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Special Collection: Fixing Science

The “crisis in science” reflects a growing concern that pub-
lished research in many fields cannot be replicated by other 
researchers. The concern is grounded in real problems facing 
social science. But these are problems we can address with 
better research practices and greater transparency, particularly 
using multimodel analysis.

Much of the challenge facing social science today stems 
from a basic problem of “model uncertainty.” For any given 
study, there is a tremendous variety of statistical methods and 
techniques that could be applied. The analytical process is a 
kind of “garden of forking paths” (Gelman and Loken 2014). 
The path to a final model includes how to clean and code the 
raw data, how to define key variables, what controls to 
include, which estimator or functional form to use, and how 
best to calculate the standard errors. This “thicket of possible 
models” offers a multiplying array of chances to find statisti-
cally significant results (Leamer 1983; 1985:308). Researchers 
are genuinely unsure of what is the “single best” statistical 
test for a research question. And readers often know that 
some other type of analysis could be used, possibly showing 
(very) different results.

Indeed, scholars today are faced with an “embarrassment 
of riches” in computational capacity: we have a lot more 
computational power than what is reflected in most journal 
articles. The past two decades have seen the proliferation of 
personal computers, the development of lightning-fast pro-
cessing, and easy-to-use software packed with ever more 

statistical routines. The amount of computations and alter-
native analyses a researcher can perform in the course of 
writing a paper has expanded dramatically. Yet the amount 
of journal space available for reporting these extra results 
has stayed more or less fixed. As a result, there is a growing 
divergence between the many analyses researchers privately 
conduct and what few results are actually reported in publi-
cation. This is a fundamental asymmetry of information 
between analysts and readers: analysts know much more 
about the sensitivity of their results than do readers (Young 
2009).

Analysts have incentives to find statistically significant 
effects (Brodeur et al. 2016), and through a process of moti-
vated reasoning they may be prone to see superior methodol-
ogy in a model that shows significant results. By the time an 
article is published, how should a reader evaluate the two or 
three estimates selected for publication? Do these “preferred 
results” reflect the most robust, compelling estimates dis-
tilled down from months or years of rigorous analytical 
work? Or do they simply give proof of concept that, with 
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enough motivation, almost any data set can yield a “signifi-
cant” result?

We need better ways of reporting the many possible and 
credible research results that can be generated from a data set. 
Closing the credibility gap between authors and readers is a 
challenging problem that calls for solutions on a variety of 
fronts.1 I advance one key step: a computational model 
robustness framework, making multimodel analysis central to 
how we conduct and report analyses.2 The goals of this frame-
work are to (1) embrace model uncertainty as an inherent part 
of social science, (2) facilitate more rigorous and comprehen-
sive robustness testing, and (3) reduce the asymmetry of 
information between analyst and reader. To facilitate use of 
the framework, a coauthor and I developed a model robust-
ness command in Stata named mrobust (to download, type 
“ssc describe mrobust” in Stata). The command is easy to use 
and can demonstrate robustness across possible combinations 
of controls, variable definitions, standard errors, functional 
forms, and estimation commands (Young and Holsteen 2017). 
In practice, statistically significant results can range from 
strongly robust to remarkably dependent on a knife-edge 
specification.

The Model Uncertainty: A Blind Spot in 
Statistical Analysis

We can never be completely sure whether an empirical result 
represents a real and durable social fact or simply an error in 
the data or analysis. On one hand, skewed findings might 
arise because of a cluster of idiosyncratic, unrepresentative 
observations in any particular sample of data. Standard errors 
and confidence intervals account for this uncertainty and 
reflect how the results could reasonably change if we took a 
new sample of data. But this margin of error only captures 
how a new data set could change the results, assuming every 
other detail of the analysis remains constant. Confidence 

intervals, standard errors, and significance tests say nothing 
about what might happen if we make a change to the model 
specification. This leaves an enormous blind spot in how we 
estimate and acknowledge uncertainty in statistical analysis.

Classical statistical theory closes this gap in the least 
helpful way: by assuming that the “true model” is known 
and, moreover, is the only model the author used. This made 
sense as a simplifying assumption in the 1920s and 1930s, 
when scholars were developing the modern rules of statisti-
cal inference (e.g., Fisher 1925; Grier 2005). In those days, 
as today, there was uncertainty about what was the best sta-
tistical model for a problem. But computational power was 
so limited—largely conducted by hand—that researchers 
rarely if ever ran more than one regression model for a study. 
Limited computational power was, in essence, a “veil of 
ignorance” (Rawls 1971). Neither analyst nor reader knew 
what alternative model specifications might find.

Today, the sheer quantity and range of statistical proce-
dures available is overwhelming. The Handbook of 
Econometrics, for example, runs to more than 5,700 pages 
across 77 chapters (Heckman and Leamer 2007). In field 
experiments of statistical methodology, different competent 
researchers almost never converge on the same techniques for 
analyzing the same data set (Magnus and Morgan 1999; 
Silberzahn et  al. 2015). In meta-analysis, in which findings 
from many different studies on a topic are pooled together, the 
actual range of estimates is always far greater than what the 
standard errors from any one study suggested (Doucouliagos 
and Stanley 2012). Using different statistical methods appears 
to generate much greater variation across studies than using 
different data sets (Young 2009). The confidence intervals of a 
study are a poor guide to what the next researcher is likely to 
find, because model specifications almost never hold constant 
across studies.

Data sets do not speak for themselves. Results do not just 
“emerge” from the empirical evidence. Findings are a joint 
product of both the data and the statistical model. In an age 
when there is such a diversity of possible statistical models, 
many of which can be computed in seconds on a laptop com-
puter, there needs to be more focus on how modeling choices 
can decide the outcome of empirical research. In many cases, 
the range of estimates from plausible models may be so great 
that the conclusions depend more on the author’s preferred 
statistical model than on the underlying data.

Questions about how to design the analysis and specify 
the model are often the biggest challenges authors grapple 
with. Diligent researchers are kept up at night with ques-
tions like “Am I doing this right?” and “Are there other rea-
sonable methods that would give different results?” 
Skeptical readers—especially journal reviewers—tend to 
assume there must be better methods, techniques, and con-
trol variables than what the author is using. Indeed, critics 
tend to assume that any perceived “flaw” in the methods is a 
catastrophic error that, once corrected, will lead to entirely 
different conclusions.

1This includes making standard practice, whenever possible, releas-
ing full replication packages when an article is published, providing 
the data and code used to generate the results. These packages are 
“public goods” that facilitate transparency and detailed understand-
ing of how the research was actually conducted. In a competitive 
environment, authors are naturally reluctant to release replication 
packages, which why it is important for journals and funders to 
enforce transparency rules. Indeed, if just one researcher shares his 
or her data and code, others will free-ride on that researcher’s hard 
work, it will empower his or her critics, and he or she will lose some 
of the competitive advantage that comes from investing in special-
ized knowledge. However, if all researchers must share their data 
and code upon publication, as in economics today, we all under-
stand everyone’s research more fully, and we all gain more insight 
into the conduct of cutting-edge methods and research. For the field 
as a whole, all of our work benefits from transparency, making our 
work better, more reliable, and more persuasive.
2See also Sala-i-Martin (1997); Raftery (1995); Durlauf, Chao, and 
Navarro (2012); and Winship and Western (2016).
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Because these concerns relate to the model specification, 
rather than the data, our current notions of statistical signifi-
cance are not directly relevant. Both “significant” and “not 
significant” results could be dramatically different in a rea-
sonable new model specification. The significance level or p 
value has little to do with how stable a result is across models 
(Young and Holsteen 2017).

The fundamental problem is model uncertainty: no one 
truly knows what is the one definitively best model specifi-
cation for a given study. As a result, there are often many 
plausible models, and in turn, there may be many different 
results that the data could support.

The Garden of Forking Paths

Statistical models represent a complex bundle of assump-
tions about how best to conduct an analysis. A single model 
specification includes decisions about variable definitions, 
data cleaning, treatment of outlier observations, selection of 
control variables, functional forms, estimation commands, 
and standard error calculations. Exact statistical models 
involve so many unique decisions that they become a “gar-
den of forking paths” (Gelman and Loken 2014). Different 
competent researchers often find their way to very different 
final models (Magnus and Morgan 1999). Gary King and 
colleagues emphasized that choosing which among many 
models to report in an article is “fraught with ethical and 
methodological dilemmas” with few easy answers (Ho et al. 
2007:232).

The modeling choices—the garden of forking paths—can 
drive the statistical conclusions of a paper just as much as the 
data. There is an unsettling amount of researcher “degrees of 
freedom” and discretion in what is discovered and what is 
reported. It is hard to tell if empirical results are something 
any reasonable researcher using these data would find, or if 
the conclusions are dependent largely on the model selected 
by the researcher. Today, there is a fundamental lack of trans-
parency about the consequences of model specifications.

Model Robustness

The central challenge of model uncertainty is how to decide 
not what is the single best model but rather what set of mod-
els are “plausible” and worth considering. When we acknowl-
edge model uncertainty, the question is not “Which is the 
best model?” but rather “What set of models deserve consid-
eration?” In multimodel analysis, the challenge is how to 
define the model space. The most credible research will 
embrace a wide range of models so that the authors, journal 
reviewers, and ultimate readers all largely agree that the 
analysis is comprehensive, and that any resulting conclusion 
is robust to their methodological concerns. In practice, this 
means that researchers need to show more than just their pre-
ferred models, and demonstrate that their own discretion is 
not driving the result.

Defining the Model Space: Ideal-type 
Approaches

There are several ideal-type illustrations of how to develop a 
set of plausible models (and thus define the model space). 
One hypothetical approach I call the “uber log file” method. 
A second is the “task force” approach. As a third way, I advo-
cate a computational method that embraces the best aspects 
of these approaches.

The Uber Log File Approach

Imagine an “uber log file” that automatically captures the 
results of every unique regression a researcher ever ran in the 
course of studying his or her data and preparing an article. 
This would be a background log file that records all work 
ever conducted in a Stata or an R project. Once the analysis 
is finalized, the log program generates a graph showing 
every unique regression result an author ever looked at.3 The 
philosophy is this: any model an analyst considered worth 
running is also worth reporting (even if the model could be 
criticized, as almost all can be). This is full disclosure of all 
results the author has ever seen.

The Task Force Approach

Another ideal-type way to develop the model space is con-
vene a task force of specialists to study an important social 
question. The task force would reflect a range of disciplinary 
and political perspectives, ensuring a healthy dose of theory 
competition and adversarial collaboration (Doucouliagos 
and Stanley 2013; Mellers, Hertwig and Kahneman 2001). 
The final report might include 50 or so different model speci-
fications that best reflect the methodological views among 
the task force. Any model specification that a task force 
member credibly argues for becomes part of the model space. 
There might be one model and estimate favored by a major-
ity of the task force, but a graphical display shows what 
results can be found by serious scholars using credible alter-
native methods.

Both of these approaches involve a graph showing the 
distribution of results, rather than reporting one or two pre-
ferred estimates. The distribution of results might be narrow, 
so that practical uncertainty or disagreements about model-
ing strategies do not matter, and all the statistical models 
yield the same basic conclusion. On the other hand, the range 
of results might be large enough to encompass fundamen-
tally different conclusions. In this case, what anyone makes 
of the evidence depends on what they see as the better statis-
tical model: the data do not settle the matter, and firm 
conclusions rest on methodological debates (which may 

3This would include both the regression command and the state of 
the data at the time the command was run (capturing revisions to the 
cleaning and coding of the data).
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align closely with political positions or prior beliefs). This 
unsatisfying outcome, however, may point the way to new 
rounds of research, critical testing and clarification that could 
generate wider empirical consensus.

The Computational Solution

Computational model robustness aims to incorporate fea-
tures of both the uber log file and the task force approaches. 
The aim is to reduce the discretion of authors to pick an 
exactly preferred model and result (the merit of the uber log 
file approach), while expanding the range of models and 
results that any one author considers (the merit of the task 
force approach). The method involves specifying a set of 
plausible model ingredients (including possible controls, 
variable definitions, estimation commands, and standard 
error calculations) and estimating all possible combinations 
of those model ingredients.

This often means running many thousands of small varia-
tions of model specifications and reporting all the results as a 
graphical distribution of estimates. For example, if there are 
10 plausible control variables, then there are 210 (1,024) 
unique combinations of those controls that could be esti-
mated. If there are also two different ways of defining the 
outcome variable (Y and Y′), as well as three different estima-
tion commands (ordinary least squares [OLS], logit, and pro-
bit), and two different standard error calculations (OLS 
default and heteroskedastic-robust standard errors), then 
there are 12,288 possible models.4 The analyst is still free to 
present his or her preferred model or estimate, but within the 
context of a graph showing what other results can be found 
with these reasonable model ingredients.

New software, developed by Young and Holsteen (2017), 
facilitates the easy use of this approach in Stata. Conceptually, 
the method involves bootstrapping the model, and the software 
allows researchers to simultaneously bootstrap both the data and 
the model. I advocate “wide” robustness testing as a default, but 
the software is flexible, allowing analysts to incorporate many 
conditions and restrictions to ensure the model space is strongly 
grounded in sociological and statistical theory.

Empirical testing shows three basic patterns of model 
robustness (Young and Holsteen 2017):

1.	 a statistical result holds no matter how the model is 
specified: any combination of the model ingredients 
yields the same basic result;

2.	 a conclusion depends only on one or two model ingre-
dients—such as a specific control variable—which in 
turn suggests informative follow-up analyses to better 

understand why the control variable is so important; 
and

3.	 a conclusion depends on a “knife edge” specification, 
supported in only one in a hundred plausible 
models.

For an applied example, consider the union wage premium: 
do union members earn significantly higher wages than non–
union members? This is a critical question for any worker 
facing a vote for union representation. To study this, I use the 
1988 wave of the National Longitudinal Survey of Women, 
examining what unions did for women historically (cf. 
Rosenfeld 2014). Our empirical test of the union wage pre-
mium uses log wages as the outcome and union membership 
as the explanatory variable of interest. There are also many 
factors one might like to control for, such as worker’s age, 
education, marital status, geographic location, lifetime work 
experience, and length of time with current employer. 
Because of model uncertainty, we do not know the one “true 
model.” We are tempted to include all of these controls, but 
also might drop any of the controls if they came out insignifi-
cant or were suspected of measurement error, endogeneity, 
or any other source of bias (e.g., Elwert and Winship 2014). 
Our default model robustness analysis treats the set of con-
trols as simply plausible and estimates all possible combina-
tions of the controls. With this set of possible controls, what 
is the range of estimates one could find?

Figure 1 shows the results from 1,024 possible model 
specifications. With all controls included, the results show an 
11.1 percent wage premium for union members, which is 
strongly statistically significant. Across all 1,000-plus mod-
els, the results are positive and statistically significant 100 
percent of the time. As shown in Figure 1, the estimates 

Figure 1.  Modeling Distribution of Union Wage Premium.
Source: National Longitudinal Survey of Women, 1988 (n = 1,865).
Note: Density graph of estimates from 1,024 models. Vertical line indicates 
the 11.1 percent union wage premium found when all controls are 
included.

4This is given by 210 × 2 x 3 x 2 = 12,288: all combinations of 
10 control variables across two outcome variable definitions, three 
estimation commands, and two formulas for the standard errors. 
In this illustrative example, an additional step would be needed to 
make the coefficients from OLS, logit, and probit comparable.



Young	 5

range from roughly a 9 percent union wage premium to a 22 
percent premium. Among these plausible models, critics 
could debate the exact magnitude of the union wage pre-
mium for women, but the basic conclusion is very robust.5

This kind of outcome, in which empirical results are 
robust, is fairly common in my informal testing across many 
data sets, particularly when examining research published in 
top journals. Strong skeptics of social science will often be 
humbled when they see how many different models can sup-
port the same conclusion.

At the same time, there are clearly cases in which authors 
can present a handful of cherry-picked estimates that are 
wildly unrepresentative. As a second applied example, I look 
at “tax migration.” Across the United States, some states have 
very different income tax rates. Higher income taxes can be 
used to fund education, infrastructure, and social services. 
However, a common criticism is that high income taxes will 
lead people to “vote with their feet” by moving to states with 
lower tax rates, making progressive social policies impracti-
cal at the state level (Young et al. 2016).

The policy question is, Do people tend to move away 
from high-tax states and into low-tax states, such as from 
California to Texas? To examine this, I draw on two large 
data sets on cross-state migration in the United States (the 
American Community Survey and Internal Revenue Service 
tax records). The outcome variable is migration across states, 
and the explanatory variable of interest is the difference in 
income taxes between states. I draw on a rich set of plausible 
control variables, and consider three different plausible esti-
mators (OLS, Poisson, and negative binomial). In short, the 
analysis allows uncertainty about which set of control vari-
ables is best (from a list of 12), and which estimation com-
mand is best (among three), in consideration with two 
possible data sets. Considering all possible combinations of 
model ingredients, there are 24,576 models to estimate.6

The distribution of results across these models is shown in 
Figure 2. The overall conclusion is clear enough: income tax 
rates are statistically insignificant as a factor in migration in 
98.5 percent of models. The modeling distribution is clearly 
centered on zero. The evidence that income taxes influence 
people’s decisions to move across state lines seems remark-
ably weak. But the results are not completely uniform.

At the extreme tails of the modeling distribution, a hand-
ful of idiosyncratic models could be reported to show either 
tax flight migration (significant in 0.2 percent of models) or 
tax attraction (significant in 1.3 percent of models). The ver-
tical line in Figure 2 shows how one could draw a 

statistically significant point estimate supporting the tax 
flight argument. For any political viewpoint on taxes, one 
could construct a reasonable-looking table with several sta-
tistically significant estimates in support of that viewpoint. 
Even though a story could be crafted around these 1-in-100 
significant estimates that turn up in the modeling distribu-
tion, they are better regarded as idiosyncratic, “false posi-
tive” results (Muñoz and Young 2017).

This drives home the point that statistical significance, in 
itself, is an insufficient basis for accepting a result or “believ-
ing” a conclusion. In many cases, knife-edge model specifi-
cations can be found to support a preferred conclusion, even 
when 98 percent of results are insignificant or opposite-
signed. Indeed, Figure 2 represents the current “crisis of sci-
ence”: the concern that many published findings are 
cherry-picked estimates rather than genuinely compelling 
conclusions. By reporting a broad modeling distribution of 
results, it is much easier to see when a preferred point esti-
mate represents a robust result or a highly selective, knife-
edge estimate. Model robustness is at least as important as 
statistical significance in evaluating a research result.

Several final points should be made. First, it is not neces-
sary for an estimate to be stable and significant in 100 percent 
of plausible models to be regarded as robust. A simple rule of 
thumb for multimodel inference is that 50 percent sets a lower 
bound for weak robustness, and 95 percent would indicate 
very strong robustness (Raftery 1995). Multimodel analysis is 
ultimately about transparency: reducing the information 
asymmetry between author and reader. The goal is to relax 
assumptions about how the model “must” be specified and 
relax some of the author’s control over what estimates readers 
are allowed to see. Skeptical readers want to see much more 
than just the author’s preferred specification. Ideally, 

Figure 2.  Modeling Distribution of Tax Migration Effect.
Source: American Community Survey and Internal Revenue Service, state-
to-state migration counts (n = 2,015).
Note: Density graph of estimates from 24,576 models. Vertical line 
indicates a cherry-picked statistically significant estimate of tax avoidance 
behavior.

5Of course, this does not rule out the possibility of further and more 
comprehensive robustness testing in the future, which might change 
this conclusion. Robustness analyses are always provisional in the 
sense that they could be subject to further and deeper investigation 
in the future (Heckman 2005).
6For more details, see Young and Holsteen (2017) and the replica-
tion package accompanying that article.
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computational robustness analysis is broad enough to reflect 
a “task force” range of perspectives on appropriate modeling 
choices, or at least to reveal the range of estimates the author 
has actually seen in the course of conducting their research.

Second, computational robustness testing can also allow 
one to “unpack” a model specification and identify which 
model ingredients are most influential in the results (Young 
and Holsteen 2017). This shows which model assumptions 
matter most—and thus deserve more careful inspection—
and which model assumptions have little or no impact on the 
results. For example, when deciding which control variables 
to include, the statistical significance of a control variable 
has little bearing on whether the control influences the main 
results. Sometimes highly significant controls make no dif-
ference for the results, while other times including nonsig-
nificant controls can change the results dramatically. This 
method that helps researchers and readers understand what is 
important in a model specification is an illuminating addi-
tional benefit of computational multimodel analysis.

Conclusions

Multimodel analysis allows us to address some of the biggest 
challenges facing scientific research in the twenty-first cen-
tury: model uncertainty, limited transparency about modeling 
choices, and the growing skepticism about published research.

The “crisis in science” reflects a fear that many pub-
lished research findings either cannot be replicated or can 
be easily overturned (Ioannidis 2005). This is not just a 
declining faith in science among the public. Many social 
scientists themselves express deep skepticism about the 
reliability and replicability of others’ research, mostly when 
they disagree with the conclusions.

Empirical results should not depend fundamentally on 
which analyst conducts the research. Authors with different 
prior beliefs, methodological leanings, or political views 
should be able to draw roughly the same conclusions from a 
data set. This happens in part by giving genuine consider-
ation to a wide range of different plausible models, including 
the preferred models of one’s critics.

Developing a specific statistical test—one concrete model 
specification, with one point estimate—requires taking a 
long methodological walk down a garden of forking paths. 
At each decision point, analysts make prudent, informed 
judgements. But even the best of us are susceptible to moti-
vated reasoning and the lure of significant results.

We need to more openly acknowledge that for almost 
any decision—choice of variable definitions, control vari-
ables to include, functional forms, estimation commands, 
standard errors, and more—other reasonable choices could 
have been made, and other plausible models could have 
emerged. Computational multimodel analysis allows 
authors to backtrack along the garden of forking paths and 
allow reasonable alternatives for every ingredient in their 
preferred specification.

The focus on statistical significance in social science has 
left a deep blind spot in how we acknowledge uncertainty 
and evaluate results. We openly acknowledge that random 
samples of data can be misleading: they can have idiosyn-
cratic observations that bias the results and give support to 
wrong conclusions. Significance tests and confidence inter-
vals reflect this uncertainty about the data, showing how 
much an estimate might change if we took a new random 
sample. Yet these tests say nothing about how the results 
might change if we used a different model. By ignoring 
model uncertainty, we pretend that data sets simply speak for 
themselves. Ignoring model uncertainty makes it appear as if 
analysts had no analytical work to do, as if they simply dis-
covered a data source and revealed the contents to their 
readers.

Model uncertainty provides an umbrella concept for under-
standing the crisis of science today. We know that authors, 
through the choices they make in how to analyze their data, can 
have great influence on the results of an empirical study. But 
we do not have routine methods for quantifying the influence 
of the author—or the scope the author has to choose a preferred 
result. Multimodel analysis, combined with modern computa-
tional power, allows researchers to show the range of estimates 
available from different plausible models. In an era when the 
authority of science is in doubt, embracing multimodel analysis 
and accounting for model uncertainty is central to making our 
research credible and compelling.

Author’s Note

A replication package for this article (data and code) is available on 
www.cristobalyoung.com. The software for this article is available 
on the SSC archive (in Stata, type “ssc describe mrobust”).
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