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Abstract

Some new nonlinear impulsive differential inequalities and integral inequalities with
integral jump conditions for discontinuous functions are established using the
method of successive iteration. These jump conditions at a discontinuous point are
related to the integral conditions of the past state, which can be used in the
qualitative analysis of the solutions to certain nonlinear impulsive differential systems.
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1 Introduction

Impulsive differential equations, that is, differential equations involving impulse effect, ap-
pear as a natural description of observed evolution phenomena of several real world prob-
lems. Many processes studied in applied sciences are represented by impulsive differential
equations. However, the situation is quite different in many physical phenomena that have
asudden change in their states such as mechanical systems with impact, biological systems
such as heart beats, blood flows, population dynamics theoretical physics, pharmacokinet-
ics, mathematical economy, chemical technology, electric technology, metallurgy, ecology,
industrial robotics, biotechnology processes, and so on (see [1-3] and [4] for details).

In spite of the importance of impulsive differential equations, the development of the
theory of impulsive differential equations has been quite slow due to special features pos-
sessed by impulsive differential equations in general, such as pulse phenomena, conflu-
ence, and loss of autonomy. Among these results, differential inequalities and integral in-
equalities with impulsive effects play increasingly important roles in the study of quan-
titative properties of solutions of impulsive differential systems. However, most of these
results involving impulsive effects are point-discontinuous, i.e., impulsive effects are added
at a sequence of discontinuous points (see [5-12] for details). For example, in 2004, Bo-

rysenko [13] considered the following integral inequality with impulsive effect:

u(t) < alt) + / tf(s)u(s)ds+ 3" (- 0),

to<ti<t
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in 2007, Iovane [14] studied the following integral inequalities:

u(t) < a(t) + f fOu(rs)ds+ Y au(t-0),

to<ti<t

u(t) <alt) + q(t)[/ f(s)u(ot(s)) ds + / f(s)/ g(t)u(r(t)) dtds

+ Z O‘iur(ti_o)],

to<ti<t

in 2011, Wu-Sheng Wang [5] gave the upper bound for the nonlinear inequality

v"(t)<A0(t)+ £ / fEVI(t(s)ds+ Y api(ti-0).

to<ti<t

As we know, most of the phenomena occurring in the natural world do not suddenly
change, so the impulsive differential equations with integral jump conditions are more ac-
curate than impulsive differential equations with stationary discontinuous points in char-
acterizing the nature. In 2012, based on a well-known result given by Lakshmikantham
et al. [1], Thiramanns and Tarboon [15] studied the following impulsive linear differential

inequalities:

m'(t) < p(O)m(t) + q(t),  t b,

t (1D
m(t}) < dim(t) + cx " G" m(s) ds + by,

and gave the upper-bound estimation of the unknown function m(¢).
Theorem 1.1 Suppose that (Ho) and (Hy) hold. Ifp,q € C[R,,R] and fork =1,2,...,t > t,

the impulsive linear differential inequality (1.1) holds, where c; dx > 0,0 < op < 7p <ty —

ti_1, by are constants. Then

t tk—o
m(t) < {l/l’l(to) 1_[ (dkeft,flp(f)dr +Ck/ f‘k ) (v)dr dS>
t,

to<tr<t k— Tk
i ti—oj
j j=0j
o op(t)dr f 7)dt
+ E [ | | <d,»ef‘11 +¢ PRSP
to<tp<t“tp<ti<t 47

t f
(dk/ (s)efskp(’)d’ ds
tk—0k
+C/</ / Q(V)ejv plo)de dvds+bk>:|} o)
173

+/ g(s)es PO st 1.2)
t

i

This result can be used to investigate the qualitative properties of certain linear impul-

sive differential equations.
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A natural question arises, that is, how about the upper bound if the inequality is of non-
linearity? In this paper, under different jump conditions, we will study the upper-bound

estimation of the nonlinear inequality

m'(t) < p(t)m(t) + g(£)m"(¢).

2 Main results

In this paper, let 0 < ¢, <t <t < --- be a sequence. For / C R, we denote by PC(I, R) the
functions u(t) defined on I, which is continuous for ¢ # &, u(0+), u(tx+), u(tx—) exist and
u(t) is left continuous at &, k = 1,2,..., PCY(I,R,) is the collection of functions u(t) such

that &, ' € PC(I, R, ). Throughout this paper, we assume the following hypotheses:

(Ho) the sequence {t;} satisfies 0 <ty <t) <tp <---, limg_, o0 g = +00.
(Hi) m e PC(I,R,), and m(2) is left continuous at &, k =1,2,....

Lemma 2.1 (see [11]) Suppose that a,b € R, p > 0. Then
(lal +161)” < Cy(lal” + |bIP),
where C, =1 for 0<p <1,and C, = 21"’1forp >1.

Theorem 2.1 Suppose that (Hy) and (Hy) hold. If for k =1,2,...,t > to,

m'(8) < pOym(t) + qO)m*(8), t 7t (2.1)
tg—0ok
m™ (t,:r) < dem () + / m(s) ds + by, (2.2)

here0<a <1,p,qe C[R,,R],and fork=1,2,...,t > to, ck; dx > 0,0 < 0p < T <ty — tx1,

by are constants. We have the estimation

m(t) < {[mla(to) 1_[ Er + Z Gr 1_[ Ej:|efé(1—“)17(f)dr

to<tr<t to<tp<t Lk <tj<t

1
t T-a
+(1- a)/ q(s)e-fst(l’“)p(f)d’ ds} , >t (2.3)
ti

where

=0k s
eftk—l (1-a)p(r)dr d

e _
E = dkef‘k—l (-ep()de c/(f s, (2.4)

7373

tr b
Gk = dk/ (1 — O{)q(s)efs (1-a)p(r)dr ds
-1

t.
ti—oy s s
+(1-a)ex / / q(v)efv (-ep@dt gy, ds + by. (2.5)
7 -1

k—Tk
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Proof For t € [ty, 1], we have

d —(l-a -
E[efti) @ )P(T)d'fml—a(t)] < (l—a)q(t)e ftg(l )P(T)df, (26)

integrating (2.6) implies
t
m ) < m (g )eflo(1 aplydr @1 —a)/ q(s)efst(l’“)p(f)df ds, (2.7)
£

which shows that (2.3) holds for ¢ € [£y, t;].
Now we suppose that (2.3) holds for ¢ € [£, £,], then we need only prove that (2.3) holds
for t € (¢, t4+1] by mathematical induction. Since

tn
e <[ T B+ ¥ 6 [T gl

to<ti<tp to<ti<tp i <tj<tp

tn .
+(1-a) / Q(S)ejsln(l_a)p(f)d’ ds

|: 1at(to)l_[E +ZG HE:| Sy (el

i=1 J=i+l

tn
+(1-a) / gls)el" I g,

th—0on

—« (t;) <d,m"(t,) + ¢, / m ™ (s)ds + b,

th—Tn

§dWH la(to)l_[E +ZG ]‘[E] Sy A-ep(e)d

i=1 j=i+l

tn .
+(1-a) / Q(S)ejsln(l_o‘)p(f)d’ ds}
tp-1

+Cn/tng [ lol(to)l—[E +ZG HE:| fin l(la
th—7Tn

i=1 j=i+l

ty—on s s
+ ¢y / 1-a) / q(v)efv(l_“)p(r)dr dvds+ b,
7 ty

n—Tn

=[ - "‘(to)l_[E +ZG HEi|

i=1 J=i+1

1 tn=0n s
X |:d,,ef’:1(1_‘)‘)17(t)dI + c,,/ eling PO dr ds]
4

n—Tn

+d,(1 - a)f gls)es" PO g

th—on
+(1- oc)c,,/ f v)efv(1 P gy ds + b,
tn -1

:[ 1- "‘(to)l_[E +ZG HE:|E +G,

i=1 J=i+l
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(2.8)

substituting (2.8) into (2.7), with £, being replaced by ¢}, we obtain, for ¢ € (t,, {4111,

t
ml—a(t) < ml—a (t;)ef[;(l—a)p(r)dt : (1 _ Ol)/ q(s)efst(l—a)p(r)dr ds
tn

[ 1"‘(to)l_[E G HE] Jiy1-e0pte)de

i=1 j=i+l

¢
+(1-a) f g(s)els - dr g
tn
t
B |:m1“(t0) H Ei + Z Gy H Ej}eftn(la)p(f)df
to<tg<tp+1 to<tx<tp+1 te<ti<tnil
t
+(1-a) f q(s)ef;(l—a)p(r)dr ds.
tn

This completes the proof of Theorem 2.1.

If dy = 0 in Theorem 2.1, we obtain the following corollary.

Corollary 2.1 Suppose that (Hy) and (H;) hold, p,q € C[R,,R] and for k =1,2,...,

m'(t) <p&)m(t) + qt)m*(t), O<a<l,

t—0ok
() < ck/ m(s) ds + by,
L

=Tk
where c, by, ox, Tk are defined as in Theorem 2.1, then we have

=0 ftskil(l—a)p(r)dz s

m(t)s{[ “(to) T] Ck/

to<ty<t YTk

tg—0ok s "
+ Z a- oz)ck/ q(v)efv(l_“)”(r)df dvds
to<tp<t be=Tk Y1
U ﬁ (1-a)p(r)dr [ Q-a)p(t)de
X l_[ G ds |e’t

te<ti<t Y b”

L
T

t —
+(1- Ol)/ q(s)efst(l—“)lﬂ(f)dr ds}
ti-1

If di =1, we obtain the following theorem.

t2t01
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Theorem 2.2 Suppose that (Hy) and (Hy) hold. If, for k =1,2,...,t > &,

m'(t) < p(t)m(t) + q(O)m™(t), ¢y,

Am'=(t) < ¢k ftik :k m'=(s) ds + by,

(2.9)

where 0 <a <1, p,q € C[R,,R], and for k=1,2,...,t > ty, cx > 0, 0 < o) < T < by — tx-1,

by are constants, Am"(t;) = m"™(¢}) — m*~*(t,). We have the estimation

't
m(t) < {[Vﬂl“(to) 1_[ E + Z Hy l_[ E;}effi(l_a)”(f)df
to<ty<t to<tp<t ti<tj<t
t " Ta
+(1-a) f gls)els d-p@)dr ds} . E>to, (2.10)
to
where Ey is defined as (2.4) (with dy = 1),

tke—0k
Hi=(1- a)ck/ f ef (-ap@dt gy, s + by
ty

Proof As the proof of Theorem 2.1, we prove (2.7) holds for ¢ € [ty, t;], which means that
(2.10) holds for ¢ € [ty, t1]. Now suppose that (2.10) holds for ¢ € [£, £,], then

ml_a(tn)f[ (to) 1_[ Ep + Z Hi H ] Jonty (-p(e) de

to<tr<t to<ti<t L <tj<t

tn
+(1-a) f qls)els" 1-rm s g
to

=|: la(to)l_[E_l_ZH HEj| fgnlla

i=1 j=i+l

tn
+(1-a) / qls)el" -erdr g,
t

0

So

thy—on
() < m () + cn / m'(s)ds + b,
tn

<[ (ko) ]_[E +ZH HE:| iy (-ple) e

i=1 j=i+l

tn
+(1 —Ol)/ q(S)efsz"(l—a)P(t)dz ds
f

+Cn/tj_a|: la(to)l_[E +ZH HE:| ft _, A=a)p(

= J=i+l

th—on s s
+Cp / 1-a) / q(u)efv (-ap@dr g, ds + b,
t, to

n=Tn
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:|: 10((1«‘0)1—[5 +ZH l_[E:|[fzn11a)p 7)de

i=1 j=i+l

th—on s
+ ¢y / el Aol ds:|
ti—Tn

tn
+(1 —Ol)/ q(s)efst”(lfa)p(r)dr ds+ H,
to

= m —“(to)]_[E + (ZH HE)

i=1 J=i+l

tn
+Hy+(1-a) / qls)els" 1-r@dr g
to

= m'" "‘(to)HE +ZH HE

i=1 J=i+l

tn
+(1-a) / ‘I(S)efstn(l_“)p(”df ds.
£

0

Using (2.7) (with ¢, being replaced by t"), we obtain, for ¢ € (¢, £,,11],

m' = (t) < [ to)l_[E+ZH ]_[E+1 a)/ gs)el" - ths]

i=1 J=i+l

¢ .
> efzn(l_a)P(T)dT . (1—05)/ q(s)ejsi(l—oz)p(r)dt ds
tn

[ “(e) nhzﬁng} st

i=1 j=i+l

L
+(1-0a) / q(s)efst(l_o‘)p(’)d’ ds
to

= |:m1_a(t0) 1_[ E+ Z H; l_[ Ejilef:n(l_a)p(ﬂdr

to<tr<tps1 to<tp<tps1 tk<t]'<tn+1

t
+(1-a) / q(s)efst(l_o‘)’g(t)dZ ds.
to

This completes the proof. d

Remark 2.1 If « = 0, then Theorem 2.1 reduces to Theorem 1.1, and Theorem 2.2 im-

proves Theorem 1.1.

If p(¢) = 0 in Theorem 2.2, we obtain the following useful corollary.
Corollary 2.2 If (Hoy) and (H;) hold and for k =1,2,...,t > t,

m'(t) < q(t)m®(¢), (2.11)

Amt=(t) < cx [}77F m=(s) ds + by,
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then

m(t) < {mla(to) l_[ (1 + cx(me — o%))

to<tr<t

+ Z [(1—0{)Ck</tk_ok /S q(v)duds+bk>

to<tp<t

+(1—a)/tq(s)ds}m.

Next, we will give another kind of nonlinear impulsive differential inequalities.

[T@+e- Uf))]

tk<t/'<t

Theorem 2.3 Suppose that (Hy) holds, and m € PC'[R,,R.], m(¢) is left continuous at ty,
k=1,2,...,p), q(t) € C[R,,R,]. Assume

m'(£) < p(Om(t) + q(O)m*(6), ¢t

Am(ty) < ck f;{":;k m(s)ds + by,

(2.12)

where Am(ty) = m(t]) — m(t), 0 <a <1, ¢k > 0, 0 < 0x < ¢ < tg — tk_1, bi are constants.

We have the estimation
l-a J
m' () < (m(to) H Fie+ Z Ry H F/) el -wpdr

to<tp<t to<tp<t i <tj<t

t
+ 20D ) / q(s)efst(1_"‘)1”“)"1r ds, t>1t, (2.13)
to

where

o t =0k s
Fy=2Ta I:eftk_l p(r)de + Ckf efzk_lp(f)df ds],
4

k= Tk

1
L0k 4 j=
(k=D v
Ry =2 = 1-a) ra / (/ q(s)efs (-e)p(r)dr ds) av + by.

te—Tk to

Proof Obviously, (2.13) holds for ¢ € [£y, 1] as (2.7). Now we suppose (2.13) holds for ¢ €
[t0, t,], then by mathematical induction, we see that

l-a
tn
() < (m(m &Y &[] F,.) i (-epto)dr

to<ty<tn to<tr<tn tk<t/*<tn

tn
+ 2(;1—1)0( (1 _ Ol) / q(s)e-/st” (1-a)p(r)dr ds
to

n-1 n-1 n-1 l-a .
= (Wl(to) l_[Fi + ZRi 1—[ F/) gltn el dr
i=1

=1 j=i+l

tn
+ 2(;1—1)0{ (1 _ 0[) / q(S)efStn (1-a)p(t)dt ds.
to
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Since ;= >1, by Lemma 2.1,

m(t,) < 1a< m(ty) HF+ZR ]_[F) Jin PO

i=1 j=i+l

1
tn T
/ q(s)efstn(l—a)p(r)dr dS) I ,
to
ty—opn

m(t;) <m(t,) + c,,/ m(s)ds + b,

tn=Tn

1‘1( m(ty) HF+ZR HF) Jigy ple)dT

i=1 J=i+l

1
ty T—a
2 (1 o) ( [ aweta-ors ds) ‘
to

+cn/tn_an21—a (m(to)HF +ZR HF) Sy PO
2

n=tn i=1 j=i+l

1
nt th—on v v T«
+c¢, 210 (1 - a)ﬁ / (f q(s)efs (1-a)p(r)dr ds) dv + b,
th—Tn to

(m(to)l_[F + ZR HF)

i=1 j=i+l

ty—on
X |:2laa< ffn 1 +c,,/ ffn plode ds>:|
th—Tn

1

ot tn n Te
+R,+21% (1—a)Ta (/ qls)els" -ew@d ds)
£

0

= (m(to)HF +ZR HF)F +R,

i=1 j=i+l

tn
+21% (1 —a)Ta ( / qls)els" e ds)
to

—m(to)l_[F +ZR HF

i=1 J=i+l

tn =
r2a-ar ([ awel oot gs)
to

So for t € (t,,t,41], since 0 <1 — & <1, by Lemma 2.1 and (2.7) (with £, being replaced by

o (n-1)a
+21% 2 T (l—ot)lla(

—
|‘H
R

t}), we obtain

m'(t) < m"™ (t;)eﬁn(l—a)p(r)dz

t
+(1-a) / q(s)efst(l"")"(’)dr ds
tn
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[ mto) HF+ZR ]‘[F

i=1 J=i+l

t %a l1-a
+ 21 1- Ot)ﬁ (/ Q(S)e-fstn (-)p(r)dr ds) 1 j|
to

t
x ef (1-a)p(r)dt (1—0{)/ q(s)efst(l—ot)p(r)dr ds

|:<Wl(l’0)l_[F +ZR HF) -

=
i=1 J=i+l
na tn [ (1—a)p(c) dr
+2"(1-a) q(s)e’s ds
to
t
x el =@ (1 ) / q(s)el a-pod g
=

(m(to l_[F +ZR HF) el JinA-cp(z) d7

i=1 j=i+l

t
+2na(1_a)/ q(s)efs[(l_o‘)P(I)dt ds
to

1-a
= (m(to) [T B+ > & [] p}) ol -ep(r) d

to<tk<tp+1 to<tp<tp+1 te<ti<tns1

t
+2"(1 - Ol)/ q(s)ef;[(l—“)P(r)dz ds,
to

which shows that (2.13) holds for k = # + 1. This completes the proof. d

Now we give an upper-bound estimation of a nonlinear integral inequality with integral

jump conditions.

Theorem 2.4 Suppose that (Hy) holds, and suppose m,p,q € C[R,,R,]. For t > t, if

m(t) < c+/ pls)m(s) ds+/ q(s)ym*(s) ds + Z ak/tk " m(s) ds, (2.14)

to<tp<t k=Tk

where o > 0,0 <oy < Tk <ty — tre1, ¢ > 0, 0 < @ < 1 are constants. Then we have the

estimation

M(t)§{< [1E+ > R[] ) [ 0-a)plr) dr

to<tp<t to<tp<t g <tj<t

(k1) o faap@ar )
+25% A — ) | qls)els TP g , (2.15)
to

where Fi and Ry are defined as that in Theorem 2.3, with ci being replaced by o.

Page 10 0f 13
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Proof Defined the right-hand side of (2.14) as a new function v(£), we have m(t) < v(¢) and

V() = c. Since

V(6) = p()m(t) + q(O)m* (1), £ # ti,

tk=0ok

v(te+) = v(tg) + ak/ m(s) ds,

=Tk

we obtain further

V(8) < p)v(t) + gt (8), tH b

te—0k
v(tr+) = v(te) + akf v(s) ds.

L=k

Then using Theorem 2.3 implies the estimation of v(t), the estimation of the unknown

function m(¢) is obtained since m(t) < v(£), and this completes the proof. O

3 Application to impulsive differential equations
As an application of Theorem 2.4, we give an upper-bound estimation of certain nonlinear

impulsive differential equation as follows:

V(O =f(&v), tF#t
Av(ty) = L([7% v(s)ds),  t € [to, 00), (3.1)

k~Tk
V(t()) ="Vo,

where f € CR x R,R), [ e C(R,R), 0 <ty <ty < -+, im0t = +00, 0 < 0} < 7 <
ty —tre1, k=1,2,.... If there exists L > 0 such that

[f(t, v)’ <Lp% O<ac<l; (3.2)
and there exist (x > 0, such that
LW <ulvl, k=12,..., (3.3)

then for any solution v(¢) of (3.1), we have

Vo) < {(w [T 2%+ ulm - o))

to<tp<t
(k-1 1 —
+ ) 2 (L - @) Tt — o)

to<tr<t

1-o
X l_[ Zﬁ(1+tj(1j—a,-))>

Lk <tj<t

i3

1/(1-a)
+ 20D o) L(t - to)} . (3.4)
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Proof Suppose v = v(¢) is a solution of (3.1), we integrate (3.1) to obtain

v(t) = v(tpy) + /tf(s, v(s)) ds + Z I (/tk_ok v(s) ds)

to<ti<t k=Tk
t k=0
=vo+ / flsvis)ds+ > Ik( / v(s)ds). (3.5)
to to<ty<t Le=Tk

By (3.2) and (3.3), we obtain

()] < Ivol +/t.t[f(s,v(s))|ds+ >

tg—oy
I </rk—rk v(s) ds)

to<ti<t
t o tg—0ok
< |Vo|+L/ |v(s)| ds + Z Lk/ |v(s)’ds. (3.6)
fo to<ty<t YTk

Then by Theorem 2.4, we compute that

Fr =270 1+ y(ni - o));

(k=D 1 t—ok v 1/(1-a)
Rk=lk2w(l—a)ﬁ/ (/ Lds) dv
te—Tk to

l-a (-1«
_ 2 I-a
-«

2-a
1=

(L0 - @) ™ [t — 01— £0) 5 — (16 — ¢ — t0) 5|

(k=) 1% 2-«

)
<2 T (L(l - Ol)) ety — o) e .

Substituting Fy and Ry in (2.15), we obtain (3.4). This completes the proof. O
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