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Evolution of inflammasome functions in
vertebrates: Inflammasome and caspase-1
trigger fish macrophage cell death but are
dispensable for the processing of IL-1b

Diego Angosto1, Gloria López-Castejón1,*,
Azucena López-Muñoz1, Marı́a P Sepulcre1, Marta Arizcun2,
José Meseguer1 and Victoriano Mulero1

Abstract

Members of the nucleotide binding and oligomerization domain-like receptors (NLRs) and the PYD and CARD domain

containing adaptor protein (PYCARD) assemble into multi-protein platforms, termed inflammasomes, to mediate in the

activation of caspase-1 and the subsequent secretion of IL-1b and IL-18, and the induction of pyroptotic cell death. While

the recognition site for caspase-1 is well conserved in mammals, most of the non-mammalian IL-1b genes cloned so far

lack this conserved site. We report here that stimulation or infection of seabream macrophages (MØ) led to the caspase-

1-independent processing and release of IL-1b. In addition, several classical activators of the NLRP3 inflammasome failed

to activate caspase-1 and to induce the processing and release of IL-1b. Furthermore, the processing of IL-1b in

seabream MØ is not prevented by caspase-1 or pan-caspase inhibitors, and recombinant seabream caspase-1 failed to

process IL-1b. However, the pharmacological inhibition of caspase-1 impaired Salmonella enterica sv. Typhimurium-

induced cell death. These results suggest a role for the inflammasome and caspase-1 in the regulation of pyroptotic

cell death in fish and support the idea that its use as a molecular platform for the processing of pro-inflammatory

cytokines arose after the divergence of fish and tetrapods.
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Introduction

The inflammasomes are cytosolic multiprotein plat-
forms required for the activation of inflammatory cas-
pases, namely caspase-11 and caspase-11 (also known
as caspase 4).2 Genetic studies in mice have revealed at
least four inflammasomes of distinct composition,
namely those containing the nucleotide-binding and
oligomerization domain-like receptors (NLRs)
NLRP1B, NLRP3 and NLRC4, and a recently charac-
terized inflammasome complex assembled around the
HIN-200 protein absent in melanoma 2 (AIM2).1 An
adaptor protein, PYD and CARD domain containing
(PYCARD, also known as ASC), which recruits NLRs
carrying the pyrin homologous domain (PYD) and
procaspase-1 through PYD and CARD, respectively,
is responsible for the formation of some inflamma-
somes and also for the activation of procaspase-1.3

However, two recent, elegant studies have demon-
strated a further complex step—at least in the
NLRC4 inflammasome—where another family of
intracellular receptors called NAIPs was directly
involved in the binding and recognition of specific viru-
lence-associated molecules.4,5
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Once activated, caspase-1 modulates the inflam-
matory and host defense responses by processing
the pro-inflammatory cytokines IL-1b and IL-18
into their biologically active forms: a prerequisite
for their secretion.6–9 In addition to secreting IL-1b
and IL-18, caspase-1 and –caspase-11 contribute to
the host defense through an inflammatory cell death
program known as pyroptosis, which occurs in
myeloid cells infected with bacterial pathogens such
as Salmonella enterica sv. Typhimurium (S. typhi-
murium), Francisella tularensis and Bacillus
anthracis.1,10–12

Although mammalian IL-1b is relatively well char-
acterized, little information is available on IL-1b from
lower vertebrates. Identification of the first non-
mammalian sequences has resulted in an even more
puzzling scenario, as the fish, amphibian and bird
IL-1b genes cloned so far lack a conserved caspase-1
recognition site.13 We have determined the molecular
identity and tissue localization of IL-1b in the teleost
fish gilthead seabream (Sparus aurata L.).14 Like its
mammalian counterpart, we found that endotoxin
challenge led to a significant increase in IL-1b expres-
sion in seabream leukocytes and that it accumulates
intracellularly.14 In contrast, the classical activator
of the NLRP3 inflammasome, ATP,15 fails to provoke
IL-1b release from endotoxin-stimulated sea-bream
leukocytes,14 despite phosphatidylserine externaliza-
tion and cell permeabilization in seabream leukocytes
treated with ATP.16 In addition, neither seabream
nor zebrafish P2X7 receptors induced the secretion
of mammalian or fish IL-1b when expressed in
HEK293 cells, while a chimeric receptor harboring
the ATP-binding domain of seabream P2X7 and
the intracellular region of its rat counterpart did.16

These findings indicate that P2X7 receptor-mediated
activation of caspase-1 and the release of IL-1b
result from different downstream signaling pathways,
and suggest that, although the mechanisms involved
in IL-1b secretion are conserved throughout evolu-
tion, distinct inflammatory signals have been selected
for the secretion of this cytokine in different
vertebrates.

To throw light on the evolutionary history of the
inflammasome and its role in the regulation of the
inflammatory response in primitive vertebrates, an
immunologically tractable teleost fish species was stu-
died, namely the gilthead seabream (S. aurata,
Perciformes). We found that stimulation of seabream
macrophages (MØ) with flagellin or bacterial DNA, or
infection with either invasive or non-invasive bacteria,
led to the processing and release of proIL-1b into an
18 kDa mature form. Interestingly, although pharma-
cological inhibition of caspase-1 had no effect on the
processing of IL-1b, they impaired S. typhimurium-
induced cell death in seabream.

Materials and methods

Animals

Healthy specimens (150g mean mass) of the hermaphro-
ditic protandrous marine fish gilthead seabream
(S. aurata) were maintained at the Oceanographic
Centre ofMurcia (Spain) in 14m3 running seawater aqua-
ria (dissolved oxygen 6ppm, flow rate 20%aquarium vol/
h) with natural temperature and photoperiod, and fed
twice daily with a commercial pellet diet (Trouvit,
Burgos, Spain). Fish were fasted for 24h before sampling.
Theexperiments performedcomplywith theGuidelinesof
the European Union Council (86/609/EU) and the
Bioethical Committee of the University of Murcia
(approvalno.#333/2008) for theuseof laboratoryanimals.

Cell culture and treatments

Seabream head kidney (bone marrow equivalent in fish)
leukocytes obtained as described elsewhere17 were main-
tained in sRPMI [RPMI-1640 culture medium (Gibco,
Madrid, Spain) adjusted to gilthead seabream serum
osmolarity (353.33 mOs) with 0.35% NaCl] supple-
mented with 5% fetal calf serum (FCS) (Gibco),
100 I.U./ml penicillin and 100 mg/ml streptomycin
(Biochrom, Cambridge, UK). Some experiments were
conducted using purified cell fractions of MØ and acido-
philic granulocytes (AG), the two professional phagocytic
cell types of this species.17,18 Briefly, AG were isolated by
magnetic-activated cell sorting (MACS) using a monoclo-
nal Ab (mAb) specific to gilthead seabream AG (G7).17

MØ monolayers were obtained after overnight culture of
G7- fractions in FCS-free medium and their identity was
confirmed by the expression of the macrophage-colony
stimulating factor receptor (M-CSFR).18

Seabream MØ, AG and total leukocytes from sea-
bream head kidney were stimulated for 16h at 23�C
with 50mg/ml phenol-extracted genomic DNA from
Vibrio anguillarum ATCC19264 cells (VaDNA) or
100ng/ml flagellin (Invivogen, San Diego, CA, USA) in
sRPMI supplemented with 0.1% FCS and penicillin/
streptomycin.19 These pathogen-associatedmolecular pat-
terns (PAMPs) were found to be most powerful in the
activation of gilthead seabreamprofessional phagocytes.19

In some experiments, cells were then washed twice with
sRPMI, and incubated for 1h with 5mM ATP (Sigma-
Aldrich, Madrid, Spain), 1mM nigericin (Sigma-Aldrich),
hypotonic buffer (36.75mMNaCl, 0.5mMKCl, 0.5CaCl2,
0.25mM MgCl2, 3.25mM glucose, 2.5mM 25mM4-(2-
hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES),
pH 7.3, 90mOs), 500mg/ml monosodium urate (MSU)
crystals (Invivogen) or 40mg/ml aluminum crystals (alu-
minum hydroxide and magnesium hydroxide; Thermo
Fisher Scientific, Madrid, Spain). For infection experi-
ments, S. typhimurium SL1344 and the isogenic derivative
strain SB169 (sipB::aphT)20 (provided byDrsF.Garcı́a del
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Portillo and Jorge Galán) and Escherichia coli strain 3616
and its isogenic derivative 3617 expressing recombinant
listeriolysin O (LLO) from Listeria monocytogenes (pro-
vided by Dr D. Higgins)21 were used. Overnight cultures
in Luria-Bertani medium (LB) were diluted 1/5, grown at
37�C with shaking for 3h, diluted in sRPMI and added to
leukocytes to a multiplicity of infection (MOI) of 10. After
2h, 10mg/ml gentamycin was added to limit the growth of
extracellular bacteria and the infected leukocytes were
incubated for different lengths of time. In some experi-
ments, leukocytes were pre-treated for 1h with 100mM of
the caspase-1 inhibitors Ac-YVAD-CMK or Ac-YVAD-
CHO, or 50mM of the pan-caspase inhibitor Z-VAD-
FMK (all from Calbiochem-Merck, Barcelona, Spain).

Cell supernatants from control and stimulated/
infected leukocytes were collected after overnight incu-
bation, unless otherwise indicated, clarified with a
0.45 mm filter and concentrated by precipitation with
20% trichloroacetic acid (Sigma-Aldrich).

Cell viability

Aliquots of cell suspensions were diluted in 200ml PBS
containing 40mg/ml propidium iodide. The number of
red fluorescent cells (dead cells) from triplicate samples
was analyzed by using flow cytometry (BD Biosciences,
Madrid, Spain).

Caspase-1 activity assay

Caspase-1 activity was determined with the fluorometric
substrate Z-YVAD-AFC (caspase-1 substrate VI;
Calbiochem-Merck), as described previously.22 In brief,
cells were lysed in hypotonic cell lysis buffer HEPES,
5mM ethylene glycol-bis(2-aminoethylether)-N,N,N0,N0-
tetraacetic acid (EGTA), 5mM DTT, 1 : 20 protease
inhibitor cocktail P8340 (Sigma-Aldrich), pH 7.5] on ice
for 5�10min. For each reaction, 2� 107 seabream leuko-
cytes or 10mg protein from MØ extracts were incubated
for 90min at 23�C with 50mM YVAD-AFC and 50ml
of reaction buffer [0.2% 3-[(3-cholamidopropyl)di-
methylammonio]-1-propanesulfonate (CHAPS), 0.2M
HEPES, 20% sucrose, 29mM DTT, pH 7.5]. In some
experiments, the caspase-1 inhibitors Ac-YVAD-CMK
or Ac-YVAD-CHOwere also added at a final concentra-
tion of 100mM. After the incubation, the fluorescence of
the AFC released from the Z-YVAD-AFC substrate was
measured with a FLUOstart spectofluorometer (BGM
Labtech, Cary, NC, USA) at an excitation wavelength
of 405nm and an emission wavelength of 492nm.

Western blot

Cells were lysed at 4�C in lysis buffer (10mM

Tris-HCl pH 7.4, 150mM NaCl, 1% Triton X-100,
0.5% NP-40, and a 1 : 20 dilution of the protease
inhibitor cocktail P8340). The protein concentrations

of cell lysates were estimated by the BCA protein
assay reagent (Pierce, Rockford, IL, USA) using
bovine serum albumin (BSA) as a standard. Cell
extracts and concentrated supernatants were analyzed
on 15% SDS-PAGE and transferred for 50min at
200mA to nitrocellulose membranes (BioRad,
Madrid, Spain). The blots were developed using a
1:5000 dilution of a rabbit monospecific Ab to gilt-
head seabream IL-1b23 or Abs to human/mouse IL-1b
(3ZD; Biological Resources Branch, National Cancer
Institute, Frederick, MD, USA) and enhanced chemi-
luminescence (ECL) reagents (GE Healthcare, Madrid,
Spain), according to the manufacturer’s protocol.
Membranes were then re-probed with a 1:5000 dilu-
tion of an affinity purified rabbit polyclonal to histone
H3 (#ab1791, Abcam, Cambridge, UK).

Bactericidal assay

Leukocytes were lysed with 0.2% saponin (Sigma)
and the number of surviving bacteria was determined
by using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-
2H-tetrazolium-5-carboxanilide inner salt (XTT;
Sigma) colorimetric assay.19 Bacteria were also enum-
erated by plating cell extracts on LB-agar plates con-
taining the appropriate antibiotics.

Cell transfection

Seabream caspase-1 and pro-IL-1b were cloned into
pcDNA3.1/V5-His-TOPO and pcDNA4His/Max
expression vectors (Invitrogen, Madrid, Spain) for the
expression of C-terminal V5/His6-tagged or N-terminal
His/Xpress proteins respectively.16,22 Other expression
constructs were rat P2X7ee,24 human proIL-1b,25 and
human caspase-1.26 Plasmid DNA was prepared using
the Mini-Prep procedure (Qiagen, Madrid, Spain).
DNA pellets were re-suspended in water and further
diluted, when required, in PBS. Transfections were per-
formed with a cationic lipid-based transfection reagent
(LyoVec, Invivogen), according to the manufacturer’s
instructions. Briefly, HEK293 cells were plated in six-
well plates (400,000 cells/well) together with 100ml of
transfection reagent containing 0.15 mg of the rat P2X7-
ee, 1.5 mg of either the human or seabream proIL-1b
expression constructs and 1.5mg of the human or sea-
bream caspase-1 expression vector. Forty-eight hours
after transfection, cells were washed twice with serum-
free medium and incubated for 30min with 1mM ATP
to activate the P2X7 receptor.

16

Statistical analysis

Data were analyzed by analysis of variance (ANOVA)
and a Tukey multiple range test to determine differ-
ences between groups. The differences between two
samples were analyzed by Student’s t-test.
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Results

Infection of seabream head-kidney leukocytes
with invasive and non-virulent bacteria
leads to the processing and release
of mature IL-1�

To evaluate the production, processing and release
of fish IL-1b, seabream head-kidney leukocytes
pre-stimulated with bacterial DNA or flagellin—two
powerful PAMPs for this species able to drastically
induce the expression of the IL-1b gene and to promote
the intracellular accumulation of IL-1b19,27,28—were
infected with wild type S. typhimurium SL1344 and
the non-invasive isogenic derivative strain SB169,
which harbors a mutation in the sipB translocation
machinery component (sipB::aphT) of the Salmonella
pathogenicity island 1 (SPI1)-encoded type III secretion
system (T3SS).20 The SPI1 T3SS can be readily

recognized by caspase-1 in mammalian cells by detect-
ing inadvertently translocated flagellin or PrgJ rod
protein to the cytosol mediated by NLRC4.4,5

Unexpectedly, although stimulation of leukocytes
with PAMPs for 16 h led to the processing of proIL-
1b to a �18 kDa IL-1b mature form (mIL-1b) that
mainly remained cell-associated, infection of PAMP-
stimulated leukocytes with both wild type and non-
invasive S. typhimurium strains promoted the released
of mature IL-1b (Figure 1A, B). Similarly, wild type
E. coli and an isogenic derivative strain expressing
recombinant LLO from L. monocytogenes21 were
similarly effective in the processing and release of
IL-1b (Figure 1C). We next sought to determine
whether PAMPs alone also induce the secretion of
IL-1b and found that this was the case (Figure 1D),
although at lower levels than bacteria (Figure 1A–C).
As these results suggest the caspase-1-independent
processing and release of IL-1b in this species, we

(A)

(C) (D)

(B)

Cells

37 kDa

37 kDa

1

proIL-1b

mIL-1b

proIL-1b

mIL-1b

proIL-1b

mIL-1b

proIL-1b

mIL-1b

proIL-1b

mIL-1b

proIL-1b

mIL-1b

proIL-1b

mIL-1b

proIL-1b

mIL-1b

10 1 10

26 kDa
19 kDa
15 kDa

26 kDa

19 kDa

15 kDa

37 kDa

26 kDa

19 kDa
15 kDa

26 kDa

19 kDa

15 kDa

26 kDa

26 kDa

19 kDa

19 kDa

15 kDa

15 kDa

37 kDa

26 kDa

26 kDa

19 kDa

19 kDa

15 kDa

15 kDa

MOI

VaDNA

VaDNA Va
D

N
A

Stimuli: Fl
ag

el
lin

Supernatants

Supernatants

Cells

Salmonella
Salmonella

Flagellin

E.coli

wt

wt

sipB
wt sipB

sipB

–

–

–

–
– –

–– +

+ + +

+LLO

+ + + + ++ +

Figure 1. Infection of seabream leukocytes with invasive and non-virulent bacteria leads to the processing and release of mature

IL-1b. Seabream head-kidney leukocytes were stimulated for 16 h with 50mg/ml VaDNA (A, B, D) or 1mg/ml flagellin (B, D) and then

infected with a MOI of 1 (A) or 10 (B–D) of wild-type and sipB mutant strain of S. typhimurium (A, B) or wild-type E. coli and its

isogenic derivative expressing recombinant LLO (C). Two hours after the infection, gentamycin (10 mg/ml) was added to limit the

growth of extracellular bacteria and the infected leukocytes were incubated for 24 h. Cell lysates (5� 106 cells) and concentrated

supernatants obtained from 107 cells were probed with a monospecific polyclonal Ab to seabream IL-1b. Migration positions for the

mature (m) and pro-cytokine forms are indicated. Results are representative of five independent experiments.
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stimulated seabream leukocytes with ATP (Figure 2A)
and nigericin (Figure 2B), two classic activators of
mammalian NLRP3 inflammasome,15 and found that
both activators also failed to trigger IL-1b processing
and release in seabream leukocytes. Interestingly,
the pharmacologic inhibition of caspase-1 failed to
inhibit the processing and secretion of IL-1b in sea-
bream leukocytes in response to S. typhimurium
infection (Figure 2B, C), even though this inhibitor is
able to fully inhibit caspase-1 activity in seabream
leukocytes.22 These results were further confirmed
with the pan-caspase inhibitor Z-VAD-FMK, which
also failed to affect IL-1b processing and release
(Figure 2C).

Seabream caspase-1 fails to process IL-1�

We next studied whether seabream caspase-1 ectopi-
cally expressed in HEK293 cells was able to process
seabream IL-1b following activation. Seabream cas-
pase-1 was unable to process seabream proIL-1b, and
activation of the rat P2X7 receptor led to the secretion
of proIL-1b. In sharp contrast, human caspase-1 pro-
cessed human proIL-1b in both non-stimulated and
ATP-stimulated cells, while activation of the P2X7

receptor with ATP led to the release of precursor and
mature IL-1b forms (Figure 3). In accordance with our
previous results,22 activation of the rat P2X7 receptor
with ATP resulted in the activation of caspase-1
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Figure 2. The processing and release of IL-1b is caspase-1 independent in seabream leukocytes. Seabream head-kidney leukocytes

pre-treated for 1 h with 100mM of the caspase-1 inhibitors Ac-YVAD-CHO or 50mM of the pan-caspase inhibitor Z-VAD-FMK (A, C)

were stimulated for 16 h with 1mg/ml flagellin (A) or 50mg/ml VaDNA (B, C). Leukocytes were then infected with a MOI of 10 of wild-

type S. typhimurium and its isogenic sipB mutant derivative (A, C), or stimulated with 5 mM ATP or 1mg/ml nigericin for 1 h. Infected

cells were treated with gentamycin as described in Figure 1 and incubated for 24 h. Cell lysates (5� 106 cells) and concentrated

supernatants obtained from 107 cells were probed with a monospecific polyclonal Ab to seabream IL-1b. Migration positions for the

mature (m) and pro-cytokine forms are indicated. Two representative experiments are shown in (A), while the results presented in (B)

and (C) are representative of multiple independent experiments.
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at similar levels to that observed in its human counter-
part (Figure 3).

Classical NLRP3 inflammasome activators fail to
activate caspase-1 and IL-1� processing in
seabream MØ

As the relevance of the inflammasome and caspase-1 in
the processing and release of IL-1b by mammalian neu-
trophils has been little studied and neutrophils may
show inflammasome/caspase-1-independent mechan-
isms to process IL-1b,29 we next examined the activa-
tion of caspase-1 and the processing/release of IL-1b in
purified seabream MØ. The results show that ATP, K+

efflux (nigericin) and several crystals, including MSU
and aluminum, all failed to activate caspase-1 in sea-
bream MØ (Figure 4A). Similarly, none of these stimuli
was able to promote the processing and release of
IL-1b, although some of them decreased the release of
mature IL-1b (Figure 4B). Interestingly, a hypotonic
solution, which activated caspase-1 in seabream and
mouse MØ through the activation of NLRP3 inflam-
masome (unpublished data) was also unable to trigger
the processing of IL-1b (Figure 4A, B).

Invasive S. typhimurium promotes caspase-1
activation and cell death in seabream

We next analyzed the impact of wild-type and sipB
mutant strains of S. typhimurium in seabream leuko-
cytes and MØ. The results show that the wild type

strain induced the rapid activation of caspase-1 in
infected MØ, while the isogenic mutant strain failed
to do so (Figure 5A, B). Notably, although both bac-
terial strains were able to trigger the processing and
release of IL-1b at similar levels (Figure 5C), wild
type S. typhimurium induced leukocyte death at
higher levels (Figure 5D) and showed higher prolifera-
tive capacity in leukocytes (Figure 5E) than its sipB
mutant isogenic derivative. In addition, pharmacologic
inhibition of caspase-1 impaired S. typhimurium-
induced cell death (Figure 5F).

Discussion

In recent years, many studies have reported the crucial
role of the inflammasome as a molecular platform
involved in the sensing of microbial presence in the
cytosol and the subsequent activation of caspase-1.1,2

Once activated, caspase-1 modulates inflammatory and
host defense responses by processing the pro-inflamma-
tory cytokines IL-1b and IL-18 into their biologically
active forms—a prerequisite for their secretion.6–9 In
sharp contrast, we found that although PAMP stimu-
lation leads to the intracellular accumulation of IL-1b
in seabream leukocytes,14 the classical activator of
the NLRP3 inflammasome ATP15 fails to provoke
IL-1b release from PAMP-stimulated seabream leuko-
cytes,14 despite phosphatidylserine externalization and
cell permeabilization in these cells following ATP
stimulation.16 As these obvious differences in the pro-
cessing and secretion of IL-1b between fish and
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mammals hinge on the presence of a functional P2X7

receptor in fish and as ATP was seen to be less potent in
seabream P2X7 receptors than in mammalian P2X7
(EC50 �2mM vs. �100 mM),16 the present study used
other activators of mammalian NLRP3 inflamma-
somes, including nigericin, cell swelling, MSU and alu-
minum. None of these stimuli was able to trigger the
processing and secretion of IL-1b in seabream.
However, stimulation of seabream leukocytes and
purified MØ with prolactin27 and PAMPs, and
infection with non-invasive and invasive bacteria (this
study) promoted the processing of proIL-1b to a
�18 kDa mature form, which was rapidly released.
Notably, these stimuli also failed to promote the

activation of caspase-1, with the exception of invasive
S. typhimurium, which activates NLRC4 in mam-
mals,4,5,10 and cell swelling, which activates NLRP3 in
fish and mammals (unpublished data). In addition, the
pharmacologic inhibition of caspase-1 failed to inhibit
the processing of IL-1b by seabream leukocytes and
recombinant seabream caspase-1 was unable to process
seabream IL-1b when expressed and activated in
HEK293 cells, further indicating that IL-1b is pro-
cessed through a caspase-1-independent mechanism
by professional phagocytes in this species. Taken
together, these results suggest, therefore, that the pro-
cessing and release of IL-1b in early vertebrates is
coupled to its synthesis, while a more sophisticated
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The cell extracts (40mg) and concentrated supernatants (from 400 mg cell extract) were also probed with a monospecific polyclonal

Ab to seabream IL-1b. Migration positions for the mature (m) and pro-cytokine forms are indicated and the supernatant from MØ

incubated for 16 h with VaDNA (before washing) is shown as a positive control.
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cell extracts from MØ (10 mg) was measured with the caspase-1 substrate Z-YVAD-AFC. The basal fluorescence of non-infected MØ

was used to normalize all samples. The data represent the mean� S.E. of two independent experiments. (C) The cell extracts (40mg)

and concentrated supernatants (obtained from 400mg cell extracts) were also probed with a monospecific polyclonal Ab to seabream

IL-1b. Migration positions for the mature (m) and pro-cytokine forms are indicated. The supernatant from MØ incubated for 16 h with
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‘two step’ mechanism, which involves the inflamma-
some-dependent activation of caspase-1, evolved after
the divergence of fish and tetrapods about 450 million
years ago.

Despite the crucial importance of the inflammasome
in sensing intracellular pathogens, little information
exists concerning this gene family in non-mammalian
vertebrates. A recent phylogenetic study has discovered
three distinct NLR subfamilies in teleost fish by mining
genome databases of various species: the first subfamily
(NLR-A) resembles mammalian nucleotide-binding oli-
gomerization domain (NOD) proteins, the second
(NLR-B) resembles mammalian nacht, leucine rich
repeat and pyrin domain (NALP) proteins, while the
third (NLR-C) appears to be unique to teleost fish.30 In
zebrafish, while NLR-A and NLR-B subfamilies con-
tain five and six genes, respectively, the third subfamily
is strikingly large, containing several hundred NLR-C
genes, many of which are predicted to encode a C-term-
inal B30.2 domain.30 Although genetic depletion of zeb-
rafish NOD1 and NOD2 orthologs belonging to
subfamily NLR-A have been found to reduce the abil-
ity of embryos to control systemic infection,31 the func-
tional relevance of this extended array of NLR genes of
zebrafish needs to be investigated.

The inability of caspase-1 to process IL-1b in sea-
bream questions the relevance of caspase-1 and the
inflammasome in the regulation of the immune
response of early vertebrates. However, in addition to
secreting IL-1b and IL-18, it has been found more
recently that caspase-1 and caspase-11 contribute to
host defense through the clearance of infected
immune cells by inducing pyroptotic cell death.1,10–12

Indeed, an interesting study has very recently found
that a S. typhimurium strain persistently expressing fla-
gellin was cleared by the cytosolic flagellin-detection
pathway through the activation of caspase-1 by the
NLRC4 inflammasome; however, this clearance was
independent of IL-1b and IL-18, but closely dependent
on caspase-1-induced pyroptotic cell death of the
infected MØ.10 Strikingly, bacteria released from pyr-
optotic MØ exposed them to uptake and rendered them
susceptible to killing by reactive oxygen species in
neutrophils.10 Similarly, the activation of caspase-1
cleared unmanipulated Legionella pneumophila and
Burkholderia thailandensis through cytokine-indepen-
dent mechanisms.10 These results were later confirmed
in L. monocytogenes and Francisella novicida, where
mutations that caused bacteriolysis in the MØ cytosol
promoted pyroptosis through activation of PYCARD-
dependent AIM2 inflammasome, suggesting that pyr-
optosis is also triggered by bacterial DNA released
during cytosolic lysis32,33 to clear these intracellular
bacteria.34 Consistent with these results, we found
that invasive S. typhimurium, but not a non-invasive
isogenic derivative strain harboring a mutation in the
sipB translocation machinery component of the SPI1-

encoded T3SS,20 was able to promote the activation of
caspase-1. This, in turn, resulted in leukocyte cell death.
As the SPI1 T3SS can be recognized readily by caspase-
1 in mammalian cells through the detection of flagellin
or PrgJ rod protein inadvertently translocated to the
cytosol mediated by NLRC4,4,5 our results suggest a
role for the inflammasome and caspase-1 in the regula-
tion of pyroptotic cell death and the clearance of intra-
cellular bacteria in fish.

In conclusion, our results support the idea that the
use of the inflammasome as a molecular platform for
the processing of pro-inflammatory cytokines arose
after the divergence of fish and tetrapods. Although
our data argue against a role for caspase-1 in the pro-
cessing of IL-1b in seabream, they do not rule out the
possibility that caspase-1 might mediate the processing
of other cytokines, such as IL-18, in fish. Furthermore,
we hypothesize that, because of the relatively less ela-
borated and restrictive adaptive immune response of
early vertebrates,35 fish would display a more sophisti-
cated intracellular sensing system than mammals,
strengthening their ability to clear intracellular patho-
gens through the induction of pyroptotic cell death.
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