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Abstract

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal

Legendre polynomials to extend the standard Gumbel distribution, is presented in this

paper. The resulting semi-nonparametric function can represent a probability density func-

tion for a large family of multimodal distributions. The model has a closed-form log-likelihood

function that facilitates model estimation. The proposed method is applied to model com-

mute mode choice among four alternatives (auto, transit, bicycle and walk) using travel

behavior data from Argau, Switzerland. Comparisons between the multinomial logit model

and the proposed semi-nonparametric model show that violations of the standard Gumbel

distribution assumption lead to considerable inconsistency in parameter estimates and

model inferences.

1. Introduction

The Gumbel distribution (also referred to as the Type-I extreme value distribution) plays a

central role in discrete choice models for travel demand analysis[1]. This can be attributed to

two major reasons. First, the Gumbel distribution closely resembles the normal distribution,

which is often the preferred distribution to characterize the random disturbance term in an

econometric model that accounts for the effect of unobserved factors. Second, when the Gum-

bel distribution is assumed for random components of utility functions, a closed-form likeli-

hood function is obtained in the context of the application of the microeconomic utility

maximization principle. With a closed-form likelihood function, maximum likelihood estima-

tion (MLE) methods can be applied with ease to estimate model coefficients consistently and

efficiently. Due to these appealing features of the Gumbel distribution, the Multinomial Logit

(MNL) model is widely applied in practice and preferred over its counterpart that is based on

the assumption of a normally distributed random error component (i.e., Multinomial Probit

or MNP model)[2–4]. In the context of discrete-continuous choice behaviors, the Multiple

Discrete-Continuous Extreme Value (MDCEV) model[5–9] developed based on the standard
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Gumbel distribution has a neat closed-form log-likelihood expression while others based on

the normal distribution assumption do not have this feature[10–17].

However, according to the theory of maximum likelihood estimation, the consistency and

efficiency of maximum likelihood estimators depend on the validity of the distributional

assumption made on the random error term. It is important to ensure that the distributional

assumptions on the random error terms are valid when applying the MLE method to estimate

model coefficients of a discrete choice model. Methods to test for violations of the normal dis-

tribution are currently available in the economic literature[18]. Recently, the authors devel-

oped a practical method to test the validity of the distributional assumption on the random

disturbance term in an MNL model and obtained significant statistical evidence to reject the

standard Gumbel distribution assumption in a very commonly encountered empirical setting

dealing with long distance travel mode choice[19]. That finding motivates this particular study

which aims to develop and present the formulation for a Semi-nonparametric Generalized

Multinomial Logit Model (SGMNL) for travel-related choices. The objective of this study is to

generalize the MNL model by relaxing the assumption of a Gumbel distribution using a semi-

nonparametric approach, and then demonstrate the efficacy of the approach by applying the

generalized model to an empirical setting of travel mode choice. It should be noted that this

generalization essentially differs from other extensions of the MNL that have yielded the

Nested Logit, Cross-nested Logit, Heteroskedastic Logit or Multinomial Probit models[20].

Those models are generalized extensions that persistently employ the unimodal Gumbel or

normal marginal distributions, whereas the proposed semi-nonparametric model presented in

this paper allows the marginal error distribution to have multiple modes. Thus, the proposed

model provides the ability to examine potential bias in model coefficients, marginal effects and

elasticities in a discrete choice model that may arise when a unimodal distribution like the

standard Gumbel distribution is violated in random components of utility functions.

Discrete choice models are widely used in transportation planning practice to predict travel

mode choice behavior; the choice of transport mode has important implications for traffic

congestion, energy consumption and air pollution. The study of mode choice behavior and its

determinants can help transportation planning professionals design alternatives and imple-

ment policies that enhance sustainability, livability, and public health while reducing delays

due to congestion. There are a number of recent studies in the literature that have focused on a

study of travel mode choice behavior. For example, Shen et al. (2016) found that proximity to

metro stations has a significant positive effect on the choice of rail transit as a primary com-

muting mode[4]. Ding et al. (2017) applied an integrated structural equation model and dis-

crete choice model to investigate how the built environment affects travel mode. In their

model system, they account for the mediating effects of car ownership and travel distance,

thereby capturing both the direct and indirect effects of built environment attributes on travel

mode choice[2]. Ding et al. (2014) proposed a cross-classified multilevel probit model of travel

mode choice[21]. Comparisons with a traditional mode choice model not only revealed the

effects of residential and workplace location on tour-based commute mode choice behavior,

but also revealed the presence of spatial heterogeneity across home location and workplace in

mode choice behavior. In this paper, a semi-nonparametric choice modeling method is pro-

posed and applied to model commute mode choice among four alternatives (auto, transit,

bicycle and walk) using data from Argau, Switzerland. The proposed approach is motivated by

the desire to offer a more flexible and robust methodological framework for activity-travel

behavior analysis.

The remainder of the paper is organized as follows. In Section 2, the literature on semi-non-

parametric choice models is reviewed. In Section 3, the orthonormal Legendre polynomial is

introduced and then applied to extend the standard Gumbel distribution, thus enabling the
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development and formulation of the Semi-nonparametric Generalized Multinomial Logit

Model (SGMNL). In Section 4, data used for the empirical study is described, and empirical

estimation results are presented and discussed. Finally, conclusions and directions for future

research are presented in the last section.

2. Literature review

As early as the time when McFadden initially proposed the MNL model[22], econometricians

have been questioning the validity of the distributional assumption on the error term in ran-

dom utility functions[23]. When a violation of the standard Gumbel distribution assumption

is found, alternative modelling approaches may be explored to overcome the ill-effects. Adopt-

ing an alternative parametric distribution for random utilities may prove to be a solution; for

example, the Weibull or logistic distribution recently proposed in the literature[24, 25] could

serve as appropriate distributional assumptions on the random error term. In addition, a gen-

eralized multinomial logit model or a discrete-continuous choice model that allows heterosce-

dastic variance may also prove to be superior to the standard MNL and MDCEV model[26,

27]. However, all of these alternative distributions are unimodal in nature and therefore cannot

capture potential multimodalities in random errors.

Concerns about the adverse effects of violations of distributional assumptions on the ran-

dom error components have motivated the development of semi-parametric and semi-non-

parametric choice models. The semi-parametric choice model employs the kernel density

method to estimate the distribution of random errors, and therefore does not rely on any

parametric distributional assumptions[28–32]. The semi-nonparametric (SNP) choice model,

on the other hand, is developed based on a polynomial approximation of a probability density

function (PDF) that takes a flexible form[33]. Because the likelihood function has an explicit

analytical expression, the SNP choice modeling method appears to be more widely applied in

practice than the semi-parametric approach[34–37].

Similar to a binary probit model, the SNP binary choice model formulation also starts with

a random utility (U), which can be expressed as U = V + ε, where "V" is the systematic compo-

nent and "ε" is the random component. If a dummy variable "y" indicates whether an alterna-

tive is chosen or not, then P(y = 1) = P(U> 0) = P(V + ε> 0) = P(ε> −V). The probability

density function of "ε" takes the following form:

f εð Þ ¼
ð
PK

i¼0
aiε

iÞ
2φðεÞ

R þ1
� 1
ð
PK

i¼0
aiεiÞ

2φðεÞdε
: ð1Þ

In Eq (1), φ(ε) represents the PDF of the standard normal distribution and is referred to as

the "a priori distribution". The denominator ensures that
R þ1
� 1

fðεÞdε ¼ 1. Eq (1) can be

extended as follows:

f εð Þ ¼
ð
PK

i¼0

PK
j¼0

aiajε
iþjÞφðεÞ

R þ1
� 1
ð
PK

i¼0

PK
j¼0

aiajεiþjÞφðεÞdε
: ð2Þ

Then; P y ¼ 1ð Þ ¼ P ε > � Vð Þ ¼

R þ1
� V ð

PK
i¼0

PK
j¼0

aiajε
iþjÞφðεÞdε

R þ1
� 1
ð
PK

i¼0

PK
j¼0

aiajεiþjÞφðεÞdε

¼

PK
i¼0

PK
j¼0

aiaj

R þ1
� V ε

iþjφðεÞdε
PK

i¼0

PK
j¼0

aiaj

R þ1
� 1
εiþjφðεÞdε

: ð3Þ
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To evaluate the probability value above, recursion formulas may be applied to derive the

indefinite integral of
R
εi+jφ(ε)dε. The above SNP choice model is limited to a binary choice

situation due to its computational complexity in the context of a multinomial choice situation.

3. Modeling methodology

3.1 Extending the standard gumbel distribution with the orthonormal

legendre polynomial

Bierens[38] proposed a new polynomial, called the orthonormal Legendre polynomial, for esti-

mating distributions on the unit interval in a semi-nonparametric framework. In the transpor-

tation choice modeling literature, this approach has been used to test normal and log-normal

distributions of random coefficients in mixed logit models[39]. As per Fosgerau and Bierlaire

[39] and Bierens[38], the orthonormal Legendre polynomial may be recursively defined as:

L0 ¼ 1; L1 ¼
ffiffiffi
3
p
ð2x � 1Þ; ð4Þ

Ln ¼ anð2x � 1ÞLn� 1 þ bnLn� 2; n � 2 ð5Þ

In Eq (5), an ¼
ffiffiffiffiffiffiffiffiffi
4n2 � 1
p

n , bn ¼ �
ðn� 1Þ

ffiffiffiffiffiffiffi
2nþ1
p

n
ffiffiffiffiffiffiffi
2n� 3
p . The advantage of using this polynomial is that it

ensures

R 1

0
LmðxÞLnðxÞdx ¼

0 if m 6¼ n

1 if m ¼ n
: ð6Þ

(

According to Gallant and Nychka[33], the prior distribution in the semi-nonparametric

approach can be a distribution other than the standard normal distribution. In this paper, the

orthonormal Legendre polynomial is used to construct a semi-nonparametric (SNP) probabil-

ity density function that extends the standard Gumbel distribution as follows:

f xð Þ ¼
f1þ

PK
k¼1

dkLk½GðxÞ�g
2

1þ
PK

k¼1
dk

2
g xð Þ; ð7Þ

where g(x) = exp(−e−x) � exp(−x), G(x) = exp(−e−x), δk are scalar parameters and K represents

the total number of polynomials. Using Eq (6), it can be shown that
R þ1
� 1

fðxÞ ¼ 1. As f(x) is

positive, it qualifies as a probability density function.

Fig 1 compares the semi-nonparametric probability densities when the number of polyno-

mials is 1 (K = 1) and the parameter δ1 takes a value of -2, 0, 1 or 2. When δ1 is 0, the distribu-

tion reduces to a standard Gumbel distribution, as shown by the red curve. When δ1 takes a

value of -2, 1 or 2, the distributions are bimodal, although the secondary peak in the distribu-

tion is rather flat when δ1 is equal to -2 or 1.

Fig 2 compares the semi-nonparametric probability densities when the number of polyno-

mials is 2 (K = 2) and two scalar parameters δ1 and δ2 are involved. With two polynomials, and

where the highest power term of “G(x)” increases to 2, the SNP function represented in Eq (7)

can generate a more flexible probability density distribution. It can be seen that, when δ1 is 2

and δ2 is -2, the distribution exhibits two modes with almost equal probability densities. When

δ1 is 0 and δ2 is 2, the distribution shows three modes. It may further be expected that, when

the number of polynomials (K) or the highest power term of “G(x)” increases, the SNP func-

tion with a flexible form can effectively represent the probability density function for a large

family of distributions with multiple modes. Such flexibility allows for a better representation
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of the distribution of the error term in a random utility function of a choice model, and there-

fore provides the ability to obtain more consistent estimates of model coefficients.

3.2 Simplifying the semi-nonparametric (SNP) probability density

function (PDF)

Following Gallant and Nychka[33], it is possible to employ the SNP PDF in Eq (7) to construct

random components in utility functions so that multiple modes may be accommodated in

their distributions. Before the choice probability can be derived, the SNP PDF needs to be

Fig 1. Comparisons of semi-nonparametric probability densities when K = 1.

https://doi.org/10.1371/journal.pone.0186689.g001

Fig 2. Comparisons of semi-nonparametric probability densities when K = 2.

https://doi.org/10.1371/journal.pone.0186689.g002
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simplified first. Using Eqs (4) and (5), it is possible to write the polynomial in a general form

as:

Ln ¼
Pn

k¼0
cn;kxk; ð8Þ

where cn,k is a constant coefficient for the term “xk” in the nth polynomial. When k> n, cn,k =

0. Let a ¼ 2
ffiffiffi
3
p

and b ¼ �
ffiffiffi
3
p

. Then, L0 = 1 and L1 = ax + b. When n� 2, as per Eq (5),

Ln ¼ anð2x � 1ÞLn� 1 þ bnLn� 2 ¼ anð2x � 1Þ
Xn� 1

k¼0

cn� 1;kxk þ bn

Xn� 2

k¼0

cn� 2;kxk

¼ 2an

Pn� 1

k¼0
cn� 1;kxkþ1� an

Pn� 1

k¼0
cn� 1;kxk þ bn

Pn� 2

k¼0
cn� 2;kxk:

Since cn−2,n−1 = 0, Ln ¼ 2an

Pn� 1

k¼0
cn� 1;kxkþ1� an

Pn� 1

k¼0
cn� 1;kxk þ bn

Pn� 1

k¼0
cn� 2;kxk

¼ ð� ancn� 1;0 þ bncn� 2;0Þx0 þ
Pn� 1

k¼1
½anð2cn� 1;k� 1 � cn� 1;kÞ þ bncn� 2;k�xk þ 2ancn� 1;n� 1xn.

Then, it is possible to write:

LnðxÞ ¼ cn;0x
0 þ

Pn� 1

k¼1
cn;kxk þ cn;nxn: ð9Þ

In the equation above;

cn;0 ¼ � ancn� 1;0 þ bncn� 2;0;

cn;k ¼ anð2cn� 1;k� 1 � cn� 1;kÞ þ bncn� 2;kÞ; 0 < k < n;

cn;n ¼ 2ancn� 1;n� 1:

ð10Þ

8
><

>:

When n = 0 or 1, define c0,0 = 1, c1,0 = b, and c1,1 = a. For any integer “n” (n� 2), the recur-

sion equations (10) can be applied to compute the coefficients ci,j and all of the ci,j values form

a lower triangular matrix, called the “c” matrix in this paper. Table 1 provides an example of

such a “c” matrix when “n” reaches 6. With the “c” matrix, the general form of the orthonor-

mal Legendre polynomial (given the “n” value) may be obtained. For example, when n = 4, the

fourth row vector of coefficients in the “c” matrix can be extracted to write the polynomial as

L4(x) = 3x0 − 60x1 + 270x2 − 420x3 + 210x4.

After the “c” matrix is generated, δ0 needs to be defined as 1 and the numerator in the SNP

probability density function in Eq (7) can be rewritten as:

f1þ
PK

k¼1
dkLk½GðxÞ�g

2
¼ f
PK

k¼0
dkLk½GðxÞ�g

2
¼ ½
PK

k¼0
dk

PK
i¼0

ck;iGðxÞ
i
�
2

¼ ½
PK

i¼0
ð
PK

k¼0
dkck;iÞGðxÞ

i
�
2
:

Define a “d” vector, where each element di ¼
PK

k¼0
dkck;i. Since ck,i = 0 when k< i,

di ¼
PK

k¼idkck;i: ð11Þ
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Thus, f1þ
PK

k¼1
dkLk½GðxÞ�g

2
¼ ½
PK

i¼0
diGðxÞ

i
�
2
¼
PK

i¼0

PK
j¼0

didjGðxÞ
iþj

. The SNP proba-

bility density function in Eq (7) may then be rewritten as:

f xð Þ ¼
f1þ

PK
k¼1

dkLk½GðxÞ�g
2

1þ
PK

k¼1
dk

2
� g xð Þ ¼

PK
i¼0

PK
j¼0

didj
PK

k¼0
dk

2

 !

GðxÞiþj

" #

g xð Þ

¼
PM

m¼0
xm½GðxÞ�

m� 	
g xð Þ:

In the formula above; M ¼ 2K and xm ¼

Pm
i¼0

didm� i
PK

k¼0
dk

2
; if m � K;

PK
i¼m� Kdidm� i
PK

k¼0
dk

2
; if K < m � 2K:

ð12Þ

8
>>>><

>>>>:

Essentially, the SNP PDF in Eq (7) has been simplified to be:

fðxÞ ¼ f
PM

m¼0
xm½GðxÞ�

m
ggðxÞ; ð13Þ

where ξm is a function with respect to parameters δk, and M (= 2K) is the highest power term

of “G(x)” in the formula. The relationship between ξm and δk is described by Eqs (11) and (12).

The cumulative distribution function (CDF) of the extended probability density function may

be formulated as:

F xð Þ ¼
R x
� 1

PM
m¼0

xm½GðεÞ�
m� 	

gðεÞdε ¼
PM

m¼0

xm � ½GðxÞ�
mþ1

mþ 1

� �

: ð14Þ

3.3 Derivation of choice probabilities and likelihood function

Suppose there are “J” alternatives in the choice set and their random utility functions are U1,

U2, . . ., UJ. Let the utility Uj be expressed as the sum of the systematic component Vj and the

random component εj (i.e., Uj = Vj + εj). Assume that εj independently follows the extended

distribution and its semi-nonparametric PDF and CDF are given as:

f jðxÞ ¼

(
PMj

mj¼0xj;mj
½GðxÞ�mj

)

gðxÞ; ð15Þ

Fj xð Þ ¼
PMj

mj¼0

xj;mj
½GðxÞ�mjþ1

mj þ 1

( )

: ð16Þ

Table 1. An example of “c” matrix.

k 0 1 2 3 4 5 6

n

0 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1 -1.73 3.46 0.00 0.00 0.00 0.00 0.00

2 2.24 -13.42 13.42 0.00 0.00 0.00 0.00

3 -2.65 31.75 -79.37 52.92 0.00 0.00 0.00

4 3.00 -60.00 270.00 -420.00 210.00 0.00 0.00

5 -3.32 99.50 -696.49 1857.31 -2089.47 835.79 0.00

6 3.61 -151.43 1514.33 -6057.33 11357.49 -9994.59 3331.53

https://doi.org/10.1371/journal.pone.0186689.t001

On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices

PLOS ONE | https://doi.org/10.1371/journal.pone.0186689 October 26, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0186689.t001
https://doi.org/10.1371/journal.pone.0186689


The subscript “j” is added to allow εj in various random utilities to have different SNP dis-

tributions. In addition, three Lemmas, whose proofs are furnished in S1 Appendix, are used in

the subsequent derivation of choice probabilities. Based on the utility maximization principle,

Pðy ¼ 1Þ ¼ PðU1 > U2 ;U1 > U3 ; . . . ;U1 > UJ Þ ¼ PðV1 þ ε1 > V2 þ ε2;V1 þ ε1

> V3 þ ε3; . . . ;V1 þ ε1 > VJ þ εJÞ;

where “y” is a categorical choice variable indicating the specific alternative that is chosen.

Then, P(y = 1) = P(ε2 < V12 + ε1,ε3 < V13 + ε1,…,εJ < V1J + ε1), where Vij = Vi Vj

Pðy ¼ 1Þ ¼
R þ1
� 1

F2ðV12 þ ε1ÞF3ðV13 þ ε1Þ; . . . ; FJðV1J þ ε1Þf 1ðε1Þdε1

¼
R þ1
� 1

PM2

m2¼0

x2;m2
½GðV12 þ ε1Þ�

m2þ1

m2 þ 1

( )

. . .
PMJ

mJ¼0

xJ;mJ
½GðV1J þ ε1Þ�

mJþ1

mJ þ 1

( )

PM1

m1¼0
x1;m1
½Gðε1Þ�

m1

n o
gðε1Þdε1:

According to Lemma 1 in S1 Appendix, [G(ε)]m = G[ε − ln(m)], where m > 0. Thus,

P y ¼ 1ð Þ ¼
PM1

m1¼0

PM2

m2¼0
. . .
PMJ

mJ¼0

ðm1 þ 1Þ
QJ

i¼1
xi;mj

QJ
j¼1
ðmj þ 1Þ

R þ1
� 1
f
QJ

j¼2
G½V1j þ ε1 � lnðmj þ 1Þ�gG½ε1

� lnðm1Þ�gðε1Þdε1:

Let the integral part in the formula be defined as "Int", i.e.,

Int ¼
R þ1
� 1
f
QJ

j¼2
G½V1j þ ε1 � lnðmj þ 1Þ�gG½ε1 � lnðm1Þ�gðε1Þdε1:

According to Lemma 2 in S1 Appendix, f
QJ

j¼2
G½V1j þ ε1 � lnðmj þ 1Þ�gG½ε1 � lnðm1Þ� ¼

Gðε1 þ cÞ,
where c ¼ � ln½elnðm2þ1Þ� V12 þ elnðm3þ1Þ� V13 þ � � � elnðmJþ1Þ� V1J þ elnðm1Þ�. Then,

Int ¼
R þ1
� 1

Gðε1 þ cÞgðε1Þdε1. According to Lemma 3 in S1 Appendix,

Int ¼
R þ1
� 1

Gðε1 þ cÞg ε1ð Þdε1 ¼
1

1þ e� c
¼

1

1þm1 þ elnðm2þ1Þ� V12 þ elnðm3þ1Þ� V13 þ � � � þ elnðmJþ1Þ� V1J
¼

eV1

ð1þm1ÞeV1 þ ð1þm2ÞeV2 þ � � � þ ð1þmJÞeVJ
¼

eV1

PJ
j¼1
ð1þmjÞeVj

:

By substituting "Int" into the choice probability expression, an elegant closed-form equation

for the choice probability may be obtained:

P y ¼ 1ð Þ ¼
PM1

m1¼0

PM2

m2¼0
. . .
PMJ

mJ¼0

QJ
i¼1

xi;mj
QJ

j¼1
ðmj þ 1Þ

" #

�
ðm1 þ 1ÞeV1

PJ
j¼1
ðmj þ 1ÞeVj

" #( )

: ð17Þ

The derivation above is shown for the case when y = 1, but can be generalized to the situa-

tion where y = k. Without loss of generality,

P y ¼ kð Þ ¼
PM1

m1¼0

PM2

m2¼0
. . .
PMJ

mJ¼0

QJ
i¼1

xi;mj
QJ

j¼1
ðmj þ 1Þ

" #

�
ðmk þ 1ÞeVk

PJ
j¼1
ðmj þ 1ÞeVj

" #( )

: ð18Þ
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The log-likelihood function over the entire sample may be formulated as:

LL ¼
PN

i¼1

PJ
k¼1

Iðyi ¼ kÞ � ln½Pðyi ¼ kÞ�; ð19Þ

where I() is an indicator function; the subscript “i” is the index for an observed choice in the

sample and “N” is the sample size. The log-likelihood function can be maximized to estimate

model coefficients in the systematic component Vj as well as parameters in the vector δj that

have been incorporated into xi;mj
. When all Mj = 0, P y ¼ kð Þ ¼ eVkPJ

j¼1
eVj

and the model reduces

to the familiar MNL model. Thus, the proposed model may be considered a generalized multi-

nomial logit model based on a semi-nonparametric approach.

4. Data and empirical estimation results

4.1 Data and modeling procedure

Data for the empirical study is extracted from the 2000 Swiss Microcensus travel survey. A

sample consisting of 2,756 commuting trips reported by residents of Aargau Canton in Swit-

zerland is used in this study to estimate models for commute mode choice. Four major com-

mute modes are considered and defined as auto, transit, bicycle and walk. The sample market

shares for these four alternatives show that the Aargau Canton of Switzerland depicts a multi-

modal transportation environment, where 57.62% of commuting trips are made by private

auto and the remaining 42.38% of commuting trips are made by transit or non-motorized

travel modes. In particular, the transit mode share is 15.86%, the bicycle mode share is 8.31%,

and the walk mode share is 18.21%. The mode shares offer a sufficient number of observations

in each travel mode, thus supporting the estimation of a mode choice model with multiple

alternatives. In addition, multimodal network skim (level of service) data and commuters’

demographic and socioeconomic attributes are incorporated in the mode choice model

specification.

The modeling effort started with the estimation of a simple MNL mode of mode choice.

Model estimation results are presented in the first part of Table 2. Both level of service (LOS)

attributes and commuters’ demographic and socioeconomic attributes are included as explan-

atory variables in the utility functions. Travel times, including auto in-vehicle time, transit in-

vehicle time, and bicycle and walk times, exhibit significantly negative coefficients in the

respective utility functions. Transit service frequency takes a significantly positive coefficient,

indicating that a high service frequency would increase propensity of commuters to use transit.

Model coefficients associated with demographic and socioeconomic attributes show that

female commuters are less likely to use auto and bicycle modes. Low-income commuters are

more likely to use transit or bicycle modes, while high-income commuters are less likely to use

the transit mode. Commuters with lower education level are less likely to use auto than those

with high education level. Older commuters are less likely to use public transit. All of the esti-

mation results are behaviorally intuitive and consistent with expectations. The model’s log-

likelihood value at convergence is -2495.646, corresponding to an adjusted likelihood ratio

index of 0.1923 for the overall goodness-of-fit measure of the model.

Next, the proposed SGMNL (semi-nonparametric generalized multinomial logit) model is

estimated to relax the standard Gumbel distribution for random components in modal utility

functions. First, consider the specification in which Kj is set at 1, where “K” is the number of

polynomials in Eq (7) and “j” is an index for travel mode (i.e., j = 1, 2, 3 or 4). When K1 = 1, it is

found that the log-likelihood value improves from -2495.646 to -2488.037. As the current model

nests the original MNL model, the likelihood ratio chi-square test may be applied to show that

the improvement is statistically significant [i.e., (2495.646–2488.037) ×2 = 15.22> 3.84, the
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critical chi-square value for one degree of freedom at a 95% confidence level]. This result

strongly rejects the assumption of a standard Gumbel distribution for the random component

in the auto utility function.

Model estimation results are presented in the second part of Table 2 and denoted as

“SGMNL-11”. In this model, the signs of explanatory variable coefficients do not change from

those obtained in the standard MNL model, but the magnitudes of coefficients in the auto util-

ity function are found to differ. As expected, the alternative specific constant in the auto utility

function changes substantially from -0.0919 to 0.9242 because the expectation of the new SNP

distribution is very different from the expectation of the standard Gumbel distribution (Euler

constant� 0.577), and the alternative specific constant reflects this difference. An interesting

finding is that the significance level of the single coefficient δ1,1 (as indicated by the t-statistic)

is not as strong as that implied by the χ2 test for the overall model fit. However, it should be

noted that the likelihood ratio test should be applied to determine whether a semi-nonpara-

metric choice model form is more appropriate because the significance of multiple coefficients,

and their contribution to overall goodness-of-fit, needs to be tested in most occasions.

Table 2. Model estimation results of MNL, SGMNL-11, SGMNL-21 and SGMNL-22.

Explanatory Variable MNL SGMNL-11 SGMNL-21 SGMNL-22

Est. Coef. t-stat Est. Coef. t-stat Est. Coef. t-test Est. Coef. t-test

Auto Utility

Constant -0.0919 -1.03 0.9242 11.085 0.8312 10.113 0.8584 7.938

Auto in-vehicle time (min) -0.0766 -11.41 -0.0698 -11.333 -0.0386 -10.217 -0.0455 -5.779

Commuter is female -0.6618 -6.912 -0.5583 -6.568 -0.3915 -7.239 -0.4254 -6.307

Education level is less than or equal to middle school -0.6461 -4.658 -0.4882 -4.226 -0.406 -5.02 -0.4319 -4.716

Transit Utility

Constant -2.373 -10.481 -2.1819 -10.167 -0.4047 -2.842 -1.3658 -8.807

Transit in-vehicle time (min) -0.038 -5.915 -0.0311 -5.071 -0.0203 -5.202 -0.0235 -4.562

Transit service frequency per hour 0.0548 10.221 0.0531 10.288 0.033 10.444 0.0388 6.262

Commuter’s household monthly income is less than CHF 4,000 0.5536 2.432 0.4915 2.391 0.2537 2.224 0.2644 1.983

Commuter’s household monthly income is more than CHF 10,000 -0.3342 -2.243 -0.3181 -2.325 -0.1543 -2.094 -0.1836 -2.126

Commuter’s age (years) -0.012 -2.818 -0.0119 -3.06 -0.0055 -2.603 -0.006 -2.394

Bicycle Utility

Constant -1.1107 -8.332 -1.0927 -8.227 -1.1433 -8.721 -1.1312 -8.539

Bicycle travel time (min) -0.0756 -13.07 -0.0678 -11.569 -0.0571 -10.509 -0.0592 -10.172

Commuter is female -0.4383 -2.805 -0.429 -2.768 -0.3041 -2.071 -0.3309 -2.17

Commuter’s household monthly income is less than CHF 4,000 0.7798 3.399 0.6945 3.223 0.696 3.276 0.6925 3.26

Walk Utility

Walk travel time (min) -0.0381 -24.515 -0.035 -22.002 -0.0312 -21.91 -0.0319 -20.304

Delta Values

δ1,1 – – – – -1.1776 -1.699 -1.0236 -0.845 -0.9842 -0.778

δ2,1 – – – – – – – – -0.8471 -6.461 1.0613 1.625

δ2,2 – – – – – – – – – – – – -1.9138 -2.37

Model Statistics

LL(β) -2495.646 -2488.037 -2472.741 -2469.455

χ2-test – – 15.22 30.59 6.57

Adj. ρ2(c)* 0.1923 0.1945 0.1991 0.1998

* The log-likelihood value with constants only: LL(c) = -3104.836

https://doi.org/10.1371/journal.pone.0186689.t002
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After one significant coefficient δ1,1 is found for the first utility function, K2 in the second

utility function is then set to 1 and δ2,1 is estimated. Estimation results for this model, denoted

as “SGMNL-21”, are presented in the third part of Table 2. It can be seen that, after δ2,1 is

introduced in the model specification, δ1,1 becomes insignificant but δ2,1 becomes highly sig-

nificant as indicated by the t-statistics. The likelihood ratio test indicates that the model

“SGMNL-21” with additional coefficient δ2,1 is significantly better than the model “SGMNL-

11”, which does not include parameter δ2,1 [(2488.037–2472.741) × 2� 30.59 > 3.84]. The

likelihood ratio test also shows that “SGMNL-21” is significantly better than the regular MNL

model specification [(2495.646–2472.741) × 2� 45.81> 5.99, the critical χ2 value correspond-

ing to two degrees of freedom at a 95% confidence level]. Given that both “SGMNL-11” and

“SGMNL-21” performed significantly better than the regular MNL model, both δ1,1 and δ2,1

should be retained in the SNP model. A comparison of coefficient estimates shows consider-

able differences across the “SGMNL-21”, “SGMNL-11”, and “MNL” models, particularly for

the transit utility functions. This is consistent with the notion that the introduction of δ1,1 and

δ2,1 will change the expectation and standard deviation of random components; both alterna-

tive specific constants and coefficients of explanatory variables change accordingly.

When δ3,1 or δ4,1 for bicycle and walk modes are introduced, no significant improvement is

observed. In the interest of brevity, those estimation results are not presented here. The model-

ing effort now moves to the second stage, where the “K” value is increased to 2 and the coeffi-

cients δ1,2, δ2,2, δ3,2 and δ4,2 are introduced into the model one by one. In this stage, it is found

that only the introduction of δ2,2 in the transit utility function significantly improves the overall

model fit (χ2 test value = 6.57> 3.84) while all other δ values do not. A final model estimation

effort is performed, in which the “K” value is increased to 3 and parameter δ2,3 is introduced in

the model. The maximum likelihood estimation procedure fails to converge, indicating that the

sample of 2,756 choice observations may not be sufficient to support model estimation where

the “K” value is increased to 3. Thus, the final best model is considered to be that which adopts

a “K” value of 2 and introduces parameter δ2,2, in addition to parameters δ1,1 and δ2,1 intro-

duced in “SGMNL-21”. This final model is designated “SGMNL-22”. If its model coefficients

are compared with those in “SGMNL-21”, there is no substantial difference observed, except for

the alternative specific constant and the coefficient associated with the “high-income” dummy

variable in the transit utility function. As this is considered the final model, all subsequent com-

parisons are conducted between the MNL model and the final “SGMNL-22” model.

4.2 Plotting probability density distributions of random components in the

“SGMNL-22” model

Fig 3 depicts the probability density distributions of random components in the “SGMNL-22”

model. Eqs (11) and (12) are used to convert the estimated δ values to ξ values and then Eq

(13) is used to compute the probability densities based on ξ values. The green curve represents

the standard Gumbel distribution for random components in bicycle and walk mode utility

functions (i.e., e3 and e4 in Fig 3). The blue curve represents the distribution of the random

component in the auto utility function. The coefficient δ1,1 not only reduces the variance of

the distribution of the random component but also shifts its mode towards the negative side

by about 0.6 units. This helps explain why the alternative specific constant in the auto utility

of the “SGMNL-22” model is substantially more positive than that in the MNL model. The

positive alternative specific constant offsets the negative expectation of the new random com-

ponent. The lower variance of the error distribution for the auto utility may be due to the exis-

tence of fewer unspecified or unobserved random factors associated with auto mode choice

than with other mode choices. The distribution of the random component in the transit utility
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function (i.e., e2) presents an interesting pattern in the context of this study. With the inclu-

sion of parameters δ2,1 and δ2,2 in the model (both of which are significant), “e2” depicts a

bimodal distribution as shown by the red curve. The major mode on the right side is located

near 0.6 and the minor one on the left side is near -1.2 on the coordinate axis. Based on this

finding, it may be conjectured that there are two key groups of commuters mixed in the sam-

ple. One group of commuters has a positive attitude and inclination towards using transit and

is associated with the major mode of the distribution. Meanwhile, a smaller group of commut-

ers has a negative attitude towards transit and comprises the distribution near the minor

mode. Although the exact source of the bimodal distribution is uncertain, the proposed SNP

modeling method depicts the existence of such a phenomenon and exposes the potential limi-

tation of using conventional MNL choice models that are based on unimodal distributional

assumptions. Capturing the bimodal distribution in the choice model can help realize more

consistent coefficient estimates and reliable policy sensitivities.

4.3 A comparison of aggregate marginal effects and elasticities

Coefficients in choice models usually do not directly reflect the impact of an explanatory vari-

able on choice probabilities, particularly when the standard deviations of random components

are scaled up or down, as in the transit or auto utility in the SGMNL model estimated in this

study. To better understand differences in model sensitivity between MNL and SGMNL mod-

els, marginal effects and elasticities are computed and compared. In this subsection, aggregate

marginal effects (AME) and aggregate elasticities (AE) with respect to level of service (LOS)

variables are computed based on the following two equations:

AME ¼
@ð
PN

i¼1
Pi=NÞ

@zi
�

PN
i¼1
½Pðxi; zi þ DÞ � Pðxi; ziÞ�

N � D
; ð20Þ

AE ¼
@ð
PN

i¼1
Pi=NÞ

ð
PN

i¼1
Pi=NÞ � @zi=zi

�

PN
i¼1
½Pðxi; zi þ D � ziÞ � Pðxi; ziÞ�

D �
PN

i¼1
Pðxi; ziÞ

: ð21Þ

In the above equations, “P” represents the choice probability expression of the MNL or

SGMNL model. “xi” represents a vector of explanatory variables except the one (i.e., zi) whose

marginal effect or elasticity is being computed. “Δ” takes a value of 0.01 in this study as it is

found that such a small interval provides sufficiently accurate estimates for “AME” and “AE”

in both MNL and SGMNL models. Table 3 presents a comparison of computed “AME” and

“AE” values between MNL and SGMNL-22 models. Relative differences in “AME” and “AE”

are found to be considerable, which validates the notion that maximum likelihood estimators

are inconsistent when distributional assumptions are violated. Such differences have impor-

tant policy implications for transportation planning and management. For example, suppose a

transportation authority intends to shift commuters from the auto mode to the transit mode

by increasing transit service frequency. In predicting the number of commute drivers who will

shift from auto to transit in response to the transit improvement, the conventional MNL

model underestimates the elasticity with respect to transit service frequency by 25% (-0.082 vs

-0.110).

4.4 A comparison of disaggregate marginal effects and elasticities

The “AME” or “AE” presented in the previous subsection provide sample sensitivity to explan-

atory variables at the aggregate level and show how a level of service (LOS) variable, for exam-

ple, affects market shares of alternatives based on the assumption that the sample is randomly

On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices

PLOS ONE | https://doi.org/10.1371/journal.pone.0186689 October 26, 2017 12 / 19

https://doi.org/10.1371/journal.pone.0186689


drawn and can therefore represent the population shares well. However, aggregate measures of

effects mask an important difference between MNL and SGMNL models. The MNL model has

the IIA (Independence of Irrelevant Alternatives) property while the SGMNL model does not

have this property. In order to illustrate this important difference between the two models, dis-

aggregate marginal effects and elasticities are computed and compared for a specific individual

commuter who is a 40 year old male with medium-level income and education level above

middle school. The multimodal transportation level of service variables for this individual’s

commute are as follows: auto in-vehicle time is 5 minutes; transit in-vehicle time is 8 minutes;

transit service frequency is 6 times per hour; bicycle travel time is 12 minutes; and walk travel

time is 35 minutes. Given these input variables for this specific commuter, both MNL and

SGMNL-22 models are applied to compute choice probabilities of alternative travel modes.

Results are shown in Table 4. There is a substantial difference in the choice probability of tran-

sit mode between the two models. The computations show that the MNL model returns a tran-

sit choice probability that is higher than that provided by the SGMNL-22 model by 41.8%,

presumably because the model does not capture and reflect the bimodal distribution of the

random component in the transit utility function.

Table 4 also presents a comparison of predicted means of market shares (i.e.,
PN

i¼1
P̂i=N)

over the entire sample. An appealing property of the MNL model is that it can replicate the

observed sample shares perfectly using alternative specific constants in utility functions [1].

The SGMNL model does not have this feature, but the greatest difference occurs in the transit

share where the relative difference is found to be only 1.5%, which is quite reasonable and

acceptable.

The IIA property, which is a key feature of the MNL model, also manifests in the form of

equal cross-elasticities [40]. Formulations similar to those expressed in Eqs (20) and (21) are

applied to compute disaggregate marginal effects and elasticities with respect to LOS variables.

The only difference is that the equations are applied to the specific individual commuter as

opposed to all of the commuters in the sample. Results of the computations are presented in

Table 5.

Fig 3. Probability density distributions of random components in the “SGMNL-22” model.

https://doi.org/10.1371/journal.pone.0186689.g003
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It can be seen that cross-elasticities are equal in the MNL model, which reflects its IIA prop-

erty. However, with unequal variances in auto and transit utilities in the SGMNL model, cross-

elasticities for auto and transit choice probabilities are not equal, thus demonstrating that the

SGMNL model does not possess the IIA property. However, because the random components

in bicycle and walk utilities have equal variance, cross-elasticities for these two alternatives are

still equal and therefore the IIA property holds for the bicycle and walk modes even in the case

of the SGMNL model. This is similar to the situation where two alternatives belong to the

same nest in a nested logit model.

4.5 A comparison of changes in transit choice probability in response to

a service frequency improvement

To further illustrate the policy implications of alternative model forms, changes in transit choice

probability predicted by the two models in response to a service frequency improvement are

Table 3. Comparisons of aggregate marginal effects (AME) and elasticities (AE).

Level-of-Service Variable Auto Transit Bicycle Walk

Aggregate Marginal Effects

Model SGMNL-22

Auto in-vehicle time -0.0140 0.0077 0.0021 0.0042

Transit in-vehicle time 0.0040 -0.0047 0.0002 0.0005

Transit service frequency per hour -0.0066 0.0078 -0.0004 -0.0008

Bicycle travel time 0.0027 0.0006 -0.0044 0.0011

Walk travel time 0.0030 0.0006 0.0006 -0.0042

Model MNL

Auto in-vehicle time -0.0154 0.0067 0.0030 0.0058

Transit in-vehicle time 0.0033 -0.0043 0.0004 0.0006

Transit service frequency per hour -0.0048 0.0062 -0.0005 -0.0009

Bicycle travel time 0.0029 0.0007 -0.0055 0.0018

Walk travel time 0.0029 0.0006 0.0009 -0.0044

Aggregate Elasticities

Model SGMNL-22

Auto in-vehicle time -0.310 0.885 0.173 0.115

Transit in-vehicle time 0.126 -0.482 0.027 0.017

Transit service frequency per hour -0.110 0.496 -0.072 -0.060

Bicycle travel time 0.077 0.080 -0.789 0.045

Walk travel time 0.164 0.163 0.160 -0.731

Model MNL

Auto in-vehicle time -0.322 0.840 0.265 0.168

Transit in-vehicle time 0.111 -0.452 0.040 0.024

Transit service frequency per hour -0.082 0.431 -0.091 -0.074

Bicycle travel time 0.089 0.096 -0.976 0.081

Walk travel time 0.169 0.173 0.266 -0.806

https://doi.org/10.1371/journal.pone.0186689.t003

Table 4. Comparisons of market shares and individual choice probabilities.

Statistics Auto Transit Bicycle Walk

Observed Sample Share 0.5762 0.1586 0.0831 0.1821

Predicted Sample Share from SGMNL-22 0.5738 0.1610 0.0829 0.1823

Predicted Sample Share from MNL 0.5762 0.1586 0.0831 0.1821

Predicted Individual Choice Probabilities from SGMNL-22 for Specific Commuter 0.5877 0.0388 0.1219 0.2516

Predicted Individual Choice Probabilities from MNL for Specific Commuter 0.5771 0.0550 0.1233 0.2446

https://doi.org/10.1371/journal.pone.0186689.t004
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compared for the specific individual commuter considered previously. The result of this com-

parison is presented in Fig 4. Relative to the SGMNL model, the MNL model overestimates the

transit choice probability when the service frequency is low (<18 per hour) but underestimates

it when the service frequency is high (�18 per hour). A service frequency of 18 transit vehicles

per hour is quite high, reflecting a headway of just over three minutes. Given that most real-

world transit services operate at frequencies less than 18 vehicles per hour, it appears that the

MNL model is likely to overestimate the transit choice probability relative to the SGMNL

model. In this particular example, when the service frequency is very low (�4 per hour), the rel-

ative difference between the predicted transit choice probabilities computed from the MNL and

SGMNL models can exceed 50%.

5. Conclusions

In this paper, a semi-nonparametric generalized multinomial logit (SGMNL) model is formu-

lated and developed by applying orthonormal Legendre polynomials to extend the standard

Gumbel distribution that lies at the core of multinomial logit models applied in practice. The

semi-nonparametric function with flexible forms can represent a probability density function

for a large family of multimodal distributions. Unlike the existing semi-nonparametric model-

ing method which is applied to binary choice situations in the econometric literature, the pro-

posed method allows for modeling multinomial choices, which are typically encountered in

Table 5. Comparisons of disaggregate marginal effects and elasticities.

Level-of-Service Variable Auto Transit Bicycle Walk

Disaggregate Marginal Effects

Model SGMNL-22

Auto in-vehicle time -0.0145 0.0030 0.0038 0.0077

Transit in-vehicle time 0.0016 -0.0020 0.0002 0.0003

Transit service frequency per hour -0.0026 0.0033 -0.0003 -0.0005

Bicycle travel time 0.0049 0.0004 -0.0066 0.0013

Walk travel time 0.0054 0.0004 0.0007 -0.0066

Model MNL

Auto in-vehicle time -0.0187 0.0024 0.0055 0.0108

Transit in-vehicle time 0.0012 -0.0020 0.0003 0.0005

Transit service frequency per hour -0.0017 0.0028 -0.0004 -0.0007

Bicycle travel time 0.0054 0.0005 -0.0082 0.0023

Walk travel time 0.0054 0.0005 0.0011 -0.0070

Disaggregate Elasticities

Model SGMNL-22

Auto in-vehicle time -0.124 0.390 0.154 0.154

Transit in-vehicle time 0.021 -0.417 0.010 0.010

Transit service frequency per hour -0.026 0.519 -0.012 -0.012

Bicycle travel time 0.099 0.119 -0.646 0.063

Walk travel time 0.322 0.385 0.203 -0.910

Model MNL

Auto in-vehicle time -0.162 0.221 0.221 0.221

Transit in-vehicle time 0.017 -0.287 0.017 0.017

Transit service frequency per hour -0.018 0.311 -0.018 -0.018

Bicycle travel time 0.112 0.112 -0.793 0.112

Walk travel time 0.325 0.325 0.325 -1.004

https://doi.org/10.1371/journal.pone.0186689.t005
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travel-related choice behavior analysis and travel demand modeling. The advantage of the pro-

posed method is that the formulation results in a closed-form likelihood function and standard

maximum likelihood estimation methods can be applied for parameter estimation. Thus, the

model estimation procedure is computationally efficient and free from simulation-based com-

plexity or errors.

The proposed modeling method is applied to an empirical setting of commute travel mode

choice among four alternatives (auto, transit, bicycle and walk), based on travel survey and

network skim (level of service) data from the Canton of Argau in Switzerland. It is found that

the distribution of the random component in the auto utility function is similar to a Gumbel

distribution, but has substantially smaller variance. More notably, the random component in

the transit utility function follows a bimodal distribution, which indicates a significant depar-

ture from and violation of the assumption of a Gumbel distribution. Unequal variances

accommodated in the formulation allow the semi-nonparametric model to be free of the limi-

tations of the IIA property that are inherent to the multinomial logit model. The semi-non-

parametric model specifications are found to offer superior goodness-of-fit when compared

with the MNL model. The violation of the standard Gumbel distribution assumption in the

multinomial logit model leads to inconsistent coefficient estimates, marginal effects, elasticities

and choice probabilities. In the empirical context considered in this study, the multinomial

logit model is found to overestimate the predicted transit choice probability relative to the

semi-nonparametric model for transit service scenarios commonly encountered in the real

world.

A few limitations of the proposed method and directions for future research are worthy of

note. First, it may be challenging to directly apply the proposed method to model choice

behaviors in the context of a large choice set (e.g. [41]). The likelihood function, depicted in

Eq (18), involves multiple levels of summations and the number of levels is dependent on the

number of alternatives in the choice set. Thus, the computational complexity will increase geo-

metrically with an increase in the number of alternatives in the choice set. Future research

should focus on reducing computational complexity in the context of large choice sets. Second,

Fig 4. Transit choice probability for a specific commuter in response to an improvement in service

frequency.

https://doi.org/10.1371/journal.pone.0186689.g004
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the proposed model is developed based on the assumption that random components in utility

functions are mutually independent. However, this assumption may not hold in empirical set-

tings. In future research, there may be the potential to introduce correlations in joint semi-

nonparametric distributions and develop nested or cross-nested versions of the proposed

semi-nonparametric multinomial choice model. Third, it is uncertain whether the empirical

results of this study, in which the random component of the transit utility is found to follow a

bimodal distribution, are valid in different geographical and modal contexts. Conducting stud-

ies similar to this one in different contexts would help shed light on the generalizability of

results reported in this paper.
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