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1. Introduction

Let A(p) denote the class of all functions

f (z) = zp +

∞∑
n=1

an+pzn+p, (p ∈ N = {1, 2, 3.....}) (1.1)

which are analytic and p-valent in the open unit disk E = {z : |z| < 1}. For p = 1, A(1) = A. Let f ,
g ∈ A(p), where f is given by (1.1) and g is defined by

g(z) = zp +

∞∑
n=1

bn+pzn+p, (z ∈ E).

Then the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

( f ∗ g) (z) = zp +

∞∑
n=1

an+pbn+pzn+p = (g ∗ f ) (z).

Let UCV and US T denote the usual classes of uniformly convex and uniformly starlike functions and
are defined by

UCV =

{
f (z) ∈ A : Re

(
1 +

z f ′′(z)
f ′(z)

)
>

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣} , z ∈ E,

\protect \relax \protect \edef txr{txr}\protect \xdef \U/txexa/m/n/5 {\OT1/txr/m/n/10 }\U/txexa/m/n/5 \size@update \enc@update http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2017.2.260


261

US T =

{
f (z) ∈ A : Re

(
z f ′(z)
f (z)

)
>

∣∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣∣} , z ∈ E.

These classes were first introduced by Goodman [2, 3] and further investigated by [14] and [6].
Kanas and Wiśniowska [4, 5] introduced the conic domain Ωk, k ≥ 0 as

Ωk =

{
u + iv : u > k

√
(u − 1)2 + v2

}
.

For fixed k this domain represents the right half plane (k = 0), a parabola (k = 1), the right branch
of hyperbola (0 < k < 1) and an ellipse (k > 1). For detail study about Ωk and its generalizations, see
[8, 9, 10]. The extremal functions for these conic regions are

pk (z) =



1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√

z

)2
, k = 1,

1
1−k2 cosh

{(
2
π

arccos k
)

log 1+
√

z
1−
√

z

}
− k2

1−k2 , 0 < k < 1,

1
k2−1 sin

(
π

2K(κ)

∫ u(z)
√
κ

0
dt

√
1−t2

√
1−κ2t2

)
+ k2

k2−1 , k > 1,

(1.2)

where

u(z) =
z −
√
κ

1 −
√
κz
, z ∈ E,

and κ ∈ (0, 1) is chosen such that k = cosh (πK′(κ)/(4K(κ))). Here K(κ) is Legendre’s complete elliptic
integral of first kind and K′(κ) = K(

√
1 − κ2) and K′ (t) is the complementary integral of K (t).

Now we define the following:
Definition. Let f ∈ A(p) given by (1.1) is said to belong to k − URp, k ≥ 0 if it satisfies the following
condition

Re
(

f (p)(z) + z f (p+1)(z)
p!

)
> k

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z)
p!

− 1

∣∣∣∣∣∣ , z ∈ E,

where f (p)(z) is the pth derivative of f (z).
Special Cases:
i) For k = 0, we have 0 − URp = Rp, introduced and studied by Noor et-al. [7].
ii) For k = 0, p = 1, we have 0 − UR1 = R, introduced and studied by Singh et-al. [15].

2. Preliminary Results

Lemma 2.1. [12]. For α ≤ 1 and β ≤ 1

p(α) ∗ p(β) ⊂ p(δ), δ = 1 − 2(1 − α)(1 − β).

The result is sharp.

Lemma 2.2. [1]. Let {dn}
∞
0 be a convex null sequence. Then the function

q(z) =
d0

2
+

∞∑
n=1

dnzn

is analytic in E and Req(z) > 0 z ∈ E.
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Lemma 2.3. [13]. For 0 ≤ θ ≤ π,
1
2

+

m∑
n=1

cos nθ
n + 1

≥ 0.

Lemma 2.4. [7]. If f and g belong to the class Rp and

h(p−1)(z) = f (p−1)(z) ∗ g(p−1)(z).

Then h also belong to the class Rp.

3. Main Result

Theorem 3.1. Let f ∈ k − URP then

Re
(

f (p)(z)
p!

)
>

k − 1 + 2 log 2
k + 1

.

Proof. Let f ∈ k − URp then by definition, we have

Re
(

f (p)(z) + z f (p+1)(z)
p!

)
> k

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z)
p!

− 1

∣∣∣∣∣∣ .
After some simple computations, we have

Re
(

f (p)(z) + z f (p+1)(z)
p!

)
>

k
k + 1

, (3.1)

This can be written as

Re

1 +

∞∑
n=1

(p + n)!(n + 1)
n!

an+pzn

 > k
k + 1

, (3.2)

or

Re

1 +
1
2

∞∑
n=1

(p + n)!(n + 1)
n!

an+pzn

 > 2k + 1
2k + 2

. (3.3)

Consider the function

h(z) = 1 + 2
∞∑

n=1

zn

n + 1
. (3.4)

Clearly h is analytic, h(0) = 1 in E and

Reh(z) = Re
(
1 −

2
z

[z + log(1 − z)]
)
> −1 + 2 log 2. (3.5)

From (3.3) and (3.4), we have(
f (p)(z)

p!

)
=

1 +
1
2

∞∑
n=1

(p + n)!(n + 1)
n!

an+pzn

 ∗ 1 + 2
∞∑

n=1

zn

n + 1

 . (3.6)
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Now using (3.3) , (3.5) and Lemma 2.2 with α = 2k+1
2k+2 , β = −1 + 2 log 2 and δ =

k−1+2 log 2
k+1 , we have

Re
(

f (p)(z)
p!

)
>

k − 1 + 2 log 2
k + 1

. (3.7)

This completes the result.
For some spacial value of k and p we obtain the following known result.

Corollary 3.2. [7]. Let f ∈ Rp then

Re
(

f (p)(z)
p!

)
> −1 + 2 log 2.

Theorem 3.3. Let f ∈ k − URp then

Re
(

f (p−1)(z)
z

)
>

p!(2k + 1)
2k + 2

. (3.8)

Proof. From (3.3), we have

Re

1 +
1
2

∞∑
n=1

(p + n)!(n + 1)
n!

an+pzn

 > (2k + 1)
2k + 2

.

Now consider the convex null sequence {dn}
∞
0 define by d0 = 0, dn = 2

(n+1)2 , n ≥ 1, using Lemma 2.2,
we have

Re

1
2

+

∞∑
n=1

2
(n + 1)2 zn

 > 0,

or equivalently

Re

1 + 2
∞∑

n=1

1
(n + 1)2 zn

 > 1
2
. (3.9)

From (3.3) and (3.9), we have

f (p−1)(z)
p!z

=

1 +
1
2

∞∑
n=1

(p + n)!(n + 1)
n!

an+pzn

 ∗ 1 + 2
∞∑

n=1

1
(n + 1)2 zn

 . (3.10)

From (3.10) and Lemma (2.1) with α = 2k+1
2k+2 and β = 1

2 , we have

Re
(

f (p−1)(z)
z

)
>

p!(2k + 1)
2k + 2

. (3.11)

Which is the required result.

Corollary 3.4. [7]. Let f ∈ Rp then

Re
(

f (p−1)(z)
z

)
>

p!
2
, z ∈ E.
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Corollary 3.5. [15]. Let f ∈ R then

Re
(

f (z)
z

)
>

1
2
, z ∈ E.

Theorem 3.6. Let f ∈ k − URp then for every n ≥ 1, the nth partial sum of f satisfies

ReS (p)
n (z, f ) >

p!k
k + 1

, z ∈ E.

and hence S n(z, f ) is p−valent in E.

Proof. From (3.2) and (3.4), we have

s(p)
n (z, f )

p!
=

1 +

∞∑
n=1

(p + n)!(n + 1)
p!n

an+pzn

 ∗ 1 +

∞∑
n=1

zn

n + 1

 . (3.12)

Putting z = reiθ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ π and the minimum principle for harmonic functions with Lemma
2.3, we have

Re

1 +

k∑
n=1

zn

n + 1

 = Re

1 +

k∑
n=1

rneinθ

n + 1

 , 0 ≤ θ ≤ π

= Re

1 +

k∑
n=1

rn

n + 1
(cos nθ + i sin nθ)


=

1 +

k∑
n=1

rn cos nθ
n + 1


=

1 +

k∑
n=1

rn cos nθ
n + 1

 ≥ 1
2
. (3.13)

Using (3.2), (3.12), (3.13) and Lemma 2.1 with α = k
k+1 and β = 1

2 , we have

Re
(
s(p)

n (z, f )
)
>

p!k
k + 1

. (3.14)

This completes the proof. From the result given by [11], we see that sn(z, f ) is p−valent in E for every
n ≥ 1.

Corollary 3.7. [7]. Let f ∈ Rp, then for every n ≥ 1, the nth partial sum of f satisfies

ReS (p)
n (z, f ) > 0, z ∈ E

and hence sn(z, f ) is p−valent in E.

For k = 1 we have the following corollary.

Corollary 3.8. [15]. Let f ∈ 1 − URp, then for every n ≥ 1, the nth partial sum of f satisfies

ReS
′

n(z, f ) >
p!
2
, z ∈ E

and hence sn(z, f ) is univalent in E.
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Theorem 3.9. Let f ∈ k − URp, g ∈ Rp and

h(p−1)(z) = f (p−1)(z) ∗ g(p−1)(z).

Then h belong to the class k − URp.

Proof. Since
h(p−1)(z) = f (p−1)(z) ∗ g(p−1)(z). (3.15)

It follows that
zh(p)(z) = f (p)(z) ∗ g(p−1)(z). (3.16)

After simple computations, (3.16) can be written as

Re
(
h(p)(z) + zh(p+1)(z)

p!

)
= Re

((
f (p)(z) + z f (p+1)(z)

p!

)
∗

(
g(p−1)(z)

zp!

))
. (3.17)

From (3.17), (3.1), Corollary 3.4 and Lemma 2.1 with α = k
k+1 and β = 1

2 , we get the required proof.

Corollary 3.10. [15]. If f (z) = z +
∑∞

n=2 anzn,and g(z) = z +
∑∞

n=2 bnzn belong to R then so does their
Hadamard product

h(z) = f (z) ∗ g(z).

Theorem 3.11. If f , g ∈ Rp, h ∈ k − URp and

ϕ(p−1)(z) = h(p−1)(z) ∗ f (p−1)(z) ∗ g(p−1)(z).

Then ϕ ∈ k − URp.

Proof. Suppose that
m(p−1)(z) = f (p−1)(z) ∗ g(p−1)(z), (3.18)

and it is clear from Lemma 2.4 that, m ∈ Rp. From the hypothesis and (3.18), we have

ϕ(p−1)(z) = h(p−1)(z) ∗ m(p−1)(z). (3.19)

From (3.19) and Theorem 3.9, we get the required result.

Theorem 3.12. If f1, f2, f3, ..., fn belong to Rp, h ∈ k − URp and

g(p−1)(z) = f (p−1)
1 (z) ∗ f (p−1)

2 (z) ∗ f (p−1)
3 (z) ∗ ... ∗ f (p−1)

n (z) ∗ h(p−1)(z). (3.20)

Then g ∈ k − URp.

Proof. For proving the above Theorem, we use the principle of mathematical induction. For n = 2,
we have proved Theorem 3.11, thus (3.20) hold true for n = 2. Suppose that (3.20) hold true for n = k;
that is,

g(p−1)(z) = f (p−1)
1 (z) ∗ f (p−1)

2 (z) ∗ f (p−1)
3 (z) ∗ ... ∗ f (p−1)

k (z) ∗ h(p−1)(z). (3.21)

Then g ∈ k − URp.

We have to prove that (3.20) hold true for n = k + 1, for this, consider

g(p−1)(z) = f (p−1)
1 (z) ∗ f (p−1)

2 (z) ∗ f (p−1)
3 (z) ∗ ... ∗ f (p−1)

k+1 (z) ∗ h(p−1)(z). (3.22)
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Let
M(p−1) = f (p−1)

1 ∗ f (p−1)
2 ∗ f (p−1)

3 ∗ ......... ∗ f (p−1)
k ∗ h(p−1)

Then by hypothesis M ∈ k − URp. Now (3.22) becomes

g(p−1)(z) = (M(p−1) ∗ f (p−1)
k+1 )(z). (3.23)

Using Theorem 3.9, from (3.23), we have

Re
(
g(p)(z) + zg(p+1)(z)

p!

)
>

k
k + 1

. (3.24)

(3.24) now implies that g ∈ k − URp. Therefore, the result is true for n = k + 1 and hence by using
mathematical induction, (3.20) holds true for all n ≥ 2. This completes the proof.

Theorem 3.13. If f , g ∈ k − URp and

h(p−1)(z) = f (p−1)(z) ∗ g(p−1)(z).

Then h belong to the class k − URp.

Proof. Since
h(p−1)(z) = f (p−1)(z) ∗ g(p−1)(z). (3.25)

Differentiation yields
zh(p)(z) = f (p)(z) ∗ g(p−1)(z). (3.26)

After simplification, we have

Re
(
h(p)(z) + zh(p+1)(z)

p!

)
= Re

((
f (p)(z) + z f (p+1)(z)

p!

)
∗

(
g(p−1)(z)

zp!

))
. (3.27)

From (3.27), (3.1), (3.11) and Lemma 2.1 with α = k
k+1 and β = 2k+1

2k+2 , we have

Re
(
h(p)(z) + zh(p+1)(z)

p!

)
>

k
k + 1

. (3.28)

(3.28) implies that h belong to k − URp.

Our next result give us a sufficient condition for the class k − URp.

Theorem 3.14. Let f ∈ A(p) satisfies

∞∑
n=1

(k − 1)(n + 1)(p + n)!
p!n!

∣∣∣an+p

∣∣∣ < 1. (3.29)

Then f ∈ k − URp.
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Proof. To prove the required result it is sufficient to show that

k

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z)
p!

− 1

∣∣∣∣∣∣ − Re
(

f (p)(z) + z f (p+1)(z)
p!

− 1
)
< 1 (3.30)

Now

k

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z)
p!

− 1

∣∣∣∣∣∣ − Re
(

f (p)(z) + z f (p+1)(z)
p!

− 1
)

≤ (k − 1)

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z)
p!

− 1

∣∣∣∣∣∣
= (k − 1)

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z) − p!
p!

∣∣∣∣∣∣
= (k − 1)

∣∣∣∣∣∣∣
∞∑

n=1

(n + 1)(p + n)!
p!n!

an+pzn

∣∣∣∣∣∣∣ .
This can be written as

k

∣∣∣∣∣∣ f (p)(z) + z f (p+1)(z)
p!

− 1

∣∣∣∣∣∣ − Re
(

f (p)(z) + z f (p+1)(z)
p!

− 1
)

≤ (k − 1)

∣∣∣∣∣∣∣
∞∑

n=1

(n + 1)(p + n)!
p!n!

an+p

∣∣∣∣∣∣∣ |zn| (3.31)

(3.31) is bounded above by 1 if (3.29) is satisfied. This completes the proof.
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5. S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures
Appl., 45 (2000), 647-657.

6. D. W. Minda, A unified treatment of some special classes of univalent functions, Proceedings of
the conference on complex analysis, Conf. Proc. Lecture Notes Anal., International Press, Mas-
sachusetts, 1994, 157-169.

AIMS Mathematics Volume 2, Issue 2, 260–268



268

7. K. I. Noor and N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo
Int. J. Sci. Technol., 9 (2015), 181-192.

8. K. I. Noor, Q. Z. Ahmad and M. A. Noor, On some subclasses of analytic functions defined by
fractional derivative in the conic regions, Appl. Math. Inf. Sci., 9 (2015), 819-824.

9. K. I. Noor, J. Sokol and Q. Z. Ahmad, Applications of conic type regions to subclasses of mero-
morphic univalent functions with respect to symmetric points, RACSAM, 2016, 1-14.

10. M. Nunokawa, S. Hussain, N. Khan and Q. Z. Ahmad, A subclass of analytic functions related
with conic domain, J. Clas. Anal., 9 (2016), 137-149.

11. S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A., 40 (1935),
167-188.

12. S. Ponnusamy and V. Singh, Convolution properties of some classes of analytic functions, J. Math.
Sci., 89 (1998), 1008-1020.

13. W. Rogosinski and G. Szego, Uber die abschimlte von potenzreihen die in ernein kreise beschrankt
bleiben. Math. Z., 28 (1928), 73-94.

14. F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-
Sklodowska, Sect A., 45 (1991), 117-122.

15. R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc.Amer. Math.
Soc., 106 (1989), 145-152.

c© 2017, Qazi Zahoor Ahmad, et al., licensee AIMS
Press. This is an open access article distributed under
the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 2, Issue 2, 260–268

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary Results
	Main Result

