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Abstract

The aim of this paper is to discuss the existence of weak solutions for a nonlinear
two-point boundary value problem of integrodifferential equations of fractional order
o € (1,2]. Our analysis relies on the Krasnoselskii fixed point theorem combined with
the technique of measure of weak noncompactness.
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1 Introduction
Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry, aero-
dynamics, electrodynamics of complex medium, polymer rheology, and they have been
emerging as an important area of investigation in the last few decades; see [1-8]. How-
ever, the theory of boundary value problems for nonlinear fractional differential equations
is still in the initial stages and many aspects of this theory need to be explored.

In [9], Zhou discusses the existence of solutions for a nonlinear multi-point boundary
value problem of integrodifferential equations of fractional order as follows:

DR x(t) = £ (& x(8), (Hx)(0), (Kx)(©), ¢ € [0, 1], € (1,2],
a1x(0) — bix'(0) = dix(&), ayx(1) + byx' (1) = dyx(&2),

where D, denotes the fractional Caputo derivative and

(Hx)(s) = /0 t g(t,s)u(s)ds, (Kx)(s) = /0 th(t,s) ds,

with respect to the strong topology. In [10], Bouffak investigates the existence of weak so-
lutions for a class of boundary value problem of fractional differential equations involving
nonlinear integral conditions of the form

‘D, x(t) = f(t,x(t)), te[0,T],a<(0,1],
x(0) + fOT x(s)ds = x(T),
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by used of the measure of weak noncompactness and Pettis integrals.

In recent years, the theory for boundary value problem of integrodifferential equations
of fractional order in Banach spaces endowed with its weak topology has been few studied
until now and, in [11], Li and Gou discussed the existence theorem of weak solutions for a
class of nonlinear integral equations and obtain a new results by using the techniques of
measure of weak noncompactness and Henstock-Kurzweil-Pettis integrals, motivated by
this work, in this paper, we use the techniques of the measure of weak noncompactness
combined with the fixed point theorem to discuss the existence theorem of weak solutions
for a class of nonlinear fractional integrodifferential equations of the form

(1.1)

Dy, x(t) = f(&,x(8), (Tx)(8), (Sx)(8)), te[0,1],a €(1,2],
a1x(0) — a»x'(0) = 1, bix(1) + byx'(1) = yo,

where °D§, denotes the fractional Caputo derivative and

s 1
(1060 = [ s Dg(eam)dr, (56 [ kals, (a0 dr,
0 0

f:I x E® — E is a given function satisfying some assumptions that will be specified later,
E is a nonreflexive Banach space and the integrals are taken in the sense of Henstock-
Kurzweil-Pettis. Also, it is assumed that a;,b; > 0, y;, i = 1,2 are real numbers.

The paper is organized as follows: In Section 2 we recall some basic known results. In
Section 3 we discuss the existence theorem of weak solutions for the problem (1.1).

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary results which will be
used throughout this paper.

Let I = [0,1] be the real interval, let E be a real Banach space with norm || - || and its dual
space E*, and also E,, = (E,w) = (E,0 (E, E*)) denotes the space E with its weak topology.
Denote by C(I, E,,) = (C(, E), ) the space of all continuous functions from  to E endowed
with the weak topology and the usual supremum norm ||x||« = sup,; [[%(2)|l.

The fundamental tool in this paper is the measure of weak noncompactness developed
by De Blasi, for more details see [12].

Now, for the convenience of the reader, we recall some useful definitions of integrals.

Definition 2.1 ([13]) A function u:I — E is said to be Henstock-Kurzweil integrable on
I if there exists an ] € E such that, for every ¢ > 0, there exists §(§) : I — R* such that, for
every 8-fine partition D = {(I;, §;)},, we have

n

> uEul) -7

i=1

<§g,

we denote the Henstock-Kurzweil integral J by (HK) f: u(s) ds.

Definition 2.2 ([13]) A function f : I — E is said to be Henstock-Kurzweil-Pettis inte-
grable, or simply HKP-integrable on /, if there exists a function g : I — E with the following
properties:
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(i) Vx* € E*, x*f is Henstock-Kurzweil integrable on I;

(i) Vtel, ¥a* € E*, x*g(t) = (HK) [y x*f(s) ds.

This function g will be called a primitive of f and we will denote by g(t) = fot f(t)dt the
Henstock-Kurzweil-Pettis integral of f on the interval I.

Theorem 2.1 ([13]; mean value theorem for the HKP integral) If the function f : I, — E
is HKP integrable, then

/f(t) dt € |I] - convf(I),
I

where cof (I) is the closure of the convex of f(I), I is an arbitrary subinterval of I, and |I| is
the length of 1.

Theorem 2.2 ([14]) Let f : I — E and assume that f, : I — E, n € N, are HKP integrable
on 1. For each n € N, let F,, be a primitive of f,. If we assume that:
(i) Vx* € E*, x*(f,(t)) > x*(f(t)) a.e.on 1,
(ii) for each x* € E*, the family G = {x*F,:n=1,2,...} is uniformly ACG, on I (i.e.
weakly uniformly ACG, on I),
(ili) for each x* € E*, the set G is equicontinuous on I, then f is HKP integrable on I and
fotfn(s) ds tends weakly in E to fotf(s) dsforeachtel.

Lemma 2.1 ([15]) If B C C(I,E) is equicontinuous, ug € C(I,E), then co{B,uy} is also
equicontinuous in C(I,E).

Lemma 2.2 ([15]) If B C C(I,E) is equicontinuous and bounded, then B(B) =
max;e; B(B(2)).

Lemma 2.3 ([15]) If B C C(I,E) is equicontinuous and bounded, then B(B(t)) € C(I,R+)
and

,B(B(s) ds) < ,B(B(s)) ds, Vtel. (2.1)
We give some fixed point theorem, which play a key role in the proofs of our main results.

Theorem 2.3 ([15]) Let M be a nonempty bounded closed convex subset of a Banach
space E. Suppose that T : M — M is weakly sequentially continuous and there exist an
integer ny and a vector xo € M such that T is power-convex condensing about xy and ny.
Then T has at least one fixed point in M.

For completeness we recall the definition of the Caputo derivative of fractional order.

Definition 2.3 ([16]) Letx:I — E be a function. The fractional HKP-integral of the func-
tion x of order @ € R, is defined by

t (t _ S)a—l

Ig+x(t) = A W

x(s) ds.

In the above definition the sign ‘ [* denotes the HKP-integral.
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Lemma 2.4 For a function f : I — E, the Caputo fractional order derivative of f is defined
by

‘D f(t) = ﬁ /Ot(t —s)" () ds, nm-l<a<n,

where n = [a] + 1 and [«] denotes the integer part of o.

3 Main results
In this section, we prove the existence of solutions to the problem (1.1) in the space C(I, E,,).
Let us start by defining what we mean by a solution of the problem (1.1).

Definition 3.1 A function x € C([,E,) is said to be a solution of the problem (1.1) if x
satisfies the equation °D§, x(£) = f(t,x(¢), (Tx)(¢), (Sx)(£)) on I and satisfies the conditions
a1x(0) — azx’(0) = 11, bix(1) + box'(1) = 2.

Lemma 3.1 Let « > 0, then the differential equation
‘Dg, u(t)=0
has a solution u(t) =cy + it + ot + -+ cut" L ¢ eR,i=0,1,...,m 1= [a] + 1.
From the lemma above, we deduce the following statement.
Lemma 3.2 Leta > 0, then
I, (CD‘(’)‘+u(t)) =u(t)+co+cit+cat® +- - +cyt"!
forsomec; €R,i=0,1,...,n,n=[a] +1.

We derive the corresponding Green’s function for the boundary value problem (1.1)
which will play major role in our next analysis.

Lemma 3.3 Let p € C(I,E,) and o € (1,2], then the unique solution of

‘Di,x(t)=p(t), tel, (3.1)
ax(0) —axx’(0) =1, bix(1) + box' (1) = 1, '
is given by
! bi+b -b
x(t) = / G(t,9)p(s) ds + 2 2);’1 tan, Al on,, (3.2)
0
where the Green'’s function G is given by
il — 9t = B - gt - B gy
+ A [-2kqoge2_oabkq g2 0<s<t,
Glts)=1 , rﬁ’zz?[ ’ O,(,l 311,1 ’a: o == (3.3)
oy - =9 = FA (1 - 5) ]
F g R - P - AR (- 2], t<s<],

and p(t) = (b”bZ)}'”“”Q + “”’2;17”’1 t,l=aiby + arby + asb1 #0,a;,b; > 0,i=1,2.
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Proof Assume that x(¢) satisfies (3.1), then Lemma 3.2 implies that

x(t) =I5, p(t) —c1 —cat = ﬁ /0 (t=98)p(t)ds —c1 — cat (3.4)

for some constants ¢, ¢y € R.
On the other hand, by the relations D%, I, x(¢) = x(t) and 1%, 15, x(t) = IZ? x(t), for a, 8 >
0,x € C(I,E,), we have

x(t) =

oa—2
e _1)/(t—s) o(s)ds —cs.

By the boundary conditions of (3.1), we obtain

—ayc1 + azer = 1 — anl§, p(0) + ax 1§, p(0),
—bicy — (b1 + by)ca = yo = b I3 p(1) = DG, p(1),

that is,
(=L arl§, p(0) + a1 p(0) a
I ya=boIs p(1) = buIg, p(1) (b1 + by)
dgbl 1
1-s)%" d
5 F(a)/( $)* " p(s)ds
aby, 1 2 (b1 + b))y + azys
AT ds— LTIVA TR
/ F(a—1)/( ) pls)ds I
Gt Y1 — g, p(0) + ax I3 p(0)
Li=bi ys=balg; p(1) = bilg, p(1)

ﬂlbl /(l—s”‘1 (s)ds

/<1—s)“ 2p(s) ds — 2L r2=bin

l ’

e NG

where [ = a1by + a1b; + apb; # 0. Substituting the values of ¢; and c¢; in (3.4), we get the
solution given by (3.2), which completes the proof. O

Remark 3.1 From the expression of the function G(t,s), it is obvious that G(t,s) is con-
tinuous on I, and is bounded. Let

1
G* = sup{/ ‘G(t,s)‘ds:tel}.
0

To facilitate our discussion, let B, = {x € E : ||x|| < b}, D, = {z € C(,E,), |z| < r},
BV(/,R) represents the space of real bounded variation functions with its classical norm
|- llgv, pox:I—E, f:IxE>—E, g h:I x E— Eand G,k;,ky : I x I — R satisfy the
following assumptions:

(1) p is weakly continuous function from I to E.

(2) For each uniformly ACG, function x: I — E, the functions k (¢, -)g(-, %(-)),

ko (g, Y, x(), f (%), T(x)(+), S(x)(-)) are HKP integrable, f, g, & are weakly-weakly
continuous functions and fot g(s,x(s)) ds, fol h(s,x(s)) ds are bounded on 1.
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(3) Foranyr> 0, there exist a HK-integrable function M, : I — R* and a nondecreasing
continuous function € : [0,00) — (0, 00) such that ||f(¢,%,y,2)|| < M,(t)S2(r) for all
tel, (x,y,2z) €D, x D, X D,.

(4) Foreachtel, G(¢,-), ki(t,-) € BV(,R), i = 1,2 are continuous, i.e. the applications
t+— G(t,-) and t — k(¢,-) are || - ||gy-continuous.

(5) The family

(£ (x(), T®)(), S@)()) :x* € E*, ||*|| <1}

is uniformly HK-integrable over I for every x € D,.
(6) For each bounded set X, Y, Z C D,, and each for each closed interval J C I, t € I,
there exists a positive constant Ly, L, € (0,1) such that

Bk, g, V) <LiB(Y(), Bk, )hU,2)) < LaB(Z())),
B(f(,X,Y,Z)) < M,(t) max{B(X), B(Y), B(Z)}.

(7) There exists a constant ry > 0 such that

ro

>1.
(2100 + 1M |00 S2(r0) G*

Now, we present the existence theorem for the problem (1.1).

Theorem 3.1 Assume that the conditions (1)-(7) and the families

) 00 () )

{x*/ kl(t,x)g(s,xn(s)) a’s} , {x*/ l<2(t,x)h(s,x,,(s)) ds} , (3.5)
0 n=1 0 n=1
t () ) 00

{x /o G(t,s)f(t,x,,(s),/o kl(t,s)g(s,xn(s)),/0 kz(t,s)h(s,xn(s))> ds}nl, (3.6)

are uniformly ACG, and equicontinuous on I for every t € I be satisfied, and let r(K) be the
spectral radius of the integral operator K defined by

t
®o)0)= [ Gl G)ps)ds, ¢ €D
0
Ifr(K) < 1, then the problem (1.1) has at least one solution x € C(I,E,).

Proof To simplify, we denote m = sup,; |lki(t,-)lsv, ¢ = sup,lp)ll, and ko =
max{sup,.; fotg(s,x(s))ds, SUpP,¢; fol h(s,x(s)) ds}. Let ¢ < ko < min(ro, 22). For x € D,, and
x* € E* such that ||x||* <1, we have

t

’x*(Tx(s))’ = ‘(HK)/O x*(kl(t,s)g(s,x(s))) ds

1
< [ suplla(t )y [ L6 ds < m-ko <,
te 0
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and also
sup([' T x e [ <1) =

So Tx € D,,. Similarly, we prove Sx € D,,.
Define the operator F : C(/, E,,) - C(I,E,) by

1
Fx(t) = p(£) + / G(t, s)f(s,x(s), (Tx)(s), (Sx)(s)) ds, tel,
0

where G(-, -) is the Green’s function defined by (3.3). Clearly the fixed points of the operator
F are solutions of the problem (1.1). According to the assumptions (2), (3), and (5), let
G(t,-) e BV(I,R) for each I, f(-, x(-), T(x)(-), S(x)(-)) is HKP-integrable over I for every x €
D,, and the family

{2 (- 2(), T@)(), S@)()) : 4% € E,

x| =1}
be uniformly HK-integrable over I for every x € D,,. Now, let ¥ be a family of functions
which are uniformly HK-integrable over an interval I. Then it is easy to see (the proofis in
the spirit of [17], Th. 4.28) that F satisfies uniformly the Cauchy criterion over any closed
subinterval J C I. Analogously to [17], Th. 4.27, the condition

Ve > 0 3 gauge y on I VP;, P, y fine-partitions Vf € F !S(f,Pl) - S(f,P2)| <e,
implies

Ve > 0 3 gauge y on IVPy, P, y fine-partitions Vf € F ’S(f,P) - (HK) /f(t) dt| <e.
1

Therefore, if ¥ is family uniformly HK-integrable over interval [0, 5], then family ¥ is
uniformly HK-integrable over [0, 7] for every t < b. Consequently, in view of assumption
(5) the family

[ (5 2(), T@)(), S@)() : 6" € EY,

<] <1

will be uniformly HK-integrable over any subinterval [0, t] C I, for every x € D,,. This
entails the weak*-continuity of the linear functional

x* € Ef > (HK)/ G(t, s)x*f(s,x(s), T(x)(s),S(x)(s)) ds
0
for all T € I. The latter in turn means that there is x, ; € E such that
x*x, . = (HK) / x*G(t, S)f(s,x(s), T(x)(s),S(x)(s)) ds, Vx*eE*,
0

i.e. the function G(t, -)f (-, x(-), T (x)(-), S(x)(-)) is HKP-integrable on I and thus the operator
F makes sense.
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Let ry > 0, and consider the set

Q= {x € Dyy ¢ |%lloo < 70,Vh1, 82 €1,

1
lt2) = x(e)| < [p(t2) = p(8)] + My o02(r0) fo |Gltars) — Gt 9) ds},

it is clear that the convex closed and equicontinuous subset Q C D,, C C(J,E,,). We will
show that F satisfies the assumptions of Theorem 2.3; the proof will be given in three steps.

Step 1. We shall show that the operator F maps into itself. First of all, we begin to
show that F: Q — Q. To see this, let x € Q, ¢ € I. Without loss of generality, assume
that Fx(¢) # 0. By the Hahn-Banach theorem, there exists x* € E* with |x*|| = 1 and
I Ex(6)l = |x* (Fx(2))]. Thus

1
|Ex(@)] = |x* (Ex(®) | < 2" (p(®)) + &* (/o G(t,5)f (5,%(5), (Tx)(s), (Sx)(s))) ds
1
< |lp®)|| + 2(ro) sup [ G(t,5) My, (s) ds
tel JO
< Iplloc + 1My, | (r0)G* < 7o,

then ||Fx|loo = sup,e; |1Fx(2)|| < ro. Hence F: Q — Q.
Let 0 < f < ty, without loss of generality, assume that Fx(t,) — Fx(t;) # 0. By the Hahn-
Banach theorem, there exists x* € E* with ||x*|| =1 and

||Fx(t2) — Fx(ty) ”

= %" (Fx(tz) - Fx(t,))

1
< *[plts) - p(t)| + fo 1Gt2r) = Glt1,)] - [x* (f (5,(6), (T2)(6), (Sx)(5)) | ds
1
<2*|p(ts) = p(8)| + 1My oo R2r0) /0 |Glt5) - Glt,5)| ds

1
< |p(&2) - p(&)]| + ||Mr0||ooQ(r0)/0 |G(t2,5) - G(t1,5)| ds.

This estimation shows that F maps Q into itself.

Step 2. We will show that the operator F is weakly sequentially continuous. To see this,
by Lemma 9 of [18], a sequence x,,(-) weakly convergent to x(-) € Q if and only if x,,(-) tends
weakly to x(¢) for each t € I. Because g(s, -) is weakly-weakly sequentially continuous, so if
x, — x in C(I, E,), then g(s,x,(s)) — g(s,x(x)) and A(s,x,(s)) — h(s,x(x)) in C(J,E,), and
by Theorem 2.2 (see our assumptions (3.5), (3.6)), we have

1 1
lim / kl(t,s)g(s, xn(s)) ds = / ki (¢, s)g(s,x(s)) ds
n—0oQ 0 0

weakly in E for each ¢ € I and Tx,(¢) — Tx(¢).
Similarly, we have

1 1
lim / ko (2, s)h(s, xn(s)) ds = / kz(t,s)h(s,x(s)) ds
n—0oQ 0 0
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weakly in E for each ¢ € I and Sx,(t) — Sx(t). Therefore, the operator T, S are weakly
sequentially continuous in Q.

Moreover, because f is weakly-weakly sequentially continuous,

S (8,4(5), (Tx)(s), (Sx)(5)) — f (5, %(5), (Tx)(s), (Sx)(s))

weakly in E, for each I. Now, applying assumption (5), Theorem 5 in [19] and Lemma 25
in [20], then the function G(t, -)a(-)f (-, x,(-), (Tx,)(:), (Sx,)(-)) is HKP-integrable on I for
every n > 1, by Theorem 2.2 and assumption (3.6), we have

1
Tim /0 Glt, a(s)f (54(5), (T,)(5), (S2,)(5)) s
1
- /0 Glt, s)als) (5,%(6), (T)(s), (Sx)(s)) ds

then F(x,) — F(x) in C(I,E,).

Step 3. We show that the operator F: Q — Q is power-convex condensing.

Let B = coF(Q) C Q. Obviously, B is bounded, convex, and closed, and F(coF(Q)) C
F(B) C coF(Q), i.e., F : B— B. By Lemma 2.1, B is equicontinuous in C(J, E,,). Obviously,
F is bounded and continuous. Set xy € F, we will prove that there exists n, such that, for
any bounded V C B,

B(E™ (V) < B(V).
By V C B C Q, F(V) is equicontinuous. Then F?*)(V) is equicontinuous from F?#0)(V) =

F(coF(V),x0) C F(Q). Generally, Vi € N, F"*0)(V) is equicontinuous. Since F"*)(V/) is
bounded, By Lemma 2.2,

B(E™*)(v)) = rItlalx(F("”‘O)(V)(t)), n=2,3,.... (3.7)

Now fix t € I and divide the interval I into n parts 0 = ) <t < --- < t, = 1, for

S$1,82,83,11, 12,13 € T; = [t;i_1, ;] and € > 0, there exists § > 0 such that
’Mr(SI)G(t,Sg)V(Sg) - M,(r)G(t, rz)v(r3)| <e,
if |[s; =] <8, |so —12] <8, |s9 — 1| < 8.

Let Yi= SUPseTi |G(tr5)| = |G(trsi)|r |Mr(ti)| = supseTi |Mr(5)|: $i»Ti € Tl and ‘/l = {x(s) HUAS
V,s € T;}. By the Ambrosetti lemma there exists g; € T; such that S(V;) = v(g;), then

B(E(V)(9) = B(F(V)(®))

1
-p (p(t) + fo G(t,5)f (5, V(5), (TV)(s), (SV)(s)) ds)

1
= ﬂ(/o G(t,S)f(S, V(s), (TV)(s), (SV)(s)) dS>,
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By Theorem 2.1, we obtain

1
/ G(t,s)f(s, V(s), (TV)(s), (SV)(S)) ds

_22/1 (& 5) (s, V(5), (TV)(s),(SV)(s)) ds
62)L {G(&,9)f (5, x(5), (Tx)(5), (Sx)(5)) : s € Tyyx € V'

- Zu(ﬂ)ﬁ( U vA(Ti x V(T0) x T(V)(T) x S<V)<Ti))>.

i=1 lyI=vi

Furthermore, by the properties of 8, we have
1
B </0 G(65)f (s, V(s), T(V)(s), S(V)(s)) ds)

<B (Z w(T)eo{ G, s)f (s, x(s), (Tx)(s), (Sx)(s)) : s € Tj, x € V})

i=1

< Zu(ﬂ)ﬂ( U v/ (Ti x V(Ti) x T(V(T;) x S(V)(Ti)))

lvI=vi

(T: x V(T3) x T(VY(T:) x S(V)(T1))

i=1 seT;

< Zu )|G(t,s:)| sup M, (s) max{ B(V(T7)), B(T(V)(T)), B(S(V)(T)}

seT;

< ZM(T,-mMr(mmax{ﬂ(V(n)),Llﬁ(V(Ti)),Lzﬂ(V(Ti))}

i=1
<Zu H(z) max{l, L, Ly} - B(V(T))
< Zu(n)yiMr(ri>ﬂ(V(Ti)).

i=1

So

1
ﬂ(/o G(t,s)f (s, V(s), T(V)(s),S(V)(5)) )

seT;

< Zu(ﬂ)|G(t,si)|Mr(u»>v(qi),

i=1

where s;,7;,q; € T;, and

’M,(s)G(t,s)v(s) —M,(r,-)G(t,si)v(q,»)| <€, forseT;

Zu Dyisup M,(s)B(V(T;))

Page 10 0f 13
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we have
M, (t)G(t, s:)v(q) () < / M, (s)G(t,5)v(s) ds + e u(T).
T;
Thus
1
B </0 G(&,5)f (s, V(s), T(V)(s), S(V)(s)) ds)
1 n
< / G(t,s)M,(s)v(s)ds + € Z u(Ty).
0 i=1
Because € is arbitrarily small, we get

1
B ({p(t) + /0 G(t,s)f(s,x(s), (Tx)(s), (Sx)(s)) ds:x € V})

1
§ﬂ(V)/ G(t,s)M,(s) ds,
0

1
B(E™(V)(2)) < ﬁ(V)./o G(t,8)M,(s)ds = B(V) - Ko (t),
where ¢o(t) =1,Vt e l.
By the equicontinuity of F1*0)(V) = F(V) and G(t,s)f(s, CO{F*0)(V)(s),x0}),
(TTO{F1#0)(V)(s),%0}), (SCO{F1*0)(V)(s), x0})) is equicontinuous. Therefore,

5 ((F(z,xo)(v))(t))
- (F| (F (1)) 0,00 ))

- ﬂ( fo G, (5 (@[ F0(V)(8) 0 }), (TES[F0(V)(8), 30 ]),
(se3 V)0, )

< /0 1 B((G(t,)f (s, (Co{ M/ (V)(s), %0 }), (TCo{ F** (V)(s), %0 })
(S {FI)(V)(s),%0}))) ds

< /0 1 G(t,s)M,(s)B (o F (V)(s), %0 }) ds

- fo Gl 9B (V)(9) ds

< BVIK2o(0).

Generally,

B((E™(V)) (@) < B(V)K"¢o(2).
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Since r(K) < 1,let e = 147(1()’ then Jmg > 0, when # > my,

max|K"o(0)] = | K"¢o | < [K"[lleoll = | K]

< (rK)+e)" = (1 i r([())” <1

2

Set ng > mg, then Vt € I,

B((E™ (V) (@) < B(V) - K™go(t) < |[K™ g0 || B(V)
1+ 7(K)
(%5

<

) BV) = B(V).

By (3.7), B(F"*)(V)) < B(V). Therefore, F : V — V is convex-power condensing. By The-
orem 2.3, F has one fixed point in C([, E,), i.e., the problem (1) has at least one solution in
C(I,E,). O

Remark 3.2 The assumption (3) should instead agree with the following condition:
The function f is weakly-weakly sequentially continuous (for each convergent
sequence {¢,} C [0,1]) and for all weakly convergent sequences {x,}, {y,},{z.} C E, the
sequence {f (¢4, %4, Yn, 24)} is weakly convergent in E) such that, for all » > 0 and ¢ > 0,

there exists &, > 0 such that

/tf(s,x(s), (Tx)(s), (Sx)(s)) ds|<e, V|t—t|<8,Yx€D,.

Proof Letr >0 and x* € E* such that ||x*|| <1.For 0 <t <t <1, we have

< (HK) / ’ x*f (s,x(s)), (Tx)(s), (Sx)(s) ds.

5]

x* / 2f(s,x(s), (Tx)(s), (Sx)(s)) ds

Because s — M, (s) is Henstock-Kurzweil integrable and |x*f(s,x(s)), (Tx)(s), (Sx)(s)| <
l* | Lf (s, %(), (Tx)(s), (Sx)(s))|| < M, for all s € I, then by [21], Corollary 4.62, s >
x*f(s,%(s), (Tx)(s), (Sx)(s)) is absolutely Henstock-Kurzweil integrable on [#,£,] C I and

’(HK) / ’ x*f(s,x(s), (Tx)(s), (Sx)(s)) ds

5]

< (HK)/ M, (s)ds.
5]

Thus

= sup
lx*ll<1

[ 165600 (06, (590 ds

5]

x* ftzf(s,x(s), Tx(s), Sx(s)) ds
< (HK) /tz M, (s)ds.

Due to the continuity of the primitive function of the Henstock-Kurzweil integral, we have
a t less than ¢ and sufficiently close to #;, and the proof is completed. d
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4 Conclusions

In this paper, we use the techniques of the measure of weak noncompactness and
Henstock-Kurzweil-Pettis integrals to discuss the existence theorem of weak solutions
for a class of nonlinear fractional integrodifferential equations in a nonreflexive Banach
space equipped with the weak topology.
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