" ar) [2(/3 —a?) - (o (ﬂ—a)—l)t]of(l—s)ﬂ V1 () ds.

By (H), we have

Hy(F(t, x), F(t, X)) < m(@) |x(t) — X @®)].
So, there exists w € F(t, X(t)) such that

v (1) —wl = m@x@®) —x(@©, ][0 1].
Define U : [0,1] — P (R) by

Um=fwekR: O -—w =m@®x® —XOl}.
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Since the multivalued operator U (t) N F(t, Xx(t)) is measurable [36, Proposition
I11.4], there exists a function v,(t) which is a measurable selection for U. So
vy (t) € F(t, x(t) and for each t € [0, 1], we have
1 (1) — @] = m@ |x@© — X@®].

For each t € [0, 1], let us define

t
1
hy (0) = /(t— ) s (5) d
2 F(q)o N vy (S)ds

B

o (M2 2y _ -~ a1
+AF(q)[ (2(5 v?) 1)+t(n(8 ») 1)]/(0/(5 m) vz(m)dm)ds

o

8 s
+ AF”(q) [‘; B —a’)— (0 (B—a) — 1>t] / (/ (s = m)T" vy (m) dm) ds
14 0

1
1 [N 2 —1
- ar (g [2 (8 —a)—(cr(/i—a)—l)t]()/(l—s)q vy (s) ds.

Thus,

t
1
lhi () — ha (0)] = r () 0f(t = 97 w1 () = v2 (9)] ds

B

/

't

o

"l ar(g) [7(2(52 -7 - 1) G =y) = 1)]

( [e=nmo = no dr) ds
0
8 s
/ ([ =" —n (T)Idr) ds
0

Y

+

argg L2 ¢ o) — @@ —a =]
1
AT (q)

+

1
/(1 — ) vy (5) — v (9)] ds
0

[5 (62 =) = @ 8 — ) - 1)1

B

_ 1 s
< ”’;"zq)x” i(l + ‘AA1|> /(1 — 9T m(s)ds + ‘UllAAlz / (/ (s — r)”Wn(r)dr) ds
0 o 0
8 s
+ |77‘|AA‘1 [ (Of (s — r)"lm(r)dr> ds} .

Y

Hence,

B

1 s
1 A A
lhy — ho|l < F(q) [(1 + lA") _0/(1 — )T 'm(s)ds + ‘Ul‘Alz / (O/ (s — r)“’lm(r)dr) ds

o
8

+“7||AA|1 / (0/ (s — Tt m(r)dr) dsl lx — X .

Y
Analogously, interchanging the roles of x and x, we obtain

Hy (QF (%), Q2r (X))

=y lx—xl

A

B

! N
1 Ay ag-1 |U|A2 / / g1
r (q) i(l + |A|> 0/(1 )T m(s)ds N (O s—nT'm@dr]ds

3

IA

3

+ Il Ar / /(s — " mrydr| ds} llx — x| .
|A] )

Y
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Since QF is a contraction, it follows by Lemma 4.8 that O has a fixed point x which is
a solution of (1.2). This completes the proof. O
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