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1 Introduction
Let � = {x ∈ Rn : |x| < } be the unit ball, n≥ . A paradigm in the theory of elliptic partial
differential equations and harmonic functions is the Laplace equation

�u(x) = , x ∈ �. ()

If we prescribe the values of the solution at the boundary ∂� of �, then we can solve
equation () uniquely. Of course, one can consider many other boundary conditions such
as Neumann’s boundary conditions.
In some applied problems of hydrodynamics [], it is necessary to prescribe the value of a

fractional derivative of the solution on the boundary. Fractional differential equations and
boundary value problems involving fractional derivatives appear in many applied prob-
lems ranging from the spring-pot model [] to geology [] or from nonlinear circuits []
to alternative models to differential equations [].
Hence, in this paper we study the Laplace equation concentrating on some conditions

on the boundary involving derivatives of fractional order.
Note that numerousworks of authors [–] were dedicated to the research questions of

the solvability of boundary value problems for partial differential equationswith boundary
operators of high (whole and fractional) order. In the paper of A.N. Tikhonov [] bound-
ary value problems with boundary conditions containing derivatives of higher order have
been investigated for the heat equation. Research questions as regards the solvability of
similar problems for higher-order equations with boundary operators of whole and frac-
tional order were carried out in [, ]. Later in [], these results were generalized for
partial differential equations of fractional order. In [–] questions about the solvability
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of boundary value problems with boundary operators of high order were studied for the
Laplace equation. In the studies of these authors the exact conditions for the solvability
have been established and the integral representations of solutions of the studied problems
have been found. The cycle of studies by the authors [–] is devoted to the study of the
existence and smoothness of solutions of boundary value problems for the second-order
elliptic equations with boundary operators of fractional order. In the paper mentioned
above local boundary value problems with boundary operators of fractional order in the
Riemann-Liouville or Caputo sense are studied. In this paper we study nonlocal problems
with boundary operators of fractional-order derivatives of Hadamard type. Definitions of
Hadamard operators, a statement of the main problems, and the history of the questions
on this topic are in Section .
The organization of this paper is as follows. In Section , we present the operators of in-

tegration and differentiation in the Hadamard sense and some modifications. In the third
section we provide a formulation of the basic problem of this paper and some historical
information as regards nonlocal boundary value problems. In the fourth section we study
the properties of integral and differential Hadamard-Marchaud operators in the class of
harmonic functions in the ball. In Section  we provide some auxiliary propositions. Fi-
nally, Section  is devoted to the study of the fundamental problem, where we formulate
and prove the main statement of the paper.

2 Definition of Hadamard operators of integration and differentiation and
somemodifications

In this section, we give a statement on the operators of fractional differentiation in the
sense of Hadamard, Hadamard-Marchaud, and their modifications.
For any positive α, fractional integrals and derivatives of the order α in the sense of

Hadamard are defined by the following formulas []:

Jαϕ(t) =


�(α)

∫ t



(
ln

t
s

)–(α+)
ϕ(s)
s

ds, t > , ()

Dαϕ(t) = δm+Jm+–αϕ(t), ()

where δ = t d
dt is the Dirac operator,m = [α] is the integral part of α.

If  < α < , then, in the class of sufficiently ‘good’ functions, operator () can be reduced
to the following form []:

Dαϕ(t) = δJ–αϕ(t) =
α

�( – α)

∫ 



ϕ(t) – ϕ(st)
s|ln s|α+ ds. ()

This operator is said to be the differentiation operator of order α in the sense of
Hadamard-Marchaud.
In [], the following modification of the Hadamard-Marchaud operator was consid-

ered:

Dα
μϕ(t) =

α

�( – α)

∫ 



ϕ(t) – ϕ(st)
s–μ|ln s|α+ ds +μαϕ(t), μ ≥ . ()
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In [], in the class of harmonic functions in a ball, the properties and applications of
the operators in the form of

δμ = r
∂

∂r
+μ, δmμ =

(
r

∂

∂r
+μ

)m

()

are considered. Here μ > , r = |x|, x = (x, . . . ,xn), and r ∂
∂r is a differential operator in the

form of r ∂
∂r =

∑n
i= xi

∂
∂xi

.
Let u(x) be a harmonic function in the domain �, and let  ≤ α,  < μ be arbitrary real

numbers. Let us consider a modification of the Bavrin operator ().
Introduce the operators

Jαμ[u](x) =

⎧⎨
⎩u(x), α = ,


�(α)

∫ 
 |ln s|α–sμ–u(sx)ds, α > ,

Dα
μ[u](x) =

⎧⎪⎪⎨
⎪⎪⎩
u(x), α = ,

α
�(–α)

∫ 


u(x)–u(sx)
s–μ|ln s|α+ ds +μαu(x),  < α < ,

(r ∂
∂r +μ)mDα–m

μ [u](x), m ≤ α <m + ,m = , , . . . .

If α =m, μ > , then we obtain the Bavrin operator Dm
μ [u](x) = (r ∂

∂r +μ)m.

3 Statement of the problem
Let tk : ∂� → �k ⊂ �̄ ⊂ �, k = , , . . . , �k �= ∅, be continuous mappings, and let ak(x) be
continuous functions satisfying the condition

∞∑
k=

∣∣ak(x)∣∣ < ∞, x ∈ ∂�. ()

We assume that the series () converges uniformly on ∂�.
Further, let μ > ,  ≤ β ≤ α, and α + β �= , i.e. α and β are not equal to zero simulta-

neously.
Consider the following boundary value problem:

�u(x) = , x ∈ �, ()

Dα
μ[u](x) –

∞∑
k=

ak(x)Dβ
μ[u]

(
tk(x)

)
= f (x), x ∈ ∂�, ()

where f (x) ∈ C(∂�).
A harmonic function u(x) from the class C(�) ∩ C(�), such that Dα

μu(x) ∈ C(�) and
condition () is realized in the classical sense, will be called a solution of problem ()-().
The above-mentioned problem is a simple generalization of Bitsadze-Samarskii’s non-

local problem []. For convenience of the reader, we formulate the Bitsadze-Samarskii
problem.
Let D be a finite simply-connected domain of the plane of complex variables z = x + iy

with the smooth boundary S = ∂D, and let S be a closed simple smooth curve lying in D.
We denote by τ = ν(t), t ∈ S, τ ∈ S a diffeomorphism between S and S.
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Formulation of the problem:We are to find a harmonic function u(z) = u(x, y) inD, which
is continuous in D̄ =D∪ S and satisfies the boundary condition

u(t) – u
(
ν(t)

)
= f (t), t ∈ S,

where f (t) is a given function.
Similar problems with operators of integer order were considered in [–], and for

operators of fractional order with fractional-order derivatives in the sense of Riemann-
Liouville and Caputo in [–]. It should also be noted that some questions of solvabil-
ity of nonlocal problems for fractional-order equations in the one-dimensional case were
studied in [–].

4 Properties of operators Jαμ and Dα
μ

In this section, we study some properties of the operators Jαμ and Dα
μ in the class of har-

monic functions. Further, for convenience, we shall take everywhere γ = α –m.

Lemma  Let α > ,μ > , andHk(x) be a homogeneous harmonic polynomial of the power
k ∈N = {, , . . .}. Then the following equalities are correct:

Jαμ[Hk](x) = (k +μ)–αHk(x), μ > ,k ∈N, ()

Dα
μ[Hk](x) = (k +μ)αHk(x), k ∈ N,μ > . ()

Proof Let μ > . Then, using homogeneity of the polynomial Hk(x), we obtain

Jαμ[Hk](x) =


�(α)

∫ 


| ln s|α–sμ–Hk(sx)ds =

Hk(x)
�(α)

∫ 


| ln s|α–sk+μ– ds.

The value of the last integral can easily be calculated with the help of the change of
variables z = – ln s. In fact,


�(α)

∫ 


| ln s|α–sk+μ– ds =


�(α)

∫ ∞


zα–e–(k+μ)z dz

=
(k +μ)–α

�(α)

∫ ∞


tα–e–t dt = (k +μ)–α .

The equality () is proved.
Further, note that the relation

δmμ Hk(x) ≡
(
r

∂

∂r
+μ

)m

Hk(x) = (k +μ)mHk(x), k ∈ N,μ ≥ , ()

holds for the operator δmμ .
Now, let us study actions of the operator Dγ

μ to the functionsHk(x). Using the definition
of Dγ

μ and the homogeneity of Hk(x), we have

Dγ
μ[Hk](x) =

γ

�( – γ )

∫ 



Hk(x) –Hk(sx)
s–μ|ln s|γ+ ds +μγHk(x)

=
γHk(x)
�( – γ )

∫ 



(
sμ– – sk+μ–)|ln s|–(γ+) ds +μγHk(x).
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Denoting I =
∫ 
 (s

μ – sk+μ)(ln 
s )

–(γ+) ds
s and integrating by parts, we get

I = –

γ

∫ 



[
μsμ– – (k +μ)sk+μ–](ln 

s

)–γ

ds.

After the change of variables z = – ln s, as in the proof of equality (), we easily obtain

I = –
�( – γ )

γ
μγ +

�( – γ )
γ

(k +μ)γ ,

which implies Dγ
μ[Hk](x) = (k +μ)γHk(x).

Further, taking into account fulfilling of equality (), we obtain in the general case for
m ≤ α <m + :

Dα
μ[Hk](x) = δmμ D

γ
μ[Hk](x) = (k +μ)αHk(x).

The lemma is proved. �

Lemma  Let α > , μ > , and u(x) be a harmonic function in the ball �. Then the func-
tions Dα

μ[u](x) and Jαμ[u](x) are also harmonic in �.

Proof Let u(x) be a harmonic function in the ball�. Then it is known [] that the function
u(x) is represented in the form of the series

u(x) =
∞∑
k=

Hk∑
i=

u(i)k H
(i)
k (x), ()

where {H (i)
k (x) : i = , . . . ,hk} is a complete system of homogeneous harmonic polynomials

of power k, and u(i)k are coefficients of the expansion (). Applying formally the operator
Dα

μ to the series () and taking into account equality (), we obtain

Dα
μ[u](x) =

∞∑
k=

Hk∑
i=

(k +μ)αu(i)k H
(i)
k (x). ()

Now let us check convergence of the series () and (). The following asymptotical
estimate is valid for hk :

hk =
(
 +

k
(n – )

)
Cn–
k+n– ≈ kn–

(n – )!
, k → ∞ (n≥ ).

Moreover, the series () converges absolutely and uniformly by x at |x| ≤ ρ < ,
hence, for any |x| ≤ ρ and any i,k ∈ N, the equalities |u(i)k H (i)

k (x)| ≤ cρ hold. Since
limk→∞ k

√
(k +μ)α = , we have for |x| ≤ rρ and r < 

∞∑
k=

hk∑
i=

(k +μ)α
∣∣u(i)k H (i)

k (x)
∣∣ ≤ cρ

∞∑
k=

[
(k +μ)αhk

]
rk < ∞.

Therefore, the series () converges absolutely and uniformly by x at |x| ≤ rρ , where
r < , ρ < , and its sum is a harmonic function. By virtue of the arbitrariness of r <  and
ρ < , the function Dα

μ[u](x) is defined in the whole ball �.

http://www.boundaryvalueproblems.com/content/2014/1/29
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Let us study the function Jαμ . Applying formally the operator Jαμ to the series (), taking
into account equality (), we obtain

Jαμ[u](x) =
∞∑
k=

hk∑
i=

(k +μ)–αu(i)k H
(i)
k (x).

Convergence of this series can be checked as in the case of series (), and that is why
Jαμ[u](x) is a harmonic function in the ball �. The lemma is proved. �

Now we show that the function u(x) can be represented in terms of the function
Dα

μ[u](x).

Lemma  Let α > , μ > , and u(x) be a harmonic function in the domain �. Then for
any x ∈ � the equality

u(x) =


�(α)

∫ 


|ln s|α–sμ–Dα

μ[u](sx)ds

is valid.

Proof Let μ > . Represent a harmonic function u(x) in the form of the series () and
transform it to the form of

u(x) =
∞∑
k=

hk∑
i=

(k +μ)α
u(i)k

(k +μ)α
H (i)

k (x). ()

Further, taking into account equalities ()-(), and the absolute and uniform conver-
gence of the series () by x at |x| ≤ ρ < , it can be reduced to the form of

u(x) =
∞∑
k=

hk∑
i=

(k +μ)α
uk

�(α)

∫ 


|ln s|α–sμ–H (i)

k (sx)ds

=


�(α)

∫ 


|ln s|α–sμ–Dα

μ

[ ∞∑
k=

hk∑
i=

u(i)k H
(i)
k (sx)

]
ds

=


�(α)

∫ 


|ln s|α–sμ–Dα

μ[u](sx)ds.

The lemma is proved. �

One can similarly prove the following lemma.

Lemma  Let  < β < α, μ > , and u(x) be a harmonic function in the domain �. Then
for any x ∈ � the equality

Dβ
μ[u](x) =


�(α – β)

∫ 


|ln s|α–β–sμ–Dα

μ[u](sx)ds ()

is valid.

http://www.boundaryvalueproblems.com/content/2014/1/29
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Lemma  Let α > , μ > , and u(x) be a harmonic function in the domain �. Then the
following equalities hold:

Jαμ
[
Dα

μ[u]
]
(x) =Dα

μ

[
Jαμ[u]

]
(x) = u(x).

Proof Let μ > . Applying the operator Jαμ to the function Dα
μ[u](x), we obtain

Jαμ
[
Dα

μ[u]
]
(x) =


�(α)

∫ 


|ln s|α–sμ–Dα

μ[u](sx)ds.

By virtue of Lemma, the value of the last integral is equal tou(x), i.e. Jαμ[Dα
μ[u]](x) = u(x).

To prove the second equality, apply the operator Dγ
μ to the function Jαμ[u](x). We get

Dγ
μ

[
Jαμ[u]

]
(x) =

γ

�( – γ )

∫ 



Jαμ[u](x) – Jαμ[u](sx)
s–μ ln |s|γ+ ds +μγ Jαμ[u](x)

=
γ

�( – γ )

∫ 




s–μ ln |s|γ+


�(α)

∫ 



u(τx) – u(τ sx)
τ –μ ln |τ |–α

dτ ds +μγ Jαμ[u](x)

=


�(α)

∫ 




|ln τ |–ατ –μ

γ

�( – γ )

∫ 



u(τx) – u(τ sx)
|ln s|(γ+)s–μ

dsdτ +μγ Jαμ[u](x)

=


�(α)

∫ 



Dγ
μ[u](τx) –μγu(τx)

|ln τ |–ατ –μ
dτ +μγ Jαμ[u](x)

=


�(α)

∫ 



Dγ
μ[u](τx)dτ

|ln τ |–ατ –μ
–μγ 

�(α)

∫ 



u(τx)dτ

|ln τ |–ατ –μ
+μγ Jαμ[u](x)

=


�(α)

∫ 



Dγ
μ[u](τx)

|ln τ |–ατ –μ
dτ –μγ Jαμ[u](x) +μγ Jαμ[u](x)

=


�(α)

∫ 



Dγ
μ[u](τx)

|ln τ |–ατ –μ
dτ .

Then, in the general case,

Dα
μ

[
Jαμ[u]

]
(x) = δmμ D

γ
μ

[
Jαμ[u]

]
(x) =


�(α)

∫ 



δmμ D
γ
μ[u](τx)

|ln τ |–ατ –μ
dτ

=


�(α)

∫ 


|ln τ |α–τμ–Dα

μ[u](τx)dτ = u(x).

The lemma is proved. �

5 Some auxiliary propositions
Let tk and ak(x) satisfy the conditions from Section .
Consider the following problem in the domain �:

�u(x) = , x ∈ �, ()

v(x) –
∞∑
k=

ak(x)Jα–β
μ [u]

(
tk(x)

)
= f (x), x ∈ ∂�, ()

where μ > ,  ≤ β ≤ α, and α + β �= , i.e. α and β are not equal to zero simultaneously,
f (x) ∈ C(∂�).

http://www.boundaryvalueproblems.com/content/2014/1/29
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A harmonic function v(x) from the class C(�) ∩ C(�), satisfying condition () in the
classical case, will be called a solution of problem ()-().
It should be noted that problem ()-() was investigated for the case of α = β in [].
Let us investigate uniqueness for the solution of problem ()-(). The following state-

ment holds.

Lemma  Let �k ⊂ �̄ ⊂ �, k = , , . . . , ak(x), k = , , , . . . , be continuous functions sat-
isfying the condition

∞∑
k=

∣∣ak(x)∣∣ ≤ μα–β , x ∈ ∂�, ()

and let a solution of problem ()-() exist.
Then:
() If

∞∑
k=

ak(x) �= μα–β , x ∈ ∂�, ()

then the solution of problem ()-() is unique.
() If

∞∑
k=

ak(x)≡ μα–β , x ∈ ∂�, ()

then the solution of problem ()-() is unique up to a constant summand.

Proof Let v(x) be the solution of problem ()-() at f (x) = .
DenoteM = |v(x)| =max∂� |v(x)|, x ∈ ∂�.
Then if v(x) �= const, then, by virtue of the maximum principle for harmonic func-

tions [], the inequality |v(x)| <M holds for any x ∈ �.
The boundary condition () at f (x) =  implies

M =

∣∣∣∣∣
∞∑
k=

ak(x)Jα–β
μ [v]

[
tk(x)

]∣∣∣∣∣ ≤
∞∑
k=

∣∣ak(x)∣∣∣∣Jα–β
μ [v]

(
tk(x)

)∣∣

≤
∞∑
k=

∣∣ak(x)∣∣ 
�(α – β)

∫ 


sμ–| ln s|(α–β–)∣∣v(stk(x))∣∣ds.

Further, since tk : ∂� → �k ⊂ �̄ ⊂ �, k = , , . . . , �k �= ∅, then tk(x) ∈ �, and for any
s ∈ [, ], stk(x) ∈ �. Therefore |v(stk(x))| <M.
Hence,

M <M
∞∑
k=

∣∣ak(x)∣∣ 
�(α – β)

∫ 


sμ–| ln s|α–β– ds =Mμβ–α

∞∑
k=

∣∣ak(x)∣∣.
If now condition () is realized , then μβ–α

∑∞
k= |ak(x)| ≤ , and we obtain from this

the contradictionM <M.
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Hence, if condition () holds, it is necessary that v(x) = C ≡ const. Since Jα–β
μ [C] =

μβ–α · C, substituting the function v(x) = C into the boundary condition (), for f (x) = 
we have

C –μβ–α ·C
∞∑
k=

ak(x) = , x ∈ ∂�.

The last equality is equivalent to the equality

C ·
[
 –μβ–α

∞∑
k=

ak(x)

]
= .

We obtain from this the result that either C =  or
∑∞

k= ak(x) = μα–β .
Thus, if conditions () and () are fulfilled, we obtain C = , i.e. v(x)≡ .
If the conditions () are fulfilled, then any constant is a solution of the homogeneous

problem ()-(). In fact, substituting v(x)≡ C into equation (), we obtain

C –
∞∑
k=

ak(x)μβ–αC = C

[
 –μβ–α

∞∑
k=

ak(x)

]
= C

[
 –μβ–αμα–β

]
= .

The lemma is proved. �

Now investigate existence of a solution of problem ()-(). Let  ≤ β ≤ α and let
P(x, y) = 

ωn
–|x|
|x–y|n be the Poisson kernel of the Dirichlet problem, and ωn the area of the

unit sphere.
Introduce the function

Pα–β ,μ(x, y) =

⎧⎨
⎩P(x, y), if α = β ,


�(α–β)

∫ 
 s

μ–| ln s|α–β–P(sx, y)ds, if α > β ,
()

and consider the equation

ψ(x) –
∫

∂�

[ ∞∑
k=

ak(y)Pα–β ,μ
(
tk(y),x

)]
ψ(y)dSy = . ()

The following statement holds.

Lemma  Let �k ⊂ �̄ ⊂ �, ak(x), k = , , . . . , be continuous functions satisfying the con-
dition (). Then:
() If the condition () is realized, then problem ()-() is uniquely solvable at any

f (x) ∈ C(∂�).
() If the condition () is realized, then problem ()-() is solvable if the following

condition is realized:∫
∂�

f (x)ψ(x)dsx = , ()

where the function ψ(x) is a solution of equation (),moreover the number of
independent solutions of this equation under these conditions is equal to .
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Proof Since v(x) is a harmonic function, a solution of problem ()-() can be found in
the form of the Poisson integral v(x) =

∫
∂�

P(x, y)ν(x)dsx where ν(x) is an unknown func-
tion. Substituting this function into the boundary condition (), we obtain the integral
equation with respect to the unknown function ν(x),

ν(x) –
∫

∂�

[ ∞∑
k=

ak(x)Pα–β ,μ
(
tk(x), y

)]
ν(y)dSy = f (x), x ∈ ∂�. ()

Designate

K (x, y) = –
∞∑
k=

ak(x)Pα–β ,μ
(
tk(x), y

)
.

Then equation () can be rewritten in the form of

ν(x) +
∫

∂�

K (x, y)ν(y)dSy = f (x), x ∈ ∂�. ()

To investigate the solvability of the integral equation (), we study the properties of the
kernel K (x, y). We show that K (x, y) is a continuous function on ∂� × ∂�.
In fact, since tk(x) ∈ �̄ ⊂ �, we obtain |stk(x) – y| >  for all x, y ∈ ∂�, and therefore

the function P(stk(x), y) is continuous on ∂� × ∂�. Further, the function sμ–| ln s|α–β–

has an integrable singularity, and that is why the function Pα–β ,μ(tk(x), y) is continuous on
∂� × ∂�. Then by virtue of the uniform convergence of the series

∑∞
k= ak(x), the kernel

K (x, y) is also a continuous function on ∂� × ∂�.
Hence, one can apply Fredholm theory to equation (). Since in the case of f (x) =  and

fulfillment of the condition (), the solution of problem ()-() can only be v(x)≡ , for
f (x) =  the integral equation () has only a trivial solution.
Hence, for any f (x) ∈ C(∂�) the solution of equation () exists, is unique, and belongs

to the class C(∂�). Using this solution, we construct the function v(x) which will satisfy
all the conditions of problem ()-().
If the condition () is valid, then v(x) = C satisfies the condition () at f (x) ≡ , i.e.

the corresponding homogeneous equation () has the nonzero solution v(x) ≡ C. Then
the adjoint homogeneous equation has also a nonzero solution, and that is why in this
case fulfillment of the condition () is necessary and sufficient for solvability of problem
()-(). The lemma is proved. �

6 Study of the basic problem
We now formulate the basic statement.

Theorem  Let μ > ,  ≤ β ≤ α, α +β �= , �k ⊂ �̄ ⊂ �, ak(x), k = , , . . . , be continuous
functions satisfying the condition (). Then:
() If the condition () is fulfilled, then problem ()-() is uniquely solvable at any

f (x) ∈ C(∂�).
() If the condition () is fulfilled, then the condition () is necessary and sufficient for

solvability of problem ()-() where the function ψ(x) is a solution of equation ().
If a solution of the problem exists, then it is unique up to the constant summand.
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() If a solution of problem ()-() exists, then it is represented in the form of
u(x) = Jαμ[v](x), where v(x) is a solution of problem ()-().

Proof () Let a solution u(x) of problem ()-() exist. Apply to this function the opera-
tor Dα

μ and denote v(x) = Dα
μ[u](x). Take the problem which the function v(x) satisfies.

Since by Lemma , in the case of harmonicity of the function u(x), the function Dα
μ[u](x)

is also harmonic in �, and the function v(x) is harmonic.
Further, since according to Lemma  the equality Dβ

μ[u](x) = Jα–β
μ [Dα

μ[u]](x) holds, the
boundary condition of problem ()-(),

Dα
μ[u](x) –

∞∑
k=

ak(x)Dβ
μ[u]

(
tk(x)

)
= f (x),

with respect to the function v(x) will be rewritten in the form of

v(x) –
∞∑
k=

ak(x)Jα–β
μ [v]

(
tk(x)

)
= f (x), x ∈ ∂�.

In addition, since Dα
μ[u](x) ∈ C(�̄), we have v(x) ∈ C(∂�̄). Thus, if u(x) is a solution of

problem ()-(), then the function v(x) =Dα
μ[u](x) will be a solution of problem ()-().

Now, let the conditions () and () be realized. Then by Lemmas  and , for any f (x) ∈
C(∂�) the solution of problem ()-() exists, is unique, and designate u(x) = Jαμ[v](x),
x ∈ �̄. Then we have by Lemma Dα

μ[u](x) =Dα
μ[Jαμ[v]](x) = v(x) in�, and therefore we get

Dα
μ[u](x) ∈ C(�̄). Harmonicity of the function u(x) follows from Lemma , and fulfillment

of the conditions () can be checked immediately:

Dα
μ[u](x) –

∞∑
k=

ak(x)Dβ
μ[u]

(
tk(x)

)

= v(x) –
∞∑
k=

ak(x)Jα–β
μ

[
Dα

μ[u]
](
tk(x)

)
= f (x), x ∈ ∂�.

The first statement of the theorem is proved.
() Let now the condition () be fulfilled, and let the solution u(x) of problem ()-()

exist. Consider the function v(x) =Dα
μ[u](x). As in the first case, we show that the function

v(x) satisfies the conditions of problem ()-(). Then according to Lemma , fulfillment
of the condition () is necessary. Thus, we prove the necessity of the condition () at
fulfillment of the equality ().
We show that if the equality () is fulfilled, then the condition () is also sufficient for

the existence of the solution of problem ()-().
In fact, if the conditions () and () are realized, a solution of problem ()-() exists,

is unique up to constant summand, and v(x) ∈ C(�̄). Then, similarly to the proof of the
first statement of the theorem, the function u(x) = Jαμ[v](x) satisfies all the conditions of
problem ()-(). The theorem is proved. �

Remark  One can show that in the case of
∑∞

k= |ak(x)| > μα–β , the corresponding ho-
mogeneous problem ()-() has nontrivial solutions.
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Example  Let a �= , ak = , k = , , . . . , and t(x) = δx,  < δ < . Further, let Hk(x) be a
homogeneous harmonic polynomial of the power k. By virtue of the equality (), we have
Dα

μ[Hk](x) = (k +μ)αHk(x).
Then

Hk
(
t(x)

)
=Hk(δx) = δkHk(x),

Dβ
μHk(δx) = δk(k +μ)βHk(x)

and

Dα
μ[Hk](x) – aDβ

μHk
(
t(x)

)
= (k +μ)αHk(x) – aδk(k +μ)βHk(x)

=
[
(k +μ)α – aδk(k +μ)β

]
Hk(x).

Hence, for a = δ–k(k +μ)α–β the harmonic polynomial Hk(x) will be the solution of the
homogeneous problem ()-(). If δ is a number close to zero, then we have a > .
If the dimension of the space n = , then the number of these polynomials is equal to

k +  [].
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