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Abstract
This paper is concerned with the Mittag-Leffler stability of fractional-order fuzzy
Cohen-Grossberg neural networks with deviating argument. Applying the Lyapunov
method, the generalized Gronwall-Bellman inequality, and the theory of
fractional-order differential equations, sufficient conditions are presented to
guarantee the existence and uniqueness of solution. Besides, the global Mittag-Leffler
stability is investigated. The obtained criteria are useful in the analysis and design of
fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument.
A numerical example is given to substantiate the validity of the theoretical results.
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1 Introduction
Recently, neural networks have attracted much attention due to their great potential
prospectives in various areas, such as signal processing, associative memory, pattern
recognition, and so on [–]. As a general class of recurrent neural networks, Cohen-
Grossberg neural networks, including Hopfield neural networks and cellular neural net-
works as two special cases, were proposed by Cohen and Grossberg in . From then
on, many researchers have investigated this type of neural networks extensively [–].
In [], the robust stability about the integer-order Cohen-Grossberg neural networks is
explored based on the comparison principle. Liu et al. [] investigate the multistability of
Cohen-Grossberg neural networks with nonlinear activation functions in any open inter-
val. In addition, the dynamic properties of Cohen-Grossberg neural networks can describe
the evolution of the competition between species in living nature, where the equilibrium
points stand for the survival or extinction of the species.

From the viewpoint of mathematics, fractional calculus generalizes integer-order cal-
culus. Meanwhile, fractional derivatives can depict real situations more elaborately than
integer-order derivatives, especially when the situations posses hereditary properties or
have memory. Due to these facts, fractional-order systems play an important role in sci-
entific modeling and practical applications [–]. In [], the Mittag-Leffler stability
of fractional-order memristive neural networks is investigated by utilizing the Lyapunov
method. In [], global Mittag-Leffler stability and asymptotic ω-periodicity of fractional-
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order fuzzy neural networks with time-varying input are considered. The Mittag-Leffler
stability for a general class of Hopfield neural networks is explored in [] by using the
generalized second Lyapunov method. Because of the difference between fractional-order
systems and integer-order systems, the analysis method in integer-order systems cannot
be applied directly to fractional-order systems. The investigation on fractional-order sys-
tems is still at an early stage. Furthermore, the study of fractional-order systems is com-
plex due to the absence of general approaches. Hence, the investigation on the dynamics
of fractional-order systems is a valuable and challenging problem.

Fuzzy logic has the property of fuzzy uncertainties and has the advantages of simulating
the human way of thinking. Traditional neural networks with fuzzy logic are called fuzzy
neural networks; they can be used for broadening the range of application of traditional
neural networks. Studies have shown that fuzzy neural networks are useful models for
exploring human cognitive activities. There are many profound reports about the fuzzy
neural networks (see, for example, [–]).

Neural networks with deviating argument, which are proposed in the model of recurrent
neural networks by Akhmet et al. [], are suitable for modeling situations in physics,
economy, and biology. In these situations, not only past but also future events are critical
for the current properties. The deviating argument changes its type from advanced to
retarded alternately and it can link past and future events [–]. Neural networks with
deviating argument conjugate continuous neural networks and discrete neural networks.
Hence, this type of neural networks has the properties of both continuous neural networks
and discrete neural networks. From a mathematical perspective, these neural networks are
of a mixed type. With the evolution of the process, the deviating state can be advanced and
retarded, commutatively. The dynamic behavior of this type of neural networks is studied
extensively [–] and deserves further investigation.

Inspired by the above discussions, this paper formulates the global Mittag-Leffler stabil-
ity of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument.
Roughly stated, there are three aspects of contribution in this paper:

• The existence and uniqueness of solution for fractional-order fuzzy Cohen-Grossberg
neural networks with deviating argument are addressed.

• Sufficient conditions are derived to guarantee the global Mittag-Leffler stability of
fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument.

• The existing approaches for the stability of neural networks cannot be applied
straightforwardly to fractional-order fuzzy Cohen-Grossberg neural networks with
deviating argument. In accordance with the theory of differential equations with
deviating argument and in conjunction with the properties of fractional-order
calculus, the global Mittag-Leffler stability of such type of neural networks is explored
in detail.

The rest of the paper is arranged as follows. Some preliminaries and model descriptions
are presented in Section . The main results are stated in Section . The validity of the
obtained results is substantiated in Section . Concluding remarks are given in Section .

2 Preliminaries and model description
2.1 Preliminaries about fractional-order calculus
Let us give a brief introduction to fractional calculus with some concepts, definitions, and
useful lemmas.
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The Caputo derivative of the function F (·) ∈ Cn+([t, +∞], R) with order q is defined by

C
t Dq

t F (t) =


�(n – q)

∫ t

t

F (n)(s)
(t – s)q–n+ ds.

Correspondingly, the fractional integral of the function F (·) with order q is defined by

Iq
tF (t) =


�(q)

∫ t

t

(t – s)q–F (s) ds,

where t ≥ t, n is a positive integer such that n –  < q < n, and �(q)=
∫ +∞

 rq– exp(–r) dr
is the Gamma function.

The one-parameter Mittag-Leffler function is defined as

Eq(s) =
+∞∑
k=

sk

�(kq + )
,

while the two-parameter Mittag-Leffler function is defined as

Eq,p(s) =
+∞∑
k=

sk

�(kq + p)
,

where q > , p > , and s is a complex number.

2.2 Model
Let N denote the set of natural numbers and let R+ and Rn stand for the set of nonnega-
tive real numbers and an n-dimensional Euclidean space. For a vector x ∈Rn, its norm is
defined as ‖x‖ =

∑n
i= |xi|. Take two real-valued sequences {ηk} and {ξk}, k ∈ N satisfying

ηk < ηk+, ηk ≤ ξk ≤ ηk+ for any k ∈N , and limk→+∞ ηk = +∞.
In this paper, we consider a general class of fractional-order fuzzy Cohen-Grossberg

neural networks with deviating argument described by the following fractional-order dif-
ferential equations:

C
t Dq

t xi(t) = ωi
(
xi(t)

)[
–αi

(
xi(t)

)
+

n∑
j=

bijfj
(
xj(t)

)
+

n∑
j=

cijgj
(
xj

(
γ (t)

))

+
n∑

j=

dijuj + Ii +
n∧

j=

hijfj
(
xj

(
γ (t)

))
+

n∨
j=

lijfj
(
xj

(
γ (t)

))

+
n∧

j=

pijuj +
n∨

j=

rijuj

]
, i = , , . . . , n, ()

where the fractional order q satisfies  < q < , xi(t) is the state of the ith neuron, ωi(·) and
α(·) are continuous functions, bij and cij are synaptic weights from the ith neuron to the
jth neuron at time t and γ (t), respectively, dij denotes the synaptic weight for the bias of
the ith neuron, hij, lij, pij, and rij signify the synaptic weights of fuzzy local operations, and∧

and
∨

stand for the fuzzy AND and fuzzy OR operation, respectively. γ (t) = ξk , for
t ∈ [ηk ,ηk+), k ∈ N , t ∈ R+, which is a piecewise constant function, is called a deviating
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argument. fj(·) and gj(·) are activation functions, while uj and Ii represent the bias and the
input, respectively.

It is clear that () is of the mixed type. When t ∈ [ηk , ξk) and γ (t) = ξk > t, () is an ad-
vanced system. When t ∈ [ξk ,ηk+) and γ (t) = ξk < t, () is a retarded system. Hence, ()
changes its deviation type during the process and is of the mixed type.

2.3 Definitions and lemmas
In this subsection, some useful definitions and lemmas are given as follows.

Definition . (See []) An equilibrium point of () is a constant vector x∗ =
(x∗

 , x∗
, . . . , x∗

n)T , such that

 = –αi
(
x∗

i
)

+
n∑

j=

bijfj
(
x∗

j
)

+
n∑

j=

cijgj
(
x∗

j
)

+
n∑

j=

dijuj + Ii

+
n∧

j=

hijfj
(
x∗

j
)

+
n∨

j=

lijfj
(
x∗

j
)

+
n∧

j=

pijuj +
n∨

j=

rijuj.

Definition . (See []) The equilibrium point x∗ = (x∗
 , x∗

, . . . , x∗
n)T of () is globally

Mittag-Leffler stable if, for any solution x(t) of () with initial condition x, there exist
two positive constants κ and ε such that

∥∥x(t) – x∗∥∥ ≤ κ
∥∥x – x∗∥∥Eq

(
–ε(t – t)q), t ≥ t.

Remark . The same way the exponent function is broadly used in integer-order neural
networks, the Mittag-Leffler function is widely used in fractional-order neural networks.
From Definition ., Mittag-Leffler stability possesses the power-law property (t – t)–q,
which is entirely different from exponential stability.

Lemma . Let q > , let X and G be non-negative constants, and suppose Y(t) is non-
negative and locally integrable on [t, t̄) with

Y(t) ≤X + G
∫ t

t

(t – s)q–Y(s) ds, t ∈ [t, t̄),

or

Y(t) ≤X + G
∫ T

t
(T – s)q–Y(s) ds, t, T ∈ [t, t̄) and t < T .

Then

Y(t) ≤XEq
(
G�(q)(t – t)q), t ∈ [t, t̄),

or

Y(t) ≤XEq
(
G�(q)(T – t)q), t, T ∈ [t, t̄) and t < T .
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The proof of Lemma . is almost identical to that of Theorem  and Corollary  in [],
and it is omitted here for the sake of convenience.

Lemma . (See []) Let F (t) ∈ Rn be a continuous and derivable function. Then

C
t Dq

t F(t) ≤ F (t)C
t Dq

t F (t),

for all t ≥ t and  < α < .

Lemma . (See []) Suppose x = (x, x, . . . , xn)T and y = (y, y, . . . , yn)T are two states
of (). Then

∣∣∣∣∣
n∧

j=

αijfj(xj) –
n∧

j=

αijfj(yj)

∣∣∣∣∣ ≤
n∑

j=

|αij|
∣∣fj(xj) – fj(yj)

∣∣,
∣∣∣∣∣

n∨
j=

βijfj(xj) –
n∨

j=

βijfj(yj)

∣∣∣∣∣ ≤
n∑

j=

|βij|
∣∣fj(xj) – fj(yj)

∣∣.

Lemma . (See []) Let  < q < . F (t) is a continuous function on [t, +∞), if there exist
two constants μ >  and μ ≥  such that

{
C
t Dq

t F (t) ≤ –μF (t) + μ,
F (t) = Ft .

Then

F (t) ≤Ft Eq
(
–μ(t – t)q) + μtqEq,q+

(
–μ(t – t)q), t ≥ t.

Remark . There are distinct differences between fractional-order differential equations
and integer-order differential equations. Properties in integer-order differential equa-
tions cannot be simply extended to fractional-order differential equations. Lemma .,
Lemma ., and Lemma . provide powerful tools for exploring fractional-order differ-
ential equations.

2.4 Notations and assumptions
For the sake of convenience, some notations are introduced in this subsection. First, let us
define some notations, which will be used later:

Ã = max
≤i≤n

(
ωiαi +

n∑
j=

ωj|bji|c̃i

)
,

A = max
≤i≤n

(
ω̃iαi +

n∑
j=

ωj|bji|c̃i

)
,

A = max
≤i≤n

( n∑
j=

ωj
(|cji|ĉi + |hji|c̃i + |lji|c̃i

))
,
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A =

n

min
≤i≤n

(
ωiαi –

n∑
j=

(
ωi|bij|c̃i + ωj|bji|c̃j

)

–
n∑

j=

ωi
(|cij|ĉj + |hij|c̃j + |lij|c̃j

))
,

A = max
≤i≤n

( n∑
j=

ωj
(|cji|ĉi + |hji|c̃i + |lji|c̃i

))
,

θ = A + ω̃M, θ =
ηq

�(q + )
, M = max

≤i≤n
(Mi),

ω̃ = max
≤i≤n

(ω̃i), τ = ( + Aθ)Eq
(
Aη

q),

()

Ci =
n∑

j=

dijuj + Ii +
n∧

j=

pijuj +
n∨

j=

rijuj,

B =
ηq(Ã + A)
�(q + )

,

B =


 – B

(∥∥x∥∥ + θ

n∑
i=

ωi|Ci|
)

,

Mi = max
|x|<B

(∣∣αi(x)
∣∣) +

n∑
j=

|bij|max
|x|<B

(∣∣fj(x)
∣∣) +

n∑
j=

|cij|max
|x|<B

(∣∣gj(x)
∣∣)

+
n∧

j=

|hij|max
|x|<B

(∣∣fj(x)
∣∣) +

n∨
j=

|hij|max
|x|<B

(∣∣fj(x)
∣∣) + |Ci|,


 =
[
 – θ(Aτ + A)

]–,

Fm
i (s) = –αi

(
zm

i (s)
)

+
n∑

j=

bijfj
(
zm

j (s)
)

+
n∑

j=

cijgj
(
zm

j
(
γ (s)

))

+
n∧

j=

hijfj
(
zm

j
(
γ (s)

))
+

n∨
j=

lijfj
(
zm

j
(
γ (s)

))
.

Throughout this paper, the parameters and activation functions of () are supposed to
satisfy the following assumptions:

(A) for functions ωi(·) and αi(·), there exist positive constants ωi, ωi, αi, and αi and
Lipschitz constants ω̃i such that

ωi ≤ ωi(xi) ≤ ωi,
∣∣ωi(xi) – ωi(yi)

∣∣ ≤ ω̃i|xi – yi|, αi ≤ αi(xi) – αi(yi)
xi – yi

≤ αi,

and αi() = , for any xi, yi ∈R, xi 	= yi, i = , , . . . , n;
(A) for activation functions fi(·) and gi(·), there exist Lipschitz constants c̃i and ĉi such

that

∣∣fi(xi) – fi(yi)
∣∣ ≤ c̃i|xi – yi|,

∣∣gi(xi) – gi(yi)
∣∣ ≤ ĉi|xi – yi|,

while fi() = gi() = , for any xi, yi ∈R, i = , , . . . , n;
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(A) there exists a positive constant η >  such that

ηk+ – ηk ≤ η, for k ∈N ;

(A) ηq(Ã+A)
�(q+) < ;

(A) θ(θ + A) < , θ(θ+A)Eq(θηq)
–AθEq(θηq) < ;

(A) θ(Aτ + A) < .
Fix k ∈N , for every (t, x) ∈ [ηk ,ηk+]×Rn and assume ηk ≤ t < ξk ≤ ηk+ without loss

of generality. Construct a sequence {zm
i (t)}, i = , , . . . , n, such that

zm+
i (t) = x

i +


�(q)

∫ t

t

(t – s)q–ωi
(
zm

i (s)
)(

Fm
i (s) + Ci

)
ds, ()

for m ∈N and z
i (t) = x

i , where Fm
i (s) and Ci are defined in (). We obtain

∥∥zm+(t)
∥∥ ≤ ∥∥x∥∥ +


�(q)

∫ t

t

(t – s)q–

(
Ã

∥∥zm(s)
∥∥ + A

∥∥zm(ξk)
∥∥ +

n∑
i=

ωi|Ci|
)

ds.

Define a norm ‖z(t)‖M = maxt≤t≤ξk ‖z(t)‖. Then

∥∥zm+(t)
∥∥

M ≤ ∥∥x∥∥ +


�(q)

∫ t

t

(t – s)q–

(
Ã

∥∥zm(s)
∥∥

M + A
∥∥zm(s)

∥∥
M +

n∑
i=

ωi|Ci|
)

ds

≤ ∥∥x∥∥ + B
∥∥zm(s)

∥∥
M + θ

n∑
i=

ωi|Ci|,

where B and θ are defined in ().
Hence

∥∥z(t)
∥∥

M ≤ ( + B)
∥∥x∥∥ + θ

n∑
i=

ωi|Ci|,

∥∥z(t)
∥∥

M ≤ (
 + B + B)∥∥x∥∥ + ( + B)θ

n∑
i=

ωi|Ci|,

· · ·
∥∥zm+(t)

∥∥
M ≤ (

 + B + B + · · · + Bm+)∥∥x∥∥ +
(
 + B + · · · + Bm)

θ

n∑
i=

ωi|Ci|.

Under (A),

∥∥zm+(t)
∥∥

M ≤ 
 – B

(∥∥x∥∥ + θ

n∑
i=

ωi|Ci|
)

,

for m ∈N .
In combination with the continuity of the functions α(·), f (·), and g(·), we conclude that

∣∣Fm
i (s) + Ci

∣∣ ≤ Mi,

for m ∈N with initial condition x, where Mi is defined in (), i = , , . . . , n.
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3 Main results
3.1 Existence and uniqueness of solution
From the viewpoint of theory and application, the existence and uniqueness of solution
for differential equations is a precondition, so we begin with the theorem for the existence
and uniqueness of solution for ().

Theorem . Let (A)-(A) hold. Then, for each pair (t, x) ∈R+ ×Rn, () has a unique
solution x(t) = x(t, t, x), t ≥ t, with the initial condition x(t) = x.

Proof First, we prove the existence of solutions.
Take k ∈ N . Without loss of generality, assume ηk ≤ t < ξk ≤ ηk+. We first prove ()

exists a unique solution x(t, t, x) for every (t, x) ∈ [ηk ,ηk+].
Denote zi(t) = xi(t, t, x) for simplicity and construct the following equivalent integral

equation:

zi(t) = zi(t) +


�(q)

∫ t

t

(t – s)q–

{
ωi

(
zi(s)

)[
–αi

(
zi(s)

)

+
n∑

j=

bijfj
(
zj(s)

)
+

n∑
j=

cijgj
(
zj
(
γ (s)

))
+

n∑
j=

dijuj + Ii

+
n∧

j=

hijfj
(
zj
(
γ (s)

))
+

n∨
j=

lijfj
(
zj
(
γ (s)

))
+

n∧
j=

pijuj +
n∨

j=

rijuj

]}
ds.

From (), we have

∣∣zm+
i (t) – zm

i (t)
∣∣

=


�(q)

∣∣∣∣
∫ t

t

(t – s)q–[ωi
(
zm

i (s)
)(

Fm
i (s) + Ci

)

– ωi
(
zm–

i (s)
)(

Fm–
i (s) + Ci

)]
ds

∣∣∣∣

=


�(q)

∣∣∣∣
∫ t

t

(t – s)q–[ωi
(
zm

i (s)
)(

Fm
i (s) + Ci

)
– ωi

(
zm–

i (s)
)(

Fm
i (s) + Ci

)

+ ωi
(
zm–

i (s)
)(

Fm
i (s) + Ci

)
– ωi

(
zm–

i (s)
)(

Fm–
i (s) + Ci

)]
ds

∣∣∣∣

=


�(q)

∣∣∣∣
∫ t

t

(t – s)q–[(ωi
(
zm

i (s)
)

– ωi
(
zm–

i (s)
))(

Fm
i (s) + Ci

)

+ ωi
(
zm–

i (s)
)(

Fm
i (s) – Fm–

i (s)
)]

ds
∣∣∣∣

≤ 
�(q)

∣∣∣∣
∫ t

t

(t – s)q–(ωi
(
zm

i (s)
)

– ωi
(
zm–

i (s)
))(

Fm
i (s) + Ci

)
ds

∣∣∣∣

+


�(q)

∣∣∣∣
∫ t

t

(t – s)q–ωi
(
zm–

i (s)
)(

Fm
i (s) – Fm–

i (s)
)

ds
∣∣∣∣.
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Combining this with

n∑
i=


�(q)

∣∣∣∣
∫ t

t

(t – s)q–(ωi
(
zm

i (s)
)

– ωi
(
zm–

i (s)
))(

Fm
i (s) + Ci

)
ds

∣∣∣∣

≤
n∑

i=

ω̃iMi


�(q)

∣∣∣∣
∫ t

t

(t – s)q–(zm
i (s) – zm–

i (s)
)

ds
∣∣∣∣

≤ ω̃M


�(q)

∫ t

t

(t – s)q–∥∥zm(s) – zm–(s)
∥∥ds

and

n∑
i=


�(q)

∣∣∣∣
∫ t

t

(t – s)q–ωi
(
zm–

i (s)
)(

Fm
i (s) – Fm–

i (s)
)

ds
∣∣∣∣

≤ A


�(q)

∫ t

t

(t – s)q–∥∥zm(s) – zm–(s)
∥∥ds + Aθ

∥∥zm(ξk) – zm–(ξk)
∥∥,

we get

∥∥zm+(t) – zm(t)
∥∥

≤ θ


�(q)

∫ t

t

(t – s)q–∥∥zm(s) – zm–(s)
∥∥ds + Aθ

∥∥zm(ξk) – zm–(ξk)
∥∥,

where ω̃, Mi, M, A, A, θ, and θ are defined in ().
From the definition of the norm of ‖z(t)‖M = maxt≤t≤ξk (‖z(t)‖), we have

∥∥zm+(t) – zm(t)
∥∥

M

≤ max
t≤t≤ξk

(
θ


�(q)

∫ t

t

(t – s)q–∥∥zm(s) – zm–(s)
∥∥ds

+ Aθ
∥∥zm(ξk) – zm–(ξk)

∥∥
)

≤ max
t≤t≤ξk

(
θ


�(q)

∫ t

t

(t – s)q–∥∥zm(s) – zm–(s)
∥∥ds

)

+ max
t≤t≤ξk

(
Aθ

∥∥zm(ξk) – zm–(ξk)
∥∥)

≤ [
θ(θ + A)

]∥∥zm(t) – zm–(t)
∥∥

M

≤ [
θ(θ + A)

]m∥∥z(t) – z(t)
∥∥

M

≤ [
θ(θ + A)

]mH,

where H = θ(λ‖x‖ + λ
∑n

i= |ui| +
∑n

i= |Ii|), λ = max≤i≤n[ωi(αi +
∑n

j=(|bji|c̃i + |cji|ĉi +
|hji|c̃i + |lji|c̃i))], and λ = max≤i≤n(

∑n
j= ωi(|dji| + |pji + |dji)). Hence, there exists a unique

solution z(t) = x(t, t, x) for () on [ξk , t]. Assumptions (A) and (A) imply that z(t) =
x(t, t, x) can be continued to ηk+. In a similar way, z(t) = x(t, t, x) can continue from
ηk+ to ξk+ and then to ηk+. Hence, we conclude that for () there exists a solution x(t) =
x(t, t, x), t ≥ t, by mathematical induction.
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Now, we prove the uniqueness of the solution.
Let

Hl
i (s) = –αi

(
xl

i(s)
)

+
n∑

j=

bijfj
(
xl

j(s)
)

+
n∑

j=

cijgj
(
xl

j(ξk)
)

+
n∧

j=

hijfj
(
xl

j(ξk)
)

+
n∨

j=

lijfj
(
xl

j(ξk)
)
,

for l = ,  and i = , , . . . , n.
Denote by x(t) and x(t) two different solutions for () with initial conditions (t, x) and

(t, x), respectively, where t ∈ [ηk ,ηk+]. To prove the uniqueness, it is sufficient to check
that x 	= x implies x(t) 	= x(t) for every t ∈ [ηk ,ηk+]. Then we get

∥∥x(t) – x(t)
∥∥

≤ ∥∥x – x∥∥ +


�(q)

n∑
i=

∣∣∣∣
∫ t

t

(t – s)q–[ωi
(
x

i (s)
)(

H
i (s) + Ci

)

– ωi
(
x

i (s)
)(

H
i (s) + Ci

)]
ds

∣∣∣∣

≤ ∥∥x – x∥∥ +


�(q)

∫ t

t

(t – s)q–
n∑

i=

Miω̃i
∣∣x

i (s) – x
i (s)

∣∣ds

+


�(q)

∫ t

t

(t – s)q–
n∑

i=

ωi
∣∣H

i (s) – H
i (s)

∣∣ds

≤ ∥∥x – x∥∥ + θ


�(q)

∫ t

t

(t – s)q–∥∥x(s) – x(s)
∥∥ds

+ Aθ
∥∥x(ξk) – x(ξk)

∥∥.

Applying Lemma ., we get

∥∥x(t) – x(t)
∥∥ ≤ (∥∥x – x∥∥ + Aθ

∥∥x(ξk) – x(ξk)
∥∥)

Eq
(
θη

q). ()

Particularly,

∥∥x(ξk) – x(ξk)
∥∥ ≤ (∥∥x – x∥∥ + Aθ

∥∥x(ξk) – x(ξk)
∥∥)

Eq
(
θη

q)

and

∥∥x(ξk) – x(ξk)
∥∥ ≤ Eq(θη

q)
 – AθEq(θηq)

∥∥x – x∥∥. ()

Substituting () into (), we obtain

∥∥x(t) – x(t)
∥∥ ≤ Eq(θη

q)
 – AθEq(θηq)

∥∥x – x∥∥. ()
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Suppose that there exists some t̄ ∈ [ηk ,ηk+] such that x(t̄) = x(t̄). Then

∥∥x – x∥∥ ≤ θ


�(q)

∫ t̄

t

(t – s)q–∥∥x(s) – x(s)
∥∥ds + Aθ

∥∥x(ξk) – x(ξk)
∥∥. ()

Combining this with (), (), and (), we get

∥∥x – x∥∥ ≤ θ(θ + A)Eq(θη
q)

 – AθEq(θηq)
∥∥x – x∥∥.

Applying (A), it follows that

∥∥x – x∥∥ <
∥∥x – x∥∥.

This poses a contradiction and it demonstrates the validity of the uniqueness of solution
for (). Hence, () has a unique solution x(t) for every initial condition (t, x) ∈R+ ×Rn.
This completes the proof. �

3.2 Estimation of deviating argument
In this subsection, we give the estimation of the norm of the deviating state.

From Schauder’s fixed point theorem and assumptions (A) and (A), the existence of
the equilibrium point of () can be guaranteed. Denote the equilibrium point of () by
x∗ = (x∗

 , x∗
, . . . , x∗

n)T . Substitution of v(t) = x(t) – x∗ into () leads to

C
t Dq

t vi(t) = ωi
(
vi(t) + x∗

i
)(

–α̃i
(
vi(t)

)
+

n∑
j=

bijFj
(
vj(t)

)
+

n∑
j=

cijGj
(
vj

(
γ (t)

))

+
n∧

j=

hijFj
(
vj

(
γ (t)

))
+

n∨
j=

Fj
(
vj

(
γ (t)

)))
,

()

where α̃i(vi(t)) = αi(vi(t) + x∗
i ) – αi(x∗

i ), Fj(vj(t)) = fj(vj(t) + x∗
j ) – fj(x∗

j ) and Gj(vj(t)) =
gj(vj(t) + x∗

j ) – gj(x∗
j ) for i, j = , , . . . , n.

Theorem . Let (A)-(A) hold and let v(t) = (v(t), v(t))T , . . . , vn(t) be a solution of ().
Then

v
(
γ (t)

) ≤ 
v(t),

for any t ∈R+, where 
 is defined in ().

Proof For any t ∈R+, there exists a unique k ∈N such that t ∈ [ηk ,ηk+). It follows that

vi(t) = vi(ξk) +


�(q)

∫ t

ξk

(t – s)q–

{
ωi

(
vi(s) + x∗

i
)(

–α̃i
(
vi(s)

)

+
n∑

j=

bijFj
(
vj(s)

)
+

n∑
j=

cijGj
(
vj

(
γ (s)

))

+
n∧

j=

hijFj
(
vj

(
γ (s)

))
+

n∨
j=

Fj
(
vj

(
γ (s)

)))}
ds, ()
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for t ∈ [ξk ,ηk+), and

vi(ξk) = vi(t) +


�(q)

∫ ξk

t
(ξk – s)q–

{
ωi

(
vi(s) + x∗

i
)(

–α̃i
(
vi(s)

)

+
n∑

j=

bijFj
(
vj(s)

)
+

n∑
j=

cijGj
(
vj

(
γ (s)

))

+
n∧

j=

hijFj
(
vj

(
γ (s)

))
+

n∨
j=

Fj
(
vj

(
γ (s)

)))}
ds,

for t ∈ [ηk , ξk).
Without loss of generality, we only consider the case of t ∈ [ξk ,ηk+). The other case can

be considered in a similar manner.
We have

∥∥v(t)
∥∥ ≤ ∥∥v(ξk)

∥∥ +


�(q)

n∑
i=

∫ t

ξk

(t – s)q–

{
ωi

(
vi(t) + x∗

i
)(

–α̃i
(
vi(t)

)

+
n∑

j=

bijFj
(
vj(t)

)
+

n∑
j=

cijGj
(
vj

(
γ (t)

))

+
n∧

j=

hijFj
(
vj

(
γ (t)

))
+

n∨
j=

Fj
(
vj

(
γ (t)

)))}
ds

≤ ∥∥v(ξk)
∥∥ +


�(q)

∫ t

ξk

(t – s)q–

( n∑
i=

ωic̄i
∣∣vi(s)

∣∣ +
n∑

i=

n∑
j=

ωj|bji|c̃i
∣∣vi(s)

∣∣

+
n∑

i=

n∑
j=

ωj|cji|ĉi
∣∣vi(ξk)

∣∣ +
n∑

i=

n∑
j=

ωj|hji|c̃i
∣∣vi(ξk)

∣∣

+
n∑

i=

n∑
j=

ωj|lji|c̃i
∣∣vi(ξk)

∣∣
)

ds

≤ ∥∥v(ξk)
∥∥ +


�(q)

∫ t

ξk

(t – s)q–(A
∥∥v(s)

∥∥ + A
∥∥v(ξk)

∥∥)
ds

≤ ( + Aθ)
∥∥v(ξk)

∥∥ +


�(q)

∫ t

ξk

A(t – s)q–∥∥v(s)
∥∥ds,

where A, A, and θ are defined in ().
Applying Lemma ., we have

∥∥v(t)
∥∥ ≤ ( + Aθ)

∥∥v(ξk)
∥∥Eq

(
A(t–ξk)q)

≤ ( + Aθ)
∥∥v(ξk)

∥∥Eq
(
Aη

q).

In a similar way, by exchanging the locations of vi(t) and vi(ξk) in (), we get

∥∥v(ξk)
∥∥ ≤ ∥∥v(t)

∥∥ + θ(Aτ + A)
∥∥v(ξk)

∥∥.
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Hence

∥∥v(ξk)
∥∥ ≤ 


∥∥v(t)
∥∥,

where τ and 
 are defined in ().
Therefore, Theorem . is valid for any t ∈R+. �

3.3 Global Mittag-Leffler stability
Theorem . Let (A)-(A) hold. Then () is globally Mittag-Leffler stable if the following
inequality is satisfied:

A – A

 > ,

where A, A, and 
 are defined in ().

Proof Define a Lyapunov function by

W
(
v(t)

)
=

n∑
i=

v
i (t).

From Lemma . and Lemma ., we derive

C
t Dq

t W
(
v(t)

) ≤ 
n∑

i=

vi(t)C
t Dq

t vi(t)

= 
n∑

i=

vi(t)ωi
(
vi(t) + x∗

i
)(

–α̃i
(
vi(t)

)
+

n∑
j=

bijFj
(
vj(t)

)

+
n∑

j=

cijGj
(
vj

(
γ (t)

))
+

n∧
j=

hijFj
(
vj

(
γ (t)

))
+

n∨
j=

Fj
(
vj

(
γ (t)

)))

≤ 
n∑

i=

ωi
(
vi(t) + x∗

i
)(

–v
i (t)

α̃i(vi(t))
vi(t)

+
n∑

j=

|bij|c̃j
∣∣vi(t)

∣∣∣∣vj(t)
∣∣

+
n∑

j=

|cij|ĉj
∣∣vi(t)

∣∣∣∣vj
(
γ (t)

)∣∣ +
n∑

j=

|hij|c̃j
∣∣vi(t)

∣∣∣∣vj
(
γ (t)

)∣∣

+
n∑

j=

|lij|c̃j
∣∣vi(t)

∣∣∣∣vj
(
γ (t)

)∣∣
)

≤
n∑

i=

ωi
(
vi(t) + x∗

i
)(

–αiv

i (t) +

n∑
j=

|bij|c̃i
(
v

i (t) + v
j (t)

)

+
n∑

j=

(|cij|ĉj + |hij|c̃j + |lij|c̃j
)(

v
i (t) + v

j
(
γ (t)

)))

≤ – 
n∑

i=

ωiαiv

i (t) +

n∑
i=

n∑
j=

ωi|bij|c̃i
(
v

i (t) + v
j (t)

)
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+
n∑

i=

n∑
j=

ωi
(|cij|ĉj + |hij|c̃j + |lij|c̃j

)(
v

i (t) + v
j
(
γ (t)

))

≤ –
n∑

i=

[
ωiαi –

n∑
j=

(
ωi|bij|c̃i + kjωj|bji|c̃j

)

–
n∑

j=

ωi
(|cij|ĉj + |hij|c̃j + |lij|c̃j

)]
v

i (t)

+
n∑

i=

n∑
j=

ωj
(|cji|ĉi + |hji|c̃i + |lji|c̃i

)
v

i
(
γ (t)

)

≤ – A
∥∥v(t)

∥∥ + A
∥∥v

(
γ (t)

)∥∥.

Applying Theorem ., it follows that

C
t Dq

t W
(
v(t)

) ≤ –
(
A – A


)∥∥v(t)
∥∥.

From the definition of W (v(t)), it is clear that

W
(
v(t)

)
=

n∑
i=

v
i (t) ≤

( n∑
i=

∣∣vi(t)
∣∣
)

=
∥∥v(t)

∥∥

and

W
(
v(t)

)
=

n∑
i=

v
i (t) =


n

n∑
i=

nv
i (t) ≥ 

n

( n∑
i=

∣∣vi(t)
∣∣
)

=

n

∥∥v(t)
∥∥.

Hence

C
t Dq

t W
(
v(t)

) ≤ –�W
(
v(t)

)
,

where � = (A – A

) > .

Based on Lemma ., it follows that


n

∥∥v(t)
∥∥ ≤ W

(
v(t)

) ≤ W
(
v(t)

)
Eq

(
–�(t – t)q).

Therefore,

∥∥x(t) – x∗∥∥ ≤ M
∥∥x(t) – x∗∥∥Eq

(
–�(t – t)q),

where M = n.
Hence, () is globally Mittag-Leffler stable. This completes the proof. �

Remark . Fractional-order neural networks have plenty of favorable characteristics,
such as infinity memory and hereditary features, in contrast with integer-order ones,
whereas the approaches investigated in integer-order neural networks cannot be applied
straightforward to fractional-order ones.
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Remark . In recent years, fractional-order neural networks have been under intensive
investigation. A lot of results are reported about Mittag-Leffler stability and asymptot-
ical ω-periodicity on fractional-order neural networks with or without deviating argu-
ment. Very few of them are about the stability of fractional-order Cohen-Grossberg neural
networks with deviating argument and the existing results cannot be applied straightfor-
wardly to fractional-order Cohen-Grossberg neural networks with deviating argument.
From this point of view, the result derived in this paper can be viewed as an extension to
the existing literature.

4 Illustrative examples
In this section, one example is given to demonstrate the validity of the results.

Example  Consider the following fractional-order neural network in the presence of de-
viating argument:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
t D.

t x(t) = ( + 
 sin(x(t)))(–x(t) + . tanh(x(t))

+ . tanh(x(t)) + . tanh( x(γ (t))
 )

+ . tanh( x(γ (t))
 ) + . tanh(x(γ (t)))

∧ . tanh(x(γ (t))) + . tanh(x(γ (t)))
∨ . tanh(x(γ (t))) + .),

C
t D.

t x(t) = ( + 
 cos(x(t)))(–x(t) + . tanh(x(t))

+ . tanh(x(t)) + . tanh( x(γ (t))
 )

+ . tanh( x(γ (t))
 ) + . tanh(x(γ (t)))

∧ . tanh(x(γ (t))) + . tanh(x(γ (t)))
∨ . tanh(x(γ (t))) + .),

()

where {ηk} = k
 , {ξk} = k+

 and γ (t) = ξk for t ∈ [ηk ,ηk+), k ∈N .
It can be seen that ω = 

 , ω = 
 ,ω = 

 , ω = 
 , ω̃ = ω̃ = 

 , α = α = , α = α = ,
c̃ = c̃ = , ĉ = ĉ = 

 , η = 
 , b = ., b = ., b = ., b = ., c = .,

c = ., c = ., c = ., d = d = d = d = , p = p = p = p = , r =
r = r = r = , h = ., h = ., h = ., h = ., and l = ., l = .,
l = ., l = ., I = I = ..

Choose the initial value x satisfying |x
 | ≤ ., |x

| ≤ .. By calculation, we have

Ã = max
≤i≤

(
ωiαi +

n∑
j=

ωj|bji|c̃i

)
= .,

A = max
≤i≤

(
ω̃iαi +

∑
j=

ωj|bji|c̃i

)
= .,

A = max
≤i≤

( ∑
j=

ωj
(|cji|ĉi + |hji|c̃i + |lji|c̃i

))
= .,

θ =
ηq

�(q + )
= .,

B =
ηq(Ã + A)
�(q + )

= . < ,
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Figure 1 Transient behavior of x1(t) and x2(t) in (10).

B =


 – B

(∥∥x∥∥ + θ

n∑
i=

ωi|Ci|
)

= .,

M = max
≤i≤

(Mi) = .,

θ = A + ω̃M = .,

A =



min
≤i≤

(
ωiαi –

∑
j=

(
ωi|bij|c̃i + ωj|bji|c̃j

)
–

∑
j=

ωi
(|cij|ĉj + |hij|c̃j + |lij|c̃j

))

= .,
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Figure 2 The phase plot of x(t) in (10).

A = max
≤i≤

( ∑
j=

ωj
(|cji|ĉi + |hji|c̃i + |lji|c̃i

))
= .,

τ = ( + Aθ)Eq
(
Aη

q) = .,

θ(θ + A) = . < ,

θ(Aτ + A) = . < ,

θ(θ + A)Eq(θη
q)

 – AθEq(θ(ηq))
= . < ,


 =
[
 – θ(Aτ + A)

]– = .,

A – A

 = . > .

Based on Theorem ., () is globally Mittag-Leffler stable. Simulation results from
several initial values are depicted in Figures  and , which are well suited to show the
theoretical predictions.

Remark . Example  shows that the derived criteria are applicable to the Mittag-Leffler
stability of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argu-
ment. As a special case of the obtained criteria, let ω̃ = , that is, ωi(·) degenerates into a
constant, and dij = , hij = , lij = , pij = , and rij = , for i, j = , , . . . , n. It is obvious that
the criteria are still valid, which is exactly the main theorem in []. Hence, the criteria
proposed in this paper can be deemed a generalization of the existing literature.

5 Concluding remarks
In this paper, the global Mittag-Leffler stability of fractional-order fuzzy Cohen-Grossberg
neural networks with deviating argument is considered. Sufficient conditions are obtained
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to ensure the existence and uniqueness of the solution. Furthermore, the global Mittag-
Leffler stability of fractional-order fuzzy Cohen-Grossberg neural networks with deviat-
ing argument is investigated. A numerical example and the corresponding simulations
show that global Mittag-Leffler stability can be guaranteed under the derived criteria.
The results obtained in this paper supplement the existing literature. Future work may
aim at exploring the multistability and multiperiodicity for fractional-order fuzzy Cohen-
Grossberg neural networks with deviating argument.
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