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Abstract

In this paper, by using the coincidence degree theory due to Mawhin and
constructing suitable operators, we study the solvability for functional boundary
value problems of second-order nonlinear differential equations system at resonance
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1 Introduction

The existence of solutions for integer order differential equations with specific boundary
conditions and resonance scenarios have been studied by many authors (see [1-14] and
the references therein). Recently, attention has shifted to problems with linear functional
conditions. The differential operator L : C*[0,1] — L'[0,1], Lx = x” known to us is done
in [15] for a resonant problem, where the authors studied the existence of solutions to the
problem of second-order nonlinear differential equation

x'(t) = f (&, x(t), % (£)), 0<t<l,
I1(x) =0, Iy (%) =0,

which generalizes recent work on multi-point and integral boundary value problems. Al-
though it excellently generalizes and extends many results for nonlocal second-order prob-
lems at resonance, it does not contain a complete analysis for this problem. For example, in
[16], to see this, set By (£) = ab, Bi(1) = aa, By(t) = b, By(1) = a, where a,b,a € Rand a,b # 0,
then B;(£)By(1) = B1(1)B,(¢) with Ker L = {c(at — b) : ¢ € R}, dimKer L = 1. This case cannot
be derived from the results of [15] pertaining to the cases of resonance. And in [15], the
authors also make the unnecessary artificial assumptions I'; (£2) # 0, 'y (£3) # 0, notably, for
these assumptions, some interesting results have been obtained in [17] for a resonant prob-
lem that allow us to bypass above minor technical difficulty (see Lemma 1.1 below). Thus,
we improve the results of [1-13] and [14] in that respect as well. In addition, it clearly can
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also be used for higher order problems with functional conditions see [18, 19]. Inspired by
the above literature, we will study the existence of solutions to functional boundary value
problems of differential equations system. To the best of our knowledge, this subject has
not been studied. In the present paper, we investigate the following equations:

x"(t) = f(&,%(8),y(2), ¥ (2),y'(2)), te[0,1],
y'(t) = g(t,x(2), y(£),%'(2),¥'(¢)), te[0,1],
I'1(x) =0, [a(x) =0,
I'3(9) =0, [4(y) =0,

(1.1)

where T';: C1[0,1] — R, i =1,2,3, 4, are continuous linear functionals. we will always sup-
pose that the following condition holds:

(H) Let f,g:[0,1] x R* — R satisfy Carathéodory conditions, i.e., f(-,u) and g(-, u) are
measurable for each fixed u € R*, f(t,-) and g(t,-) are continuous for a.e. t € [0,1] and
sup{|f(¢,x)| : x € Do}, sup{|g(t,x)| : x € Do} € L}([0,1]) for any compact set Dy € R*.

Lemma 1.1 ([17]) There must exist h, € L'[0,1] such that (I'; — alI’z)(fOt(t —s)hi(s)ds) =1.

Definition 1.1 We say (x,7) € C'[0,1] x C'[0,1] is a solution of functional boundary value
problems (FBVPs) (1.1) which means that (x, y) satisfies (1.1).

2 Preliminaries

We present some necessary definitions and lemmas. Consider the following conditions:
(A1) 149 = [, T5(1) =0, T3(8) = 0, Ty(1) = 0, Ty(£) = 0,

2(t
(A2) 29 = BEL,T1(1) =0, T4(5) = 0, Ty(1) = 0, T»(£) = 0,

Ta(
(A3) T1(1) =T1(8) =T(1) =Ta(8) =0, I'3(1) = T'3(2) = T4 (1) =T4(2) = 0.

=1
I

We should prove the following. If (4;) or (A;) holds, then

KerL = {(cl(at— b),ct +d)|cy,c.d € R,a? + b? 7!0} or
KerL = {at+ b,cy(ct — d)|a, b,cy € R, ¢* + d? #O}.

If (A3) holds, then KerL = {(at + b, ct + d)|a, b, c,d € R}. In fact, if exchange the places of
I'; and I's, T’y and Ty in the boundary value conditions, respectively, condition (A4;) just
becomes (A3). So we only need to focus on the FBVPs (1.1) under conditions (A4;), (A3).

As usual, we shall use the classical spaces C'[0,1] and L![0,1]. For (x,y) € C'[0,1] x
C'[0,1], we define the norm [|(x, )| = max{[|x[, [yll}, where [lx| = max{[|x[lco, [|¥'lloo},
l%llo = max,c(o,) |x(£)]. We denote the norm in L'[0,1] by | - ||;. Similarly, for (u,v) €
L'[0,1] x L'[0,1], we denote the norm ||(z, v)|; and define the norm ||(z, v)||1 = max{||z]|1,
Ivll1}, where |lu|; = fol |u(t)| dt, u € L[0,1]. We also use the Sobolev space W21(0,1) de-
fined by

w210,1) = {(x,y) € C[0,1] x C[0,1]]x,x",,y are absolutely continuous on [0,1]}.

Let Y = C'[0,1] x C'[0,1] with norm ||(x,)|, Z = L'[0,1] x L'[0,1] with norm ||(x, y)||;.
Clearly, Y, Z are Banach spaces.
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Let the linear operator L :dom L C Y — Z be defined by L(x, y) = (x”,y"), where
domL = {(x,7) € W*'(0,1) : Ty (%) = 0, T3 (x) = 0,T5(y) = 0, T4(y) = 0}.
Let the nonlinear operator N : Y — Z be defined by

(N 2) @) = (f (&, x(2), y(2), £ (£), ¥ (£)), g (£, %(2), (£), % (2), ¥ (£)) ).
Then FBVPs (1.1) can be written as L(x, y) = N(x, y).

Definition 2.1 Let Y, Z be real Banach spaces, L:domL C Y — Z be a linear operator.
Y is said to be the Fredholm operator of index zero provided that:

(i) ImL is a closed subset of Z;

(ii) dimKerLZ = codimImL < +00.

Let Y, Z be real Banach spaces, L : domL C Y — Z be a linear operator. L is said to be
the Fredholm operator of index zero. P: Y — Y, Q: Z — Z are continuous projectors
such that ImP =KerL,KerQ=ImL, Y = Ker L & Ker P and Z = Im L ® Im Q. It follows that
Llgominkerp : domL N Ker P — ImL is reversible. We denote the inverse of the mapping
by Kp (generalized inverse operator of L). If 2 is an open bounded subset of Y such that
domLZ N Q # ¥, the mapping N : Y — Z will be called L-compact on £, if QN(2) and
Kp(I - QN : Q — Y are continuous and compact.

The following is the Kolmogorov-Riesz criterion (see, for example, [20])

Lemma 2.1 For1<p<oo,E CLF[0,1] is compact if
(a) E is bounded,
(b) the limit lim,_, fol lg(s + &) — g(s)|P ds = 0 is uniform in E.

Lemma 2.2 ([16]) Let L :domL C Y — Z be a Fredholm operator of index zero and N :
Y — Z is L-compact on Q. Assume that the following conditions are satisfied:
(i) Lu # ANu for every (u,A) € [(domL \ KerL) N 9K2] x (0,1);
(ii) Nu ¢ ImL for every u € KerL N 9<;
(iii) deg(QN|kerz, 2N KerL,0) #0, where Q: Z — Z is a continuous projector such that
ImL = KerQ.
Then the equation Lx = Nx has at least one solution in domL N Q.

Now, we give Ker L,Im L and some necessary operators under conditions (4;) and (4s),
respectively.

Lemma 2.3 There exist m;,n; € N*,m;,n; > 1,m; # n;,i = 1,2 such that T'y(£™)Ty(£™M) —
Ly (™) (£) # 0, Da(£™)La(£72) — T3(£72)Ty(£72) # 0.

Proof For convenience, assume, by way of contradiction, that F;(iml) = D _ & for all

Co(e™) — Ta(t") —
my, n; € N*, so we have

Fl (tml) = sz(tml) or Fl (t”l) = kl"g(t”l).

By (A3), (I'1 —kT'9)(1) = (I'1 —kT'3)(¢) = 0. Thus, I'1(p(2)) = kI'2(p(¢)) for every polynomial p.
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Since I'; (x) — k"5 (x) # 0 on all of x € C'[0,1], there exists vy € C'[0,1] such that I'; (vq) —
kI2(vp) # 0. Choose a sequence of polynomials {p,,} such that ||vo — pumll < % Then 0 #
|(Ty = kT2)(vo)| = (T1 = kT2)(vo = pim) + (T'1 = kT2) ()| = (T = kT'2)(vo = pr)| < (T —
k) vo = pmll < (B + |Ol|ﬂz)$ for all m € N, which is a contradiction. Similarly, for I's

and I'y, we omit the corresponding details as straightforward. O

For convenience, we denote

(B1) The linear functionals I'1,I'y : ¥ — R satisfy I'y(¢) = b, T'2(1) = 4, T'1(¢t) = a1b, I1(1) =
oya, where a® + b> #0,a1,a,b € R.

(Bz) The functionals I';,I'5, '3,y : Y — R are linear continuous with respective norms
Bi, B, B3, a, that s, [Ti®)| < Billxll, ;)| < Billylli=1,2,j =3,4.

Lemma 2.4 Assume (A,) holds, then L :domL C Y — Z is a Fredholm mapping of index
zero, dimKerL = codimImL = 3.

Proof If (x,y) € Ker L and L(x,y) = (*”,y") = (0,0), we have (x(£), y(¢)) = (kit + ko, k3t + ka).
Based on the condition (A;), we have

x = ¢ (at - b), y=ct+d,
where ¢;,¢,d € R. So,
KerL = {(ci(at - b),ct + d)|a* + b* #0,c1,c,d € R}, dimKerL = 3.

Now, we verify

ImL = {(u, vezZ: (- all"z)(/t(t —8)u(s) ds) =0,
0

F/(/Ot(t—s)v(s)ds> =0,j= 3,4}. (2.1)

Let (&, v) € Im L, then there exists (x,y) € dom L such that L(x,y) = (&, v), that is,

x(t) = [y (t - s)u(s)ds +x(0) +x'(0)¢,
¥(8) = [ (= s)v(s)ds + y(0) + y' (0)¢,

and I';(x) = 0,T(y) = 0,i = 1,2,j = 3,4. Hence,

I;(x) = Fi(f()t(t —s)u(s)ds) + I';(1)x(0) + x'(0)';(¢) =0, i=1,2,
() = Ti(f, (t = )v(s) ds) + T;(1)y(0) + ¥ (O)Ty() =0, j=3,4.

Considering the resonance condition (B;), we have

(I - 011F2)(/t(t —s)u(s) ds) =0, Ir; (/t(t —$)v(s) ds) =0, j=3,4.
0 0
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That is,

ImL C {(u, veZzZ: (' - a1F2)</t(t — 8)u(s) ds) =0,
0

F,(/Ot(t—s)v(s)ds> =0,j= 3,4}.

If

(u,v) € {(u, veZzZ: (I —all"g)(/t(t—s)u(s)ds> =
0

F,»(/t(t —S)V(s)ds) =0,j= 3,4},
0
take
(x(t),y(t)) = ( bt +ZZ Iy (/t( —s)u(s) ds) + Lt(t—s)u(s) ds,/ot(t—s)v(s) ds).

It is clear that L(x,y) = (x”,y") = (u,v) and T';(x) = 0,I"j(y) = 0,i = 1,2,/ = 3, 4.
That is, (¢#,v) € ImL, i.e.

{(u, veZ:(I'1 - a1F2)</t(t —8)u(s) ds) =
0
I; (ft(t—s)v(s) ds) =0,j= 3,4} ClImL.
0

Combining the above we obtain (2.1).
Define Q: Z — Z as follows: Q(u,v) = (Qiu, (Tiv)t"272 + (Tov)t"272), where

Qu= (I —alrz)( [ o ds)m(t),
0
ny(ny — 1)[I‘4(t’”2)l‘3(f(f(t —s)v(s)ds) — Fg(t’”z)m(f(f(t —s)v(s) ds)]
[a(tm2)T(22) — Ta(t™2)Ty(272)

my(my — 1)[Ta(t72)Ts(f, (¢ - s)v(s) ds) — T3 (£72)Ta(fy (£ — s)v(s) dS)]
[C3(t2)La(tm2) — T3 (tm2)Ty(272)

T1V =

)

T2V:—

and /1 is introduced in Lemma 1.1, m5 and 7, are the same as in Lemma 2.3.
By Lemma 2.3, (B;), and the property of /1; in Lemma 1.1, we have

qu =T - ozll"2)</ (t = s)u(s) ds)hl(t) = Qu,
0

T, ((Tv)e™?)

_ ma(m = [Ta(£"2)T5( o ()52 ds) — T3(¢2)Ta( [ (¢ —5)s™" 2dS)] T
[a(t72)Ta(t72) — Ty (t™2)T (£72)

My (ny = D[Ta(t2) 3 (2 ) = T3 (¢72) Ty (2]

ny(np—1) na(nz-1)

[3(#72)Ty(£72) — T3(£72) Ty (£72)

1V

= TIV)
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T ((Tov)e™ %)

131y = D)[Ta(€2)Ts(f, (¢ — 8)s"2 72 ds) — T3(£72)Ca(fy (& — 5)s™ 2 ds)]
= T2V
[3(272)Ty(t72) — T3(£72)y(£72)

1 (3 = DTy (") (-E25) = Ta(¢72)Ta (5-E25)]
T,

[3(#72)Ta(272) — T3(£72)a(£72)

=0,
T2 ((Tll/)tn272)

my(my — 1)[Ta(t)Ts(fy (¢ - 5)s272 ds) — T3 (¢72)Ta(fy (¢ - 5)s">72 ds)]

- D3()Ca(t™) - T5(e™)Tale™) v
_m (m> —1)[F4(t"2)1—‘3(,,2t,’;2 5) — F3(t”2)l"4(n2':22 )]
o T3(£%2)Ty(£72) = Ta(72)Ty (72) '
=0,
T ((Tov)e"™™2)
__ma(ma D[ (e")s( Jot = 8)s"272 ds) = T3(£")Ta(fy (¢ — 5)s™>7 ds)] T

[3(872)y(872) = T3(£72) Ty (£72)

ma(my = V[T (") T3 (-02) = Ts () Ta ()] -
2V

[3(¢72)Ty(e72) — T3(£72) o (£72)

= T2V.
We have, for each (u,v) € Z,

QZ(M, V) = (qu, T1 [(Tlv)tﬂz—Z + (Tzv)tmz—Z]tnz—Z + TZ[(TIV)tnz—Z + (Tzv)tmz—z]tmz_z)
= (Qut, (T\)£"272 + (Tyv)e™72)
= Qu,v).
So Q:Z — Z is a continuous linear projector such that ImL = KerQ and ImQ =
{(cthn (), ct™2 + dt™72)|cy,c,d € R}. It is clear that Z = ImL @ ImQ and dimKerL =

codimImL = 3, that is, L is a Fredholm mapping of index zero. g

Define an operator P: Y — Y as follows:
P(x,y)(t) = ( ! S (ax'(0) — bx(0))(at - b),y (O)t+y(0)) t €[0,1].

It is easy to check that P?(x,y) = P(x,7), (x,) € Y, it is also elementary to confirm the iden-
tity ImP = KerL. So, Y = Ker L @ Ker P.
The mapping Kp : ImL — dom L N Ker P defined by

Kp(u, (@) = (— i ST ( f « —S)u(s)ds> + /0 (¢~ yuts)ds, /0 t(t—s)v(s)ds)
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is the inverse of L. In fact, LKp(u, v) = (&, v) for all (,v) € Im L. For (x,y) € domL N Ker P,

KpL(x,9)(®) = (Kp(x",5"))(®)

= (—%Fz (/0 (t—s)x"(s) ds) +/0 (t—s)x"(s) ds,/o (t-s)y"(s) ds)

- <_ bt+a r (x(t) —x/(0)t —x(O)) +x(£) — x'(0)¢

—— 12
a’+b?

—x(0),y(2) —¥'(0)¢ —y(O))

b
= (_ azt:ZZ (bx(0) + ax(0)) + x(t) — x'(0)¢ — x(0), y(¢) — ¥ (0)¢ — y(O))

b
_ (x(t) - (@ (0) - b)) - O —y(O))

= (x(), (2)) — P(x,y)(2)

= (x(t),y(t)).
Thus, Kp = (L|domLnkerp) -

Lemma 2.5 If (A3) holds, Then L :domL C Y — Z is a Fredholm mapping of index zero,
dimKerZ =codimImLZ = 4.

Proof Considering (As3), for every a,b,¢,d € R, T';(at + b) = al'y(t) + bT';(1) = 0, T(ct + d) =
cTi(t) +dT;(1) = 0,i=1,2,j = 3,4.
So it is easy to obtain

KerL = {(at+b,ct+d)|a,b,c,de]R}, dimKerL = 4.

For each (1, v) € ImL, there exists (x, y) € dom L such that L(x,y) = (x”,5”) = (&, v). Hence,

x(8) = [ (t - s)u(s) ds +x(0) +x'(0)¢,
() = [o(t —s)v(s)ds +y(0) +y (O)t.

From the above equations, we have

t
Li(y) = Fj(/ (t—s)v(s)ds> =0, i=12,j=3,4.
0
Therefore,

ImL C {(u, VeZzZ: Fi</t(t—s)u(s) ds> =0, F,(/t(t—s)v(s) ds) =0,i=1,2,j= 3,4}.
0 0
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For each (u,v) € Z satisfying F,'(fot(t —s)u(s)ds) =0, F,'(fot(t —s)v(s)ds)=0,i=1,2,j=3,4,
let

x(t) = /t(t —s)u(s) ds, y(t) = /t(t —s)v(s)ds.
0 0

We have L(x,y) = (u(£), v(£)), t € (0,1) and

Ti(x) = Fi(/t(t—S)M(S) ds) =0, i=1,2,
0

Li(y) = r/</f(t_s)v(s)ds> =0, j=3,4.
0

That is, (&,v) € ImL, i.e.,

{(u, VEeZ: I’i</t(t—s)u(s) ds) =0, I‘,(/.t(t—s)v(s) ds> =0,i=1,2,j= 3,4} CImlL.
0 0

From the above two aspects, we have

ImL = {(u,v) A F,-(/%t—s)u(s)ds) =0,i= 1,2,Fj(/t(t—s)v(s)ds) = O,j:3,4}.
0 0

By Lemma 2.3, define Q: Z — Z as follows:

Q(u,v)
_ (1’11("1 — D)[To ()T (f, (& - s)u(s) ds) — Ty (£™)Ta ([ (¢ — s)u(s) ds)]
- [y (gm)Cy(em) — Ty (em)To (")
o (m — DT4(e)T1(f; (¢ = s)uu(s) ds) = T1(E™)Ta(fy (¢ — s)u(s) ds)] -2
[y (gm)Cy(em) — Ty (em)To (™) ’

ny(ny — 1)[F4(tm2)ra(f()t(t —s)v(s)ds) — Fs(tmz)rzi(fot(t - s)v(s) ds)]
[g(£72)T4(t2) — T3 (m2)Ty(t72)

my(my — 1)[Ta(t"2)Ts(f, (¢ — s)v(s) ds) — T3 (£"2)Ta( fy (¢ - s)v(s) ds)] tm2—2)
[3(£72)Ly(£72) — T3 (£72) T (2) '

tn172

tn2—2

Similarly, we can get Q?(u, v) = Q(u,v), so Q: Z — Z is a well-defined projector. Now, it is
obvious that Im L = Ker Q. Noting that Q is a linear projector, we have Z = Im Q& Ker Q. So,
Z=ImL®ImQ and dimKerL = dimImQ = codimImL = 4. So, L is a Fredholm mapping

of index zero. O
Let the mapping P: Y — Y be defined by
P(x,9)(t) = (2(0) +x'(0),5(0) + ¥/ (0)¢), ¢ €[0,1].

Noting that P is a continuous linear projector and KerP = {(x,7) € Y : x(0) = 0,x'(0) =
0,y(0) = 0,5(0) = 0}, it is easy to know that Y = Ker L @ Ker P.
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The generalized inverse operator of L, Kp : ImL — dom L N Ker P can be defined by

Kp(u,v)(t) = (/Ot(t —s)u(s) ds, /Ot(t —8)v(s) ds)

is the inverse of L. In fact, if (i, v) € Im L, then

LKp(u,v) = ([/t(t—s)u(s) ds:| , [/t(t—s)v(s) ds] ) = (u,v).
0 0

If (x,y) € domL N KerP, then L(x,y) = (x”,y"),x(0) + '(0)t = 0 and y(0) + y'(0)¢ = 0. We
have

KpL(x,y) = (/Ot(t—s)x”(s) ds,/ot(t—s)y”(s) ds)

x(t) =% (0)t = x(0), 5(£) - ¥ (0)¢ - ¥(0))

= (x(1),5(0)).
Thus, I<P = (L|domLﬂKerP)_1-
3 Main results

By making use of Lemmas 2.2, 2.3 and 2.4, we can obtain the following existence theorem
for FBVPs (1.1) at dimKer L = 3.

Theorem 3.1 Assume (A;), (H) and the following conditions hold:
(Dy). There exist constants My > 0, My > 0 such that, for (x,y) € domL, if |x(¢)| + |x'(£)] >
My, for t € [0,1], then

(I - mm( fo (£ = $)f (5,(5), 76, %'(5),/(5)) ds) 40,
O]+ 1y (O] > My, for t € [0,1],

I3 </0 (t- S)g(S,x(S),y(S),x'(S)»J/(S)) dS) #0,

or
t
Ty ( / (t - 5)g(s,%(5), 5(5), 5 (5), ' (5)) dS) #0.
0
(D). There exist nonnegative functions a;, b;, e;, d;, p; € L'[0,1],i = 1,2 such that

|f (&, 51,2, y1,2) | < p1() + @ (&) |1 | + by (£)|%2] + ex(B)[ya| + da (D) 12,
’g(t’xlyxZ’yl’yZ)’
< pa(t) + ar(B)|x1]| + ba(B) %] + ea(B) 1] + da(®)|y2l,  te[0,1], %,y €R,i=1,2.

(Ds3). There exist constants E; > 0,i=1,2,3, such that either for each (c1,bs, bs) € R3:
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|c1| > Ey, then

t
a(—oly) (/ (t - s)f (s, c1(as — b), bss + bs, c1a, b3) ds) >0, (3.1)
0
|b3| > E,, then
t
b33 (/ (t-— s)g(s, ci(as —b),bss + by, 1a, bg) ds) >0, (3.2)
0
|by| > E3, then
t
byly (/ (t- s)g(s, ci(as — b), bzs + by, 1a, l’)g) ds) >0, (3.3)
0

or (c1,b3,b4) € R : |c1| > E), then

t
a(l]—oly) (/ (t- s)f(s, ci(as —b),bss + by, 1a, bg) ds) <0, (3.4)
0
|b3| > E,, then
t
b33 (/ (t - s)g(s, ci(as — b), bzs + by, 1a, bg) ds) <0, (3.5)
0
|by| > E3, then
t
byy (/ (t- s)g(s, ci(as —b),bzs + by, 14, bg) ds) <0. (3.6)
0

Then FBVPs (1.1) has at least one solution in C*[0,1] x C'[0,1] provided that

C1B2 Cle
+ —<1, G+
1-G ° 2T 1B

B; <1,

where By = |laill1 + llerll, B2 = llaz [l + llezll, Ci = 161l + lldall, Co = [1b2 11 + llda 1
The proof of Theorem 3.1 will be based on the next two lemmas.

Lemma 3.1 Assume that (A1), (H),(D1), (D,) and (D3) hold. Then
Q= {(x,y) edomL\ KerL:L(x,y) = AN(x,y), for some A € [0,1]},
and
Q5 = {(x,y) eKerL:N(x,y) € ImL}

are bounded.
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Proof For (x,y) € 1, we have (x,y) ¢ KerL,A #0 and N(x,y) € Im L.
So

(T —anTy) (/ (t- s)f(s,x(s),y(s),x’(g),y/(s)) ds) =0,
0
I3 (/0 (t - )g(s,%(5), 5(5), 8 (5), ' (5)) ds) =0,

and

Iy </0 (t - s)g(s,x(s),y(s),x’(s),y’(s)) ds) =0.

By (D), there exist constants ¢; € [0,1],i = 1,2 such that [x(t;)| < My, [« (81)] < My, [y(2)] <
My, |y (82)] < M.
Since x(t) = x(t1) + [, #'(s) ds, y(t) = y(t2) + [, ¥/ (s) ds, we get
W) < ¥+ M o< |y M celol. (3.7)

Thus,

||(x,y) || < max{ ||x’ HOO, y ||Oo} + max{M;, M,}. (3.8)

By L(x,y) = AN(x,y), we obtain
(*(@©,5 () = (A / S (5,%(5), (), %/ (5), 5 (5)) ds + ¥ (1),
A / g(s,x(s),y(s),x/(s),y/(s)) ds + y/(tz)),

2]

thus, |x'(£)] < [INwx|ly + My, [y ()] < IN2ylly + Ma, where N(x,y) = (N, Nay),

Nix = f (s,%(), %/ (5), y(5), ¥ (5)), Noy = g(s,%(s),%/(s), §(s), ¥ (s)).

That is, max{||%’[lcos | [} < IN (%, ¥)[I1 + max{M;, M,}.
By (D,) and (3.7), we have

@ < llorlls + larl oo + 1BV loo + lleally || o + Il 5], + M
<llprlly + lar My + b1 Mz + (laall + lleall) %]
+ (1oally + 1) || o, + M, (3.9)
¥ @)] < llp2ll + laalhMy + 152 ]:My + (lazlly + llealln) [#]
+ (I1b2lls + ldalh) |y || o + Mo, (3.10)

for the sake of brevity, let Ay = || p1]l1 + lla1 M1 + |biliMa + My, Ag = |l p2llh + lla 1M +
AH%A&;
17317% ’

|62 ||1M5 + M,, then by (3.10) and (3.9), we have ||y || < %, 1% | oo <
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ByAy

.. At 1B
Similarly, |||l < @‘

By (3.8), |I(x, )|l < co. Thell"efore Q; is bounded.
For (x,7) € Qa,(x,y) = (c1(at — b), bst + by),¢1,b3,b4 € R and N(x,y) € Im L. So,

t
(T1—a1My) (/ (t- s)f(s, ci(as — b),bzs + by, 1a, bg) ds) =0
0
and
t
b (/ (t —s)g(s, ci(as —b),bss + by, 14, bg) ds) =0, j=3,4.
0

Considering (Ds), |c1| < Ei, |bs| < Es, |ba| < E3, we have ||x|| < E|lat — b||, ||y|| < E; + Es.
Therefore 2, is bounded. O

Lemma 3.2 Assume that (A,), (H) and (D3) hold. Then
Q3 = {(x,y) eKerL:AJ(x,y)+(1-2)QN(x,y)=0,A € [0,1]}

is bounded, where ] : Ker L — Im Q is homeomorphous: (x,y) = (c1(at — b), bs + bat),c1, bs,
b4 S R,

J(x,9)

= (Clhly

na(ny — 1)[T4(t™)bs — T'3(£2)bs]t™ 2 — my(my — 1)[Ta(£72)b3 — Fs(tnz)bzt]tmz_Z)
[g(72)T4(¢72) — T3(tm2)Ty(t"2) ’

Proof For (x,y) € Q3, MJ(x,y) + (1 —1)QN(x,y) =0.If A =1, then ¢; =0, b5 = 0,b4 = 0. That
is, (x,9) = 0. If » #1, we can have

ey = =1 =21 —oqly) (/:(t —8)f (s, c1(as — b), b3s + by, c1a, b3) ds)hl, (3.11)
T (£™) (xbg +(1-M)3 < /0 t(t —5)g(s, c1(as — b), bss + ba, c1a, bs) ds>>
- T3(e™) (Ab4 +1 =), ( /O t(t —8)g(s, c1(as — b), bzs + by, c1a, bs) ds)) =0,
and
Ty (") (xbg +(1=MTI3 < /0 t(t —)g(s, c1(as — b), bss + ba, c1a, bs) ds))
~T3(¢™) (uu +(1- /\)m( /0 t(t —9)g(s, c1(as — b), bss + ba, c1a, bs) ds>) =0.

From Lemma 2.3,

Ta(t™2) Ts(e™)
Ty(t"2) T3(72)
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it yields
Abs +(1- )\)rg(f(;(t —35)g(s,c1(as — b), bss + by, c1a,b3) ds) =0,

Aby+ (11— A)F4(f()t(t —5)g(s,c1(as — b), bss + by, c1a,b3) ds) = 0,

if |c1] > E1,|b3| > Es, |bs| > E3, considering above equalities, (3.11) and (3.1)-(3.3), we have
t
Acfhl =—1 -2l —aTy) (/ (t - s)f(s, ci(as — b), b3s + by, c1a, bg) ds) <0,
0
t
Ab3 = —(1-A)b3T; (/ (t - 9)g(s, c1(as — b), bss + by, c1a, b3) ds) <0,
0
t
Abi =—(1=A)bsyl'y (/ (t- s)g(s, ci(as —b),bss + by, 1a, b3) ds) <0.
0

Thus |c1| < Ei, |b3| < Es, |bs| < E3. So, Q3 is bounded.
If (3.4)-(3.6) hold, then let

Q3 = {(x,y) eKerL:-2J(x,y) + (1-A2)QN(x,y) =0,A € [0, 1]}.
By the same method we can also see that 23 is bounded. O

Proof of Theorem 3.1 Let Q2 be a bounded open subset of Y such that U]il Q; C Q. The
compactness of Kp(I — Q)N : © — Y and QN(2) will follow from the Arzela-Ascoli theo-
rem and the Kolmogorov-Riesz criterion, respectively. Thus N is L-compact on .

Then from above arguments, we have

(i) L(x,y) #AN(x,y), for every ((x,¥), 1) € [(domL \ KerL) N dQ2] x (0,1);

(i) N(x,y) ¢ ImL, for every (x,y) € KerL N d<2.

At last we will prove that (iii) of Lemma 2.2. is satisfied.

Let H((x,y),A) = £AJ(x,5) + (1 — X)QN(x,y) = 0, noting that Q3 C 2, we know H((x, ),
A) # 0 for every ((x,y),A) € 3Q N Ker L. Thus, by the homotopic property of degree

deg(QN|kerz, 2N KerL,0) = deg(H(x,,0), 2N KerL,0)
= deg(H(x,y, 1),QNKerl, 0) =deg(+/,2NKerL,0) #O0.

Then by Lemma 2.2, L(x,y) = N(x,y) has at least one solution in dom L N Q. The proof
of Theorem 3.1 is completed. O

Theorem 3.2 Assume (As), (D5), (H) and the following conditions hold:
(Dy). There exist constants Ms > 0, My > 0 such that, for (x,y) € domL, if |x(£)| + |x'(£)] >
Ms, for t € [0,1], then

I (/0 (t- s)f(s,x(s),y(s),x’(s),y/(s)) ds) #£0,

or

Iy </0 (t - S)f(s,x(s),y(s),x’(s),j/(s)) ds) #0,
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if ly@®)] + 1y (&) > My, for t € [0,1], then

I3 </0 (- S)g(srx(S),J’(S),x'(S),J/(S)) dS) #0,

or

Iy < /0 (t - 5)g(s,x(5), y(5),%'(), ¥ (5)) ds) #0.

(Ds). There exist constants E; > 0,i = 4,5, such that either for each (ay,a, b3, by) € R*:
|ai| > Ey, then

t
al' (/ (t = s)f (s, a18 + az, b3s + by, ay, bs) ds) >0, (3.12)
0
|as| > Es, then
t
ay (/ (t = s)f(s,a18 + az, b3s + ba, ay, bs) ds) >0, (3.13)
0
|b3| > Eg, then
t
b33 (/ (t—s)g(s,a1s + aa, bss + by, a1, bs) ds) >0, (3.14)
0
|by| > E7, then
11
by (/ (t —s)g(s,a1s + ay, bss + by, a1, b3) ds) >0, (3.15)
0

or for each (ay,a, b3, by) € R*:
|ai| > Ey, then

t
al' (/ (t = s)f (s, a18 + az, b3s + by, ay, bs) ds) <0, (3.16)
0
|as| > Es, then
t
as'y (/ (t —s)f(s,a18 + az, b3s + ba, a1, b3) ds) <0, (3.17)
0
|b3| > E¢, then
t
b33 (/ (t—s)g(s,a1s + am, bss + by, ay, bs) ds) <0, (3.18)
0
|by| > E7, then

12
by (/ (t —s)g(s,a1s + am, bss + by, a1, bs) ds) <0. (3.19)
0
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Then FBVP (1.1) has at least one solution in C'[0,1] x C*[0,1] provided that

Cle CIBZ
<1

where By = |lai[l1 + llerll, Bx = llaz [l + llexll, G = 161l + lldall, Co = [1b2 11 + llda 1
The proof of Theorem 3.2 will also be based on the next two lemmas.

Lemma 3.3 Assume that (A3), (B,), (H), (D>), (D4) and (Ds) hold. Then
Q= {(x,y) €domL \ KerL: L(x,y) = AN(x,y), for some A € [0,1]}
and
Q= {(x,y) € KerL:N(x,y) € ImL}

are bounded.

Proof For (x,y) € 1, we have (x,y) ¢ KerL, . #0 and N(x,y) € ImL.

So
( (£ = ) (5.6, ¥(5), (), () ) 0,
( / (L= ) (52061, (51, 9(5),y (9) d ) 0,
( £~ 956,29, 5(5),/(5) ds) o,
m( / (£ = 956,29, 3(5),(5)) d ) 0.

By (Da), there exist constants ¢; € [0,1],i = 3,4 such that
|x(t3)| < M3, ¥ (t3)| < M3, |y(ta)| < Ma, |y (ta)| < M.

Since

50 =30+ [ ¥0ds 0=y + [ YO

@) < |« +Ms @) <|Y] +Ms £€0,1]. (3.20)
Thus,

||} + max{Ms, My} (3.21)

[ Gyl = max{«],
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[SEY) ByAz

. . 3+ 1o
By the proof of method in Lemma 3.1, we obtain [|«'||o < ) lcf§2 s Y oo <
)

where Az = || p1ll1 + la1ll1M3 + |b1[[1M4 + M3, Ay = || p2ll1 + la2[11M3 + [|ball1 My + My, by
(3.21), ||(x, 9) || < co. Therefore 2; is bounded.

For (x,5) € Qa,(x,9)(t) = (a1 + ast,bs + bat),a;,b; € R,i = 1,2,j = 3,4,t € [0,1] and
N(x,y) € ImL.

So

t
I (/ (t—s)f(s,a1 + as, bz + bys,az, by) ds) =0,
0

0,

t
Iy </ (t = $)f(s,a1 + azs, b3 + bus, az, by) ds)
0

t
I's (/ (t —s)g(s,ay + azs, bz + bys, as, by) ds) 0,
0

and

t
Iy </ (t —s)g(s, a1 + azs, bz + bys, az,b4)ds> =0.
0

Considering (Ds), |a1| < Ea, |ag| < Es, |bs| < Eg, |ba| < E7, s0 ||x|| < E4 + Es, ||y|| < Es + E7.
Therefore, €2, is bounded. g

Lemma 3.4 Assume that (Az), (B,), (H) and (Ds) hold. Then
Q3 = {(x,y) € KerL: 1J(x,y) + (1 - )QN(x,9) = 0,1 € [0,1]}

is bounded, where ] : KerL — ImQ is homeomorphous: (x,y)(t) = (a1 + at,bs + bat),
a, an, b3¢b4 € Rv

J(x,9)(£)
("11(1’11 — DT (E™)ay — T1(t"™)az ]t ~% — my(my — D[Ta (8™ )ay — Ty (8")ay]¢™ >
Cy(em)Ty(em) — Ty (™) Ty ()
na(ny — 1)[T4(t™)bs — T'3(£2)bs]t™2 — ma(my — 1)[Ta(£72)b3 — F3(f"2)b4]tm2_2>
[3(72)Cy(8m2) — T3(£72)Ty(t72) '

’

Proof For every (x,y) € Q3, MJ(x,9) + (1 = A)QN(x,y) =0.If A =1, then a; = 0,a, = 0,b3 =
0,b4 =0. That is, (x,y) = 0. If » # 1, we can have

Iy (trm) (Aal +(1-0)I (/t(t —8)f(s,a1 + as, bz + bys, as, by) ds))
0
— Ty (e™) <Aa2 +(1=M)Ty (/ (t = 8)f (s, a1 + azs, b3 + bys, az,b4)ds>) =0,
0
Iy (t'll) (Aal +(1=-MI (/t(t —8)f(s,a1 + ass, b3 + bys, as, by) ds))
0

t
_ Fl(tm) <Aa2 +(1 =1, (/ (t—38)f(s,a1 + aas, b3 + bys, ay, b4)ds>) =0,
0
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Ta(£™) (Abg +(1-0)T3 ( /o t(t —8)f(s, @ + azs, b3 + bys,az, by) ds>>
- T3(e™) (Ab4 + (1=l ( /O t(t —8)f (s, a1 + a8, b3 + bys, az,b4)ds)) =0,
and
I ()\,bg +(1=-MTI3 ( /O t(t — 8)f(s, a1 + ass, b3 + bys,az, by) a’s))

t
— Fg (t”Z) <)Lb4, + (1 - )\)Fz; </ (t - S)f(S, a) + as, b3 + b4S, dz,b4)dS>> =0.
0
From Lemma 2.3,

Ty(em)  Ty(em)

1.,2 (tnl) 1_,1 (t”l) 7'/0 and

it yields

ral+(1- k)alFl(fOt(t —8)f(s,a1 + azs, bz + bys,a3,by)ds) = 0,
a3 + (- NarDo( [yt~ )f (s, + a8, by + bus, az, ba) ds) = 0,
AD + (1= M)bsTs( [y (t - 8)g(s, a1 + azs, by + bas, az, bs) ds) = 0,
b3+ (1- A)b4l“4(fot(t —8)g(s, a1 + ass, bz + bys,as,by)ds) = 0,

if |a1| > Ea, |az| > Es, |bs| > Es, |ba| > E7, considering the above equalities and (3.12)-(3.15),
we have ||x|| < E4 + Es, ||ly|| < E¢ + E7. So, Q3 is bounded.

If (3.16)-(3.19) hold, then let Q3 = {(x,y) € KerL : —-AJ(x,y) + (1 - L)QN(x,y) = 0,1 €
[0,1]}. Similar to the above arguments, we can show that 3 is bounded, too. O

Proof of Theorem 3.2 Let Q be a bounded open subset of ¥ such that U?:lﬁj C Q. The
compactness of Kp(I — Q)N : Q — Y and QN(2) will follow from the Arzela-Ascoli theo-
rem and the Kolmogorov-Riesz criterion, respectively. Thus N is L-compact on Q2. Then
from the above arguments, we have
(i) L(x,y) #AN(x,y), for every ((x,¥), 1) € [(domL \ KerL) N d2] x (0,1);

(i) N(x,y) ¢ ImL, for every (x,y) € KerL N d<2.

At last we will prove that (iii) of Lemma 2.2 is satisfied.

Let H((x,9),A) = £AJ(x,y) + (1 — )QN(x,y) = 0, noting that Q3 C 2, we know H((x,y),
A) # 0 for every ((x,), 1) € 92 N Ker L. Thus, by the homotopic property of degree

deg(QN|kerr, 2 NKerL,0) = deg(H(x,y, 0),2NKerlL, O)

= deg(H(x,y,l), QNKerl, O) =deg(£/,2NKerL,0) #O0.

Then by Lemma 2.2, L(x,y) = N(x,y) has at least one solution in dom L N Q. The proof
of Theorem 3.2 is completed. d

The next lemma provides norm estimates needed for the following result.

Page 17 of 22
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Lemma3.5 For (u,v) € Z,Kp(u,v) = (Kp,u, Kp,v), where Kp, u = —;;TZZ Fz(fot(t—S)l/l(S) ds) +
fot(t —8)u(s) ds, Kp,v = fot(t — s)v(s) ds, then

@) 1Kpyull < 1Kp, Hull1s

) IKpy vl < vl

b
where ||Kp, || = (% +1).

Proof Observe that due to |[I'y(x)| < Ba||x||,

t t
|Kp,u| = —btll"z /(t—s)u(s)ds +/ (t —s)u(s)ds
ﬂ2+b2 0 0
|bt + a
<

=2 <f0 (t—S)u(s)ds> (fo (t—s)u(s)ds)

|bt + a| |1bt + al|
< (2B + 1) lully < B+ 1 ) 1l
a’+b

a’+b?

B2

+

and |(Kp, u)'(t)] < (%ﬂg +1)||ully; (1) follows from the above two inequalities. Similarly,

we can obtain (2). O
Theorem 3.3 Assume (A;) with a #0, (H), (D3) (of Theorem 3.1) and the following condi-
tions hold:

(Ds). There exist constants My, M5, Mg > 0 such that, for (x,y) € domL, if |x'(t)| > M, for
t €(0,1], then

(M1 -y Ty) ( /0 t(t = 8)f (5, %(5), ¥(5),%(5), 5/ (5)) dS) #0,
if Iy )| > Ms,

ry ( /0 (- 25,6, 99, (), (5) ds) 40,
or if |y(8)] > M,

t
Ty < / (t - 9)g(s,%(5), 5(5), %/ (5), ' (5)) dS) #0.
0
(Ds). There exist nonnegative functions a;, b;, e;, d;, p; € L'[0,1],i = 1,2 such that

If (& x1,%2, 51, 32)| < p1(8) + a1 ()21 | + by (B) 2| + €1 () 3| + i (D)1,
|g(t,x1,%2, 31, 92) | < p2(8) + @2 (8) 1| + ba(£) |32

+ ez(t)|)’1| + dz(t)|3’2|: te [0»1]:%%’ [S R:i: 1: 21
where

(It =blall + (It = b/all + 1) 11Kp, 1) (lallr + [161]11) + (Il = b/al

6(llazlly + 1D21l1)lerlls + ldallr)
+(le=blal + DIKn ) == gl v i) <
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6(llazlly + 1b2l)(lexlly + lldr 1) 1
1-(llt=blal + (It = blall + DIIKp, ) (larlly + 1b1l1)

6(lleally + lldall1) +

Then FBVP (1.1) has at least one solution in C'[0,1] x C'[0,1].

Proof As in the proof of Lemma 3.1, by (Ds), there exist constants M; > 0,¢; € [0,1],i =
5,6,7 such that [x'(t5)| < My, 1y (t6)] < Ms, |y(t7)] < M. Since x'(¢) = x/(t5) + fé x"(s)ds,
¥ (&) =y (te) + ftg y"(s) ds, we get

|¥(0)] <INl + My, [Y(0)] <INyl + M5, £€[0,1], (3.22)

where N(x,y) = (Nix,Noy), Nix = f(s,x(s),y(s),%'(s),5'(s)), and Noy = g(s,x(s), y(s), %' (s),
¥ (s)). Write (x,9) = (x1,y1) + (x2,%2), where (x1,y1) = (I — P)(x,y) € domL N KerP and
(%2,92) = P(x,y) € Im P.

Then since (x1,91) = (I — P)(x,y) € dom L N Ker P, (x1,y1) = KpL(x1,y1) = KpL(I — P)(x,) =
AKpN (%, y).

As in the proof of Lemma 3.5,

eIl < I1Kpy (NI N1 1, 711l < IN2yllz. (3.23)
Now, (x2,¥2) = (%,5) — (x1,91), so &y =" —x7, 95 =y — 9, and [x5(£)| < [&/(¢)] + |x, ()| < My +

(IKp I + DINwxll1, 195 ()] < 1y (O] + [y1(£)] < Ms +2[|Nayll1 by (3.23). Recall that (xy, y2)(£) =
P(x,y)(t) = (c(x)(at — b),y' (0)t + ¥(0)), where

1 !
c(x) = T (ax (0) - bx(O))

is introduced for the sake of brevity. Hence

|%5(8)| = |c)a| < My + (1Kp, || + 1) || Nwx |1

That is,
e < %(Ml + (1Ko, +1) INil).
Thus,
Iwall = [c@)|lat = bl < 1t - blall (M + (1Kp, ]| + 1) INuxl). (3.24)

Similarly, it is easy to obtain |y (0)| < Ms +2||Nay|l1. In addition, |y2(t7)| < |y(&7)| + |y ()] <
Ms + |Nayll1, 80, [y2(87)] = 1y (0)t7 + y(0)| < Mg + [|Nayllr and [y(0)] < Ms + M + 3[|Nay|l1,
thus

Iy21l < [y (0)¢| +[(0)| < 2M5 + M + 5 Naylls. (3.25)

By (3.23) and (3.24), |lxll < llx1l + %2/l < C5 + CalIN1x[11, where

Cs = ||t — bla| M, Ca = |t = blall + (It - blall + 1) | Kp,||.
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Iyl < Iyl + lly2ll < 2Ms + Mg + 6||Nay|l1 by (3.23) and (3.25). Finally, it follows from (D)
that

2M5+Mg+6
Cs+ Calllprll + lerlls + dally) EreSleit)

e C, LUaali+lbaly)
1= Cy(llarlly + 1b11l1) = Cagz ollex i+ 142D

6(llazll1+1b211)(C3+Callor )
2Ms + M + 6l o2l + =22 Gy S

6(lazlli+l1L2l)(lerlli +ldlln)
1=6(llezlls + lld21h) = =42, oo

Iyl <

Therefore ©2; is bounded. The rest of the proof repeats that of Theorem 3.1. d

We now provide an example that satisfies the assumptions of Theorem 3.3. Consider the

kind of equation system

() =t-1+3 s1nx(t) +35 smy(t) +3 x ") + 35 smy (t),
y' (@) =g(t,x(t),y( ), (©),y (t)),
Iy (x) =#'(0) + 2%(3) = 0, (%) = x(0) 2]0 0,
I3(y) = 2/0% y(s)ds—y(3) + 37 (3) =0,
Fa() =y (1) -y(3) =0,

where

g(&:x(), 50, %' ),y (1))

f+ 35 s1nx(t) + 32y(O) + 35 Sinx/(£) + 35 s1ny '(t), tel0, %],

t+ 5 sinx(t) + smy(t) + 35 smx( )+ ﬁy '(t), te [%,1].

It is easy to see that I'i(¢) = 2,T1(1) = 2,I5(¢) = =1, T2(1) = =1, T'5(¢) = ['3(1) = T'4(t) =
I'1(1) =0, so that &y = —2,a = b = -1 and KerL = {(c;(t — 1), b3t + by)|c1, b3, by € R}. It is
not difficult to verify that /; = —% satisfies Lemma 1.1.

Also,

1
D) < [4(0)] +2 /0 1x()| s < 3],

that is, ,32 = 37/)1 = OJpZ =1, “al”l = %’ “bl”l = 3%) “61”1 = ?%27 “dl”l = %ﬁ ||6Z2”1 = ”b2”1 =
leall = dally = 35, 1Kpy | = 4, | Kp, | = 1, ||t - blal| =1,

(It =blall + (it = blall + 1) 1Kp, ) (larll + 161111) + (I = blall

6(llaally + 12 ll)(lenlls + lldalh) _ 144
1-6(lle2ll1 + ld2llr) 160

+ (£ = blall + 1)1 Kp,II)

’

and

6(lleslls + ||d2||1) . 6(llazlly + 16211 (llewlls + i) _ 3 1
1-(llt=blall + (It = b/all + DIIKp, )(arlly + 1b11l1) 7
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Let M; = 36. Since N(x,y) = (N1x, Noy), if #/'(¢) > 36, then Nyx(t) > -1 - % + 3—12M1 >0, and
if x/(t) < —36, then Nyx(¢) < % - éMl < 0. Taking Ms = 36, M, = 36, if y/'(t) > 36, then
Noy(t) > 0, and if y'(£) < =36, then Noy(£) < 0 for ¢ € [%, 1]. And if y(¢) > 36, then Nyy(¢) > 0,
and y(£) < =36, then N,y < 0 for ¢ € [0, % .

Observe that

t 1
ry -alrz)( / (£ - INi(s) ds) _ / CSNI(s) ds,
0 0

t 1
'3 </ (t — $)Noy(s) ds) = /; Noy(s)ds,
0 2

Iy (/o (t — s)Ny(s) ds) = /07 s2Nyy(s) ds,

where

-1+2s-2s%, se[0,3],
K(s) =
€ )

-2 +4s-2¢%, se([3,1]

=

Obviously, «(s) < 0,52 > 0 in[0, 1], therefore,

(T - oql"z)(/ (t — s)Nyx(s) ds) Z0, I's (/ (2 = s)Noy(s) ds) #0,
0 0

Iy </ (t — $)Noy(s) ds) Z0
0

provided (x,y) € dom L\ Ker L satisfies |x'(t)| > My = 36, |y (£)| > M5 = 36, |y(£)| > Mg = 36.
Hence (Ds) holds.

Finally, for(x, y) € Ker L, x., (£) = c1(¢ — 1), y5(¢) = b3t + ba.

Consequently,

t 1
a(l'; - alfz)(/o (t — s)N1x(s) ds> = /0 Kk (s)erN1xe, (s) ds > 0,

since k(s) < 0 in [0,1] and
1 1 1,
ciN1xe, (2) < 3_2|C1| + 3_2|C1| + 3_2|Cl| BETIIR 0

provided |¢;| > E; = 3. When |b3| > E; = 35, |ba| > E3 = 35,

t 1
b33 (/ (£ —s)Noy(s) ds> = ﬁ s?b3Nay,(s)ds > 0,
0 1

2

t l
baTs ( / (¢ — $)Noy(s) ds) - / " balNoys(s)ds > 0,
0 0

since s* > 0 in [3,1], and

3 1 1
bsNayp(t) > —|bs| — — |bs| + —b2 >0, te|=,1|,
3Noyp(£) > —|bs| 32|3|+32 3> 6[2 :|
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3 1 1
baNoyy(t) > —|ba| - ﬁllul + ﬁbﬁ >0, te [O, 5],

then condition (D3) is satisfied. It follows from Theorem 3.3 that there must be at least
one solution in C'[0,1] x C'[0,1].
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