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ABOUT THE FREE-VIBRATION MODE SHAPES
OF ELASTOPLASTIC DISSIPATIVE SYSTEMS
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Abstract: The author presents the conditions of the generalized orthogonality of the free-vibration mode shapes
of an elastic dissipative system, for which traditional classical orthogonality conditions are a private case. As
opposed to these conditions, the above ratios contain the mass matrix, the damping matrix, and the diagonal form
of the spectral characteristics (damping coefficients and mode-shape frequencies). Within the theory of time anal-
ysis, free-vibration mode shapes of an elastoplastic system are built on the basis of using a schematized diagram
of strain with hardening. The author proposes a design scheme that reduces the process of nonlinear vibrations to
a sequence of processes flowing according to a linear scenario within the time intervals called quasilinear. In these
intervals, the parameters of the dynamic model (elements of the stiffness matrix and the damping matrix) remain
unchanged, all the changes occur only when passing through the critical points. As a result, the author formulated
the condition for the nondegenerate state of an elastoplastic dissipative system. According to the condition, local
plastic zones characterized by the size, the number and location of the zones on the design scheme of the structure
correspond to each quasilinear interval. Since within the intervals, the parameters of the plastic zones are un-
changed, the conditions of the generalized orthogonality of the mode shapes of the elastoplastic system are satisfied
by analogy with the vibration mode shapes of an elastic dissipative system. The free-vibration motion of a hinged
beam with three degrees of freedom are analyzed taking into account local plastic zones with different lengths and
the location of zones in different nodes. It is shown that the configuration of the forms of elastoplastic oscillations
differs qualitatively from the configuration of the corresponding forms of elastic vibrations.

Keywords: elastoplastic system, dissipative system, free-vibration mode shapes, plastic zone, orthogonality,
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O ®OPMAX COBCTBEHHBIX KOJIEBAHUI
YIIPYTOIIVIACTHYECKUX JUCCUITATUBHBIX CUCTEM

A.H. Ilomanoe

HOxHO-Ypanbckuil rocy1apCTBEHHBIH YHUBEPCUTET (HAI[MOHAIBHBIN MCCIIEJOBATEIbCKUI YHUBEPCUTET),
r. Yensiounck, POCCHUSI

AnHotanusi: [IpuBesneHs! ycnoBust 0000MIEHHON OPTOTOHAIBHOCTH (POPM COOCTBEHHBIX KOJICOAHMH YNPYroi
JIUCCHUIIATUBHON CHUCTEMBI, HJIi KOTOPBIX TPAIUIMOHHBIE KIACCHYECKHE YCIOBHS OPTOrOHAIBHOCTH SIBISIOTCS
JaCTHBIM CITydaeM. B oTiiume oT 3THX ycIOBUH MPUBEIEHHBIE COOTHOIICHHS COJICPIKAT CBSI3aHHBIE MEXXIY CO00H
MaTpHIpl Macc, AEMI(HUPOBAHMSA W JUATOHAIBHYIO (OPMY CIEKTPaAIbHBIX XapakTepucTuk (koddduimeHTos
JieMII(pUPOBaHMS M 4ACTOT COOCTBEHHBIX KoJieOaHuil). B pamkax Teopun BpeMEHHOro aHalin3a OCyIIeCTBICHO T0-
cTpoeHne hopM COOCTBEHHBIX KOJIEOaHMUIl yIIPYroIiacTH4ecKol CUCTEMbI Ha OCHOBE MCIIOJIb30BAHMS CXeMaTH3H-
POBaHHOW AMarpaMmbl JeOpMUpOBaHUs ¢ ynpouHeHueM. lIpemnokena pacu€rHas cxema, CBOJIIAs MTPOLIECC
HEJIMHEIHBIX KoJe0aHui K TOC/Ie10BaTeIbHOCTH POLIECCOB, MPOTEKAIOINUX MO JINHEHHOMY CLICHApUIO HAa UHTEP-
BajlaX BPEMEHU, Ha3bIBAEMbIX KBa3WIMHEHHbIMYU. Ha NaHHBIX MHTEpBalaX apaMeTpbl pACYCTHOM IUHAMUYECKOU
MOJIeNN (3J€MEHTHI MaTPHI] )KECTKOCTH U AeMII(UPOBAHMSA) OCTAIOTCS HEM3MEHHBIMH, BCE U3MEHEHHUS MTPOHCXO-
JIAIT TOJIBKO IIPU MIepexojie Yepe3 KpuTHIecKne TOUKU. B pesynbrate chopMymmpoBaHO ycI0BHE HEBBIPOXKICHHOTO
COCTOSIHUS YIPYTOMIACTUYECKOM JUCCUNIATUBHON cucTeMbl. COrIacHO yCIOBUIO, KaKIOMY KBa3UIMHEHHOMY UH-
TEpBaly COOTBETCTBYIOT JIOKAJIbHBIE TUNIACTHUYECKUE 30HBI, XapaKTEPU3yEMbIE pa3MepaMy, KOJIUYECTBOM U PacIIo-
JIOKEHHEM 30H Ha pacuéTHOIl cxeMme coopykeHHs. Tak Kak BHyTpH HHTEPBAJIOB MapaMeTphl IIIACTHYECKHUX 30H —
HEM3MEHHBI, TO YCJIOBUSI 000OMEHHON OPTOrOHAIILHOCTH COOCTBEHHBIX ()OPM KOJIeOaHHMH YHpPyromacTHIecKoi
CHCTEMBbI BBITIOJIHSIOTCS 110 aHAJIOTHH ¢ (hopMaMu KoJieOaHU yIpyroi AMCCHIaTUBHOM cucteMsl. [IpoBenén ana-
T3 COOCTBEHHBIX KOJIeOAHUH MApHUPHON OaNKM ¢ TpeMs CTEIEeHAMHU CBOOOBI C yUETOM JIOKAIBHBIX TIaCTHYE-
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CKUX 30H C PAa3TUYHON JUIMHOW M PA3TUYHBIM PACIIONOKEHHEM 30H B y371ax. Ilokazano, yTo KoH(pHUTYypaus coo-
CTBEHHBIX (POPM YIPYTOIUIACTHYECKHUX KOJIEOaHWH Ka4eCTBEHHO OTIMYACTCS OT KOH(PUTYpPAIlH COOTBETCTBYIO-

mux GOpM yHpyrux KoneOaHHui.

KaroueBbie ciioBa: yrpyromiacTuieckasa CucTeMa, AIMCCUIIAaTUBHAs CUCTEMA, q)opMa COOCTBEHHBIX KOJ'[C6E[HHI>1,
IJ1aCTU4YCCKad 30Ha, OpTOTOHAJIbHOCTb, MaTpula )KéCTKOCTI/I, MaTpula ,HCMHq)I/IpOBaHI/ISI

1. INTRODUCTION

Modern structures operate in the conditions of
complex dynamic influences, when maximum
stresses in the main bearing elements often ex-
ceed the value of the elastic limit. Off the scale
stresses must be considered, for example, in the
design of seismic buildings and structures [1, 2].
In this case, the appearance of nonlinear strains
in frame buildings is not only considered admis-
sible, but also justified by special calculations for
the organization of so-called "plasticity zones"
generally located in horizontal bearing elements
(crossbars). These zones are created in order to
absorb the seismic action energy and its subse-
quent diversion (dissipation) into the environ-
ment, which ensures the integrity of the system
in general. The developments in this field are re-
flected in national regulatory documents [3, 4]
and in advanced foreign studies and regulations
[5-7].

The presence of plastic zones in the bearing ele-
ments of structures naturally influences the sys-
tem stiffness parameters, and, consequently, its
internal dynamic characteristics. [8, 9] studied
the behavior of the beams made of an elasto-
plastic material under impulse actions. [8] ob-
tained an approximate solution of the problem of
residual deflections of an impulse loaded rigidly
fixed beam at its nonlinear vibrations, taking into
account the sensitivity of the material to the
strain rate in the plastic zone.[9]gives an original
solution of the problem of free vibrations of a
hinged beam beyond the elastic limit under the
influence of a distributed impulse simulating an
explosion, based on the analytical approach. The
article presents algorithm of formation of mode
frequencies for an ideal elastoplastic material and
demonstrates a decrease of their values with an
increasing length of the plastic zones.

Using computer simulation of frame buildings
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within of the elastoplastic analysis, frequency-
damped characteristics and free-vibration mode
shapes were determined on the basis of Prandtl
diagram [10, 11]. A frame building was pre-
sented in the form of a discrete dissipative system
(DDS), for which it was also shown that an in-
crease in the yield in the frame floors leads to a
decrease in the frequency spectrum.

The present work deals with the issues relating to
the free-vibration motion in the DDS taking into
account elastoplastic strains. We obtained the
conditions, under which the fundamental proper-
ties of the orthogonality of free-vibration mode
shapes are satisfied in a dissipative system in the
yield state associated with the appearance of lo-
cal plastic zones. The qualitative nature of the in-
fluence of a nonlinear process on the configura-
tions of mode shapes is exemplified by a hinged
beam.

2. BASIC RATIOS

Free-vibration mode shapes of any system (linear
or nonlinear) are determined by its strained state
caused by the action of inertial and dissipative
forces. Free mode shapes are unchanged in the
process of vibrations in a linearly strained sys-
tem, so their configuration does not depend on
time. It is manifested in a known property: the
ratio of any two ordinates of the A-th mode shape
is a constant value: pji / pix = const.

In the elastoplastic system, the appearance of
yield in structural elements is accompanied by a
decrease in its stiffness parameters. The presence
of plastic strain zones in the structure leads to a
redistribution of internal forces and stresses and,
as a consequence, to a change in the configura-
tion of mode shapes. Therefore, the ratio of the
ordinates pj and pi of an arbitrary k-th mode
shape of an elastoplastic system taken at different
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instants of time will no longer be a constant
value: pjr / pa#const.

Let us denote the free-vibration mode shapes of
a discrete system through Px (k= 1, ..., n). These
mode shapes have some properties known as or-
thogonality conditions. For an elastic conserva-
tive system, the mode shapes are orthogonal in
relation to the mass matrix

M= diag (mu, ..., my)

and to the stiffness matrix K = KT [12, 13]:

P/MP=0, P/KP,=0
(b j=1, ..., n; k#)).

(D

In case of the DDS vibrations, the damping ma-
trix C is generally chosen so that the equations of
motion could be reduced to a diagonal form. In
this case, the matrix C corresponds to a propor-
tional damping model [14], and one more orthog-
onality condition, including the damping matrix
C, is added to the orthogonality conditions,
which take the same form as for the conservative
system:

PICPi= 0 (k). (2)
The presence of conditions (1), (2) is a conse-
quence of the separation of all the three forces:
inertia, elasticity, and damping in the normal co-
ordinates.
The equations of motion are not reduced to nor-
mal coordinates or dissipative structures with an
arbitrary damping matrix. In this case, building
of orthogonality ratios faces considerable diffi-
culties [15-17], in particular, in [16, 17] the or-
thogonality conditions of the free-vibration mode
shapes are obtained in convolutions.
The time analysis theory [11] introduces matrix
conditions for the generalized orthogonality of
free elastic vibration mode shapes of the DDS
with an arbitrary symmetric damping matrix C.
These ratios have a rather simple mathematical
form (represented by equations (10), (12)) due to
the developed apparatus associated with the anal-
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ysis of the characteristic matrix quadratic equa-
tion (the equation of motion of mode shapes):

MS?+ CS+K=0. ()

Equation (3) in the basis consisting of the mode-
shape vectors of the matrix

S=PAP"!
has the form:

MPA*+ CPA +KP=0, 4)
where S — matrix of internal dynamic character-
istics of the system;
P=[P], e ,Pn]
— matrix of the mode-shape vectors (vibration
mode shapes);
A =diag (M1, ... , An)

— diagonal matrix of spectral characteristics.
Each vector P, determining the A-th mode shape
of damped vibrations corresponds to the charac-
teristic complex number Ay = —&; + iwk, Which
contains the damping factor gin the real part and
the mode frequency x in the imaginary part.
The solution of equation (3) is presented in the
form of the root pair

Si2=M'(-C+ 1V+U)/2, (5)
where the matrices V" and U have the properties
of oblique and direct symmetry:

V=-V,Uu=U",

and Vieta’s formulas are valid for the root pair
S1, 82

STM+ MS,,=—C, S/*MS,, =K
(m,1=1,2; m#l).

(6)
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Under the condition of a small dissipation, the el-
ements of the matrices V and iU (i is the imagi-
nary unit) belong to the real number field [11],
therefore, the matrix roots (5) are complex con-

jugate S1 =S, $> =§. Then, ratios (6) are con-
verted into the form:

S'M+MS=-C, SMS=K, (7
where §=ST.

If the mode-shape matrix P is normalized, the
symmetrical matrix U is determined by the for-
mula

U=(PP"Y".

3. GENERALIZED ORTHOGONALITY
OF THE FREEVIBRATION MODE
SHAPES OF AN ELASTIC DDS

Equation (3) is reduced to a system of equivalent
equations [11]:

STM+MS+C=U, S'™MS—-K=US,

which after the transformation in the new basis
are converted into the form:

APTMP + PTMPA + P'"CP = E,
APTMPA — P'KP=A.

®)
)

Matrix equation (8) is the ratio of the generalized
orthogonality of the matrix P. Unlike traditional
orthogonality conditions (1), (2), this equation
contains the matrices M, C and the diagonal form
A. Equation (9) is a diagonal form of writing the
equation of motion of the free mode shapes (3).
The left-hand side of this equation is an algebraic
sum total of two terms, each of which is not a di-
agonal matrix in the general case.

Passing from equation (8) to the system of n? sca-
lar equations, we obtain respectively n(n—1) con-
ditions of the generalized orthogonality of the
mode shapes Pi, P; (at k#j) and n conditions of
their normalization (at k£ = j):
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P MO, + M) + CIPi= 0(k=)),
P 2M + C1Pi= 1k =)
(k,j=1, ..., n).

(10)
(In

n* scalar rational so follow from the diagonal
form equation (9), wherein n(n—1) conditions
analogous to the orthogonality ratios result at & #j
and » conditions at k =:

P} [Mhjhi— K1Pi = 0(k=),
P MME — K] Pr = Mk =)
(k,j=1, ..., n).

(12)
(13)

In the private case of the conservative system

(C=0, ¢ =g =0), formulas (10), (12), due to
(A + ) = (o to;) # 0 and A2y = —@p 0 0,

are reduced to ratios (1).

The conditions, under which the ratios of the gen-

eralized orthogonality (10), (12) become applica-

ble to an elastoplastic system, are shown below.

4. NONDEGENERATE STATE
OF THE ELASTOPLASTIC DDS

Let us consider a fragment of the design scheme (to
be specific—a beam model) shown in Figure 1. Sup-
pose that plastic strains develop near the j-th node
forming a local zone with the sizes a;and b; (respec-
tively, left and right of the node). In relative quan-
tities, the length of this zone is determined by the
parameters

o =ald, PB;=bi/d,

where d represents the distance between the ad-
jacent nodes. At the boundaries of the plastic
zone, the stress value corresponds to the yield
limit &,;,. According to the schematic diagram of
strain with hardening (Figure 2), the maximum
stress G, in the j-th node should not exceed the
strength limit c,,.

[11, 18] analyze elastoplastic systems using
Prandtl diagram and the bilinear diagram.
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Figure 1. Fragment of the CMD with a plastic
zone (aj, b)) near the j-th node.
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Figure 2. “o-¢” bilinear diagram.

The process of calculating the inelastic response
according to the mathematical vibration models
was divided into a series of successive (quasilin-
ear) intervals te [#;, ti1] (i =0, 1, 2, ...), within
which the parameters of the design scheme (ele-
ments of the stiffness and damping matrices) re-
mained unchanged. The elements of the mass
matrix were taken constant during the entire elas-
toplastic strain process.

According to the proposed scheme of analysis, a
certain local plastic zone (one or several) with
fixed parameters, characterized by the sizes,
number and location of the zones in the design
scheme of the structure corresponds to the i-th
quasilinear interval 7€ [#, ti+1]. Any non-linear
events occurring in the structural elements of the
system, including the beginning or the end of
non-linear strains (yield and unloading), as well
as changes in the parameters of the local plastic
zones, are considered to occur only at the bound-
aries of these intervals—at the critical points #,
ti+1, ... As a result of this simulation, the inelastic
analysis is reduced to a successive series of dis-
cretely varying systems that are implemented in
these intervals according to the elastic design
scheme.

The value of the determinant of the matrix K(z;) >
0, where #;1s the time at the beginning of the i-th
interval, is used to evaluate the nondegenerate
state of a quasilinear system. The condition of the
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nondegenerate state is formulated as the follow-
ing statement [11].

The stiffness matrix K(#;) of a quasilinear system
1s nondegenerate if and only if both matrices of
internal dynamical characteristics S, S2in (5) are
nondegenerate:

det K(#)) >0 <det Sy 0 (m=1,2). (14)
The fact of non-degeneracy of both matrix roots
S follows from the second Vieta’s formula in
(6). Let us demonstrate the need for the condi-
tion. Suppose that the matrix K(#) is nondegener-
ate in the quasilinear interval 7€[#;, t+1], then

det K(t;) = det (S/"MS) =
= det (S))-det (Sy)-det (M) > 0 (m#]).

Hence, det S, 0 (m = 1, 2) follows for both ma-
trices. The need is demonstrated. The sufficiency
of the statement is also obvious.
It follows from the above result, under the condi-
tion of a small dissipation, that matrices (5) in the
considered interval, as well as for the elastic so-
lution, are presented in a complex conjugate
form. Therefore, conditions (6) take the form
analogous to (7):

S*M+ MS =-C(t), S MS=K(t;).  (15)
The following inequality results from the second
ratio in (15) for the lower boundary of the matrix S:

ISy M- DK@ 0,

where ||-|| — norm of the corresponding matrix. A
decrease in the stiffness parameters with a grow-
ing yield leads to a decrease in the norm||K(#) ||,
and, consequently, ||S ||. At the same time, the
weaker the norm of the matrix S, the smaller the
modules of its characteristic numbers

}Lk: —g, + iCOk(k: I, .. ,I’l).

Since under the usual conditions of the elastic sys-
tem vibrations, the damping coefficients x(to)are
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much less than the corresponding mode frequen-
cies wx(fo),these are the frequencies that are most
sensitive to the change in the elements of the ma-
trix K. Therefore, a decrease in the modules A,is
initially due to a decrease in the frequency spec-
trum wy(?) (k= 1, ..., n) (Figure 3).

1)

(o,,(t):

/

el SE

®(7) | 0y(7)
I h l
Figure 3. Frequency spectrum of a
nondegenerate elastoplastic system
in the course of vibrations.

Consequently, when condition (14) is met, the
frequency spectrum is strictly positive and below
the elastic one 0<wi(?)<mi(t), where k(7o) is the
mode frequency in the elastic state of the calcu-
lation model at 7€ [1, #1].

Hence, it follows that all the mode shapes have a
harmonic law of motion

Qi) = (Ax cos okt + By sin wxt) e ol

where Ax, Brrepresents arbitrary constants. For a
conservative system (C = 0), there is no damping
term in the equations of mode shapes.

5. GENERALIZED ORTHOGONALITY
OF THE MODE SHAPES
OF ANELASTOPLASTIC DDS

An important consequence of the above result is
that, under the condition of a nondegenerate state
of the elastoplastic system (14), equalities (8) —
(13) will be satisfied together with ratios (15). In
particular, the orthogonality conditions in the
matrix (8) and scalar (10), (11) form, respec-
tively, take the form:
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AP'MP + P"MPA + P'C(t)P=E, (16)
P MO+ ) + C(t)]P=0 (k#),  (17)
P[2Mh i+ C(t)1Pi= 1 (k=) (18)

(k,j=1,...,n).

These conditions will be valid only if two arbi-
trary mode shapes Py, P; (k#j) belong to the same
quasilinear interval te [t ti+1] or, which is the
same, correspond to the plastic zone (or zones)
with the same parameters.

6. EXAMPLE

Let us consider an example of elastoplastic vibra-
tions of a hinged beam with three degrees of free-
dom (n = 3) under a dynamic action. The parame-
ters of the design scheme of the beam are: [-beam
No. 70, A516 steel, E = 2,1-10° MPa, stiffness of
the beam £J=2,83-10°kN-cm?, =300 cm (Figure
4a). The characteristics of the strength and deform-
ability of the beam material: c,; = 305 MPa, G, =
440 MPa, 8~ c,/E = 0,00145, 5,= 0,21.

The mass matrix and stiffness matrix of the elas-
tic system were:

M=diag (0,5 0,6 0,5)-10kN-s*/cm,

1,0319 —0,9871 0,4038
K=|-0,9871 1,4357 -0,9871 |-10° (kN/cm).
0,4038 —0,9871 1,0319

A nonproportional damping model was used to
build the damping matrix [11]:

C(t) = [K(t)T + TK(1:)]/2,

where: T=yW;', W, = diag(woy, ... , Wo,), Woi =
[1; /m; (r;m— diagonal elements of the matri-

ces K(t;) and M), y=6/n, 6 =0,07.

In the elastoplastic vibration mod shape, the stiff-
ness matrix was formed using the flexibility ma-
trix L(#;) = K(#;)"". The displacementsd;,(#;))— ele-
ments of the flexibility matrix were determined
by the known methods of structural mechanics,
taking into account the presence of the plastic
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zones in the nodal sections of the beam: 6,(7;) =
O /(t;). Here,0,— elements of the flexibility ma-
trix L of the elastic system; f;(#;)—correction func-
tions that take into account non-linear strains, de-
pend on the size and location of the plasticity
zones, on the value § = E¢/E, whereE= tgo, Ej=
tgpo(€ = 0,003). The functions fi(#) (k, j= 1,2, 3)
for the plastic zones near nodes 2 (Figure 4b) and
3 (Figure 4c¢) are shown below.

¢ m, n, g
\ 2 P55 1
d L a e a7
7 A A 7 v
a R, b, as R; b
. 25 - 3¥
b ¢ == s ~
ill f [
= 'a....;n

/‘};
Figure 4. Design scheme of the beam (a);
fragments of bending-moment curves

for the plastic zones near: (b) — node 2;
(c) — node 3.

2

Node2 (ao=ax/d,B=br/d):
Sir=1+v[yi(a) + y2(B)]/36;
S2=1+v[ya(a) + y2(B))/16;

Sz == 1+ v-[ys(a) + y2(B)]/22;
S3=1+v[ya(a) + yi(B)]/36;
S =1=1+v[ws(o) + w3(B))/28;
S ==1+v[ya(a) + y3(B)]/22,

where yi(y) = 12y + 67" + 7, ya(y) = 12y = 67 + 7,

w3(y) = 12y = ¥(y= o, B)y=(1/ € 1).

Node3 (aa=a3/d, B =b3/d):
Su=1+v[ni(a) +n3(B)l/36;
fo=1+v[ni(a) +n3(B)J/16;

Sfiz=for =1+ v (o) +n3(B)/22;
fi3=1+v[270 - 90 + o®) + I3(B)]/36;
Siz=fa1=1+v[n2() +3n3(B)]/28;
f3=f=1+v (o) +3n3(B)]/22,

where: Ni(a) = 3o+ 302 + o,

n2(a) = 9o + 3% — o, n3(B) = 3B — 3B + p°.
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In Figure 4: Mo — value of the limit moment cor-
responding to the yield limit; R;— restoring force
at the j-th node.

Figure 5. First (a), second (b) and third (c) free
mode shapes for the yield zones in node 2 at a:
1-01;2-02;,3-03;,4-05>=0,1).

We considered various vibration modes of the
calculation beam model beyond the elastic limit.
Figure 5 shows the free-vibration mode shapes P,

(k =1, 2, 3) for local plastic zones of different
lengths near node 2. Figures 6 and 7 show, re-
spectively, the first and the second elastoplastic
mode shapes of the beam for the plastic strains
zones near nodes 2 and 3.

It follows from the analysis of Figures 5 — 7 that
the configuration of the elastoplastic mode shapes
differs sharply from the corresponding mode
shapes of elastic vibrations, which are shown by a
dotted line in all the figures. The configuration of
the elasticoplastic modes depends on many fac-
tors: on the intensity of the yield strains develop-
ment, which influences the sizes (length) of the
plastic zones in the dangerous section (Figure 5);
on the number of sections with the nonlinear work
of the material; on the location of the zones in the
design scheme (Figures 6, 7).
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0,5 - //,\t ......... o T A S ”‘;ﬂ:’r.‘: .................

Figure 6. First free mode shape for the yield
zones: 1 —a>2=p2=0,1;
2(5)— a2 (a3)=0,5; B2 (B3) = 0,1;
3—oa3= 0,05 p3= 0005
4—03=0,1; p3=0,002.

Figure 7. Second free mode shape for
the yield zones: 1 —o02=0,3; f>=0,1;
2—0a3=20,002; 3 =0,002;
3—a3=0,01; f3=0,001;
4—a3=20,5; p3=0,002.

The curvature of the rod axis sharply increases in
the yield zones in comparison with the elastic
sections of the design scheme; therefore, even in
case of small sizes of the plastic zones, the free
mode shapes can differ significantly from the
corresponding elastic mode shapes. An example
is the second mode shape in Figure 7 (position 2)
built at the yield in the 3rd node for a local zone
with the total length of 0.004d. In percentage
terms, this length is (0,004d/4d)100% = 0,1% of
the beam span / = 4d, i.e. 1/1000 part of the span,
where the beam material works beyond the elas-
tic limit. A comparison of this mode shape with
its "double" —a mode shape obtained at the yield
in the second node (Figure 7, position 1) with the
length of the plastic zone 0.4d (10% of the beam
span) shows that these mode shapes differ signif-
icantly by the configuration not only from the
mode shape of elastic vibrations, but also from
each other.

As it has already been noted, the critical zones in
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the elastoplastic process can change in size, dis-
appear and appear again (due to multiple unload-
ings and loadings), change their location on the
structure, etc. Since all this is connected with the
appearance of the zones with a concentration of
infinitely large curvatures, it will lead to a signif-
icant "distortion" of their mode shapes with re-
spect to their elastic analogs and, eventually, to
the modification of these mode shapes that cease
to be similar to themselves in the process of non-
linear vibrations.

It should be noted that during a nonlinear analy-
sis of structures using numerical methods of the
stepwise integration, the dynamic response is
generally built using the original (i.e., elastic)
mode shapes of undamped vibrations. It is con-
sidered to be permissible, "if inelastic strains do
not lead to major changes in the nature of their
deflections ..." [12]. However, in practice, such
estimates are difficult to implement, and their im-
plementation provides for the creation of more
sophisticated mathematical models that ensure
building of free-vibration mode shape staking
into account inelastic strains.

Resorting to the previous example, we will give
a comparative analysis of the movements of the
third node at elastoplastic beam vibrations
caused by the action of the force R3 (Figure 4c).
For a plastic zone with the following parameters:
oz = 0,002; B3 = 0,001,the node movements are
1.73 times larger than the corresponding elastic
movements, i.e., the local zone with the total
length 0f 0,003d = 0,9 cm leads to a change in the
node movements by almost 2 times. If the zone
sizes are doubled: az =0,004; B3 =0,002, the ratio
of the movements increases already in 2.45
times.

Thus, the proposed algorithm allows us to obtain
not only qualitative but also quantitative esti-
mates of the influence of the inelastic strains on
the characteristics of the strain-stress state in the
structure. Since even small plastic zones (less
than 1 cm) can significantly alter the strained
state of structural elements, it suggests the need
to create new approaches that allow us to con-
sider nonlinear strains when formation of mode
shapes. In this connection, there arises a question
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on the correctness of the methods based on the
use of elastic vibration mode shapes in a nonlin-
ear analysis, and an estimate of the error degree
of such an analysis.

The final part of the paper gives an example of
meeting the orthogonality conditions (16) for the
free-vibration mode shapes of a beam with a lo-
cal plastic zone in the second node (Figure 5).
The correction functions fj;(#;) are built for the pa-
rameters: oo =0,2; B2=0,1. As aresult, the values
of the stiffness matrix and damping matrix were:

407,96  -261,45 83,56

K(t)=| 261,45 319,26  -347,94 | (kN/cm),
83,56  —347,94 592,77
0.0318  —0.0228 0.00596

C(t)=| -0.0228 0.0308  —0.0281 | (kN-s/cm).
0.00596 —0.0281  0.0384

From the solution of (3) we obtained matrix roots
(5) S1 =S, $»=S , which allows us to calculate the
spectral characteristics — the mode-shape matrix
P and the diagonal form A (the values of the ma-
trices P and A correspond to the matrix S1):

S1o=
—3,18+i258,77 2,02F 132,44 -0,59Fi0,62

+2,12+110,37 -2,57%i136,67 2,75+i128,78

-0,60F170,62  2,31Fil154,53 —3,84%i314,05

(¢,

P:
0.431 0.819 0.420 +i0,39%102
0.803 —0.127 +i0,12*10> —.509—i0,46*10 > |,
0.411  —0.560-i0,25%10"" 0.752

M 0 0

A=]0 a, 0],
0 0 A,

where: A1 =-0,01+i11,5;A2 = -2,91+i279,8;

A3 =—6,68 +i418,19 (c!).
For comparison,A«x corresponding to the elastic
solution are shown: A; =-0,17+i85,07;
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Ao =—3,08+i354,43; A3 = —12,32+i720,45 (¢ ).
The above values of the matrices satisfy ratios
(15), (16). Thus, the calculation of the left-side of
ratio (16) leads to the identity matrix:

100
AP™MP + P"MPA + P'CP= |0 1 0],
00 1

Thegeneralizedorthogonalityconditionspresent-
edbythescalarformoftheratios (17) are realized
for off-diagonal elements of this matrix. The di-
agonal elements of the matrix are obtained by
normalizing the mode-shape matrix P using the
diagonal matrix D:

1.962 — i1.963 0 0
D= 0 0.422 - i0.423 0
0 0 0.336 — i0.339

2

which ensures the fulfillment of the conditions

(18).

7. CONCLUSION

—

. It is shown that:

¢ traditional (classical) ratios of the orthogonal-
ity for the free-vibration mode shapes are a
private case of more general conditions of the
generalized orthogonality of the mode shapes
valid for an elastic dissipative system;

e the free mode shapes of an elastoplastic sys-
tem in a quasilinear interval corresponding to
the same parameters of the plastic zones have
the property of the generalized orthogonality,
which is determined by the equations analo-
gous to the equations of an elastic dissipative
system.

2. For the free-vibrations motion of a hinged
beam with three degrees of freedom, taking
into account the internal friction, it is shown
that:

e clastoplastic mode shapes are qualitatively

different from the corresponding mode shapes
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of elastic vibrations in their configuration;
arbitrary k-th free-vibration mode shapes
formed for the plastic zones located in differ-
ent nodes of the calculation model, also differ
from each other in their configuration.

3. The proposed algorithm allows us to obtain not

only qualitative but also quantitative estimates
of the influence of the inelastic strains on the
strain-stress state characteristics of the struc-

ture. The development of this approach to

formating of mode shapes, taking into account

the elastoplastic strains, opens the possibility

of creating more sophisticated structural anal-

ysis methods at nonlinear vibrations.
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