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Abstract

In this paper, we investigate the existence and uniqueness of solutions for a
differential equation of fractional-order g € (1, 2] subject to nonlocal boundary
conditions involving Caputo derivative of the form

B2
x(0) = 8x(o), a‘D*x(o1) + b°D*x(0,) = c/ DM x(s) ds,
B

0<o1<o<Pi<Br<0,<1,0<u<1,and$,a,b,care real constants. We make use
of some standard tools of fixed point theory to obtain the desired results which are
well illustrated with the aid of examples.

MSC: 34A08; 34B15

Keywords: fractional order derivative; nonlocal conditions; strip; existence; fixed
point

1 Introduction

The study of fractional-order differential equations supplemented with a variety of initial
and boundary conditions, such as classical, nonlocal, multi-point, periodic/anti-periodic,
and integral boundary conditions, has attracted significant attention in recent years. In
consequence, the literature on the topic is now much enriched and covers theoretical as-
pects as well as analytic/numerical methods for solving fractional-order initial and bound-
ary value problems. The widespread applications of fractional calculus modeling tech-
niques in several disciplines of applied and technical sciences have played a key role in
the popularity of the subject. Examples include viscoelasticity, control theory, biological
sciences, ecology, aerodynamics, electro-dynamics of complex medium, environmental is-
sues, etc. An important and useful feature characterizing fractional-order differential and
integral operators (in contrast to integer-order operators) is their nonlocal nature that ac-
counts for the past and hereditary behavior of materials and processes involved in the real
world problems. For examples and details, we refer the reader to the works [1-5].
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Nonlocal conditions, introduced by Bitsadze and Samarskii [6], are regarded as more
plausible than the classical initial/boundary conditions in view of their ability to describe
certain peculiarities of chemical, physical or other processes happening inside the do-
main. Computational fluid dynamics (CFD) studies of blood flow indicate that it is not al-
ways possible to assume circular cross-section of blood arteries. Several approaches have
been proposed to resolve this issue. However, the idea of introducing integral boundary
conditions [7] is found to be quite a productive one. Also, integral boundary conditions
are applied to regularize ill-posed parabolic backward problems in time partial differen-
tial equations, see, for example, mathematical models for bacterial self-regularization [8].
Some recent results on fractional-order boundary value problems involving nonlocal and
integral boundary conditions can be found in [9-20] and the references cited therein.

In this paper, motivated by the utility of nonlocal integral boundary conditions in sev-
eral diverse disciplines, we propose a new class of Caputo type nonlocal boundary value
problems supplemented with integral boundary conditions. In precise terms, we consider

the following problem:

‘Dix(t)=f(t,x), 1<q=<2,t€l0,1], (1.1)

B2
x(0) = 8x(o), a‘D'x(o1) + b°D*x(03) = c/ D" x(s) ds, (1.2)
B

where f: [0,1] x R — R is a given continuous function, 0 < g1 <o < f1 < fa <02 <1,
0<pwu<1,andé, a, b, ¢ are real constants. The integral boundary condition in (1.2) can be
interpreted as the linear combination of the values of Caputo derivative of the unknown
function of order u € (0,1) at nonlocal positions o; and o, (off the strip) is proportional
to the strip contribution of the Caputo derivative of the unknown function, occupying the
position (81, B2).

The content of the paper is organized as follows. Section 2 is devoted to some basic
concepts and a lemma concerning the unique solution of a linear variant of problem (1.1)-
(1.2). In Section 3, we present our main results which are obtained via Krasnoselskii’s fixed
point theorem, Schauder type fixed point theorem, nonlinear alternative for single-valued
maps and Banach’s theorem. It is imperative to note that the exposition of indicated tools
of fixed point theory is new in the context of problem (1.1)-(1.2). Finally, we discuss some

examples for illustration of the main results.

2 Preliminaries

First of all, we recall some basic definitions.

Definition 2.1 [3] For at least n-times absolutely continuously differentiable function /4 :

[0,00) — R, the Caputo derivative of fractional order g is defined as
1 t
‘Dih(t) = —— / (t—s)" T "W (s)ds, n—-l<r<mn= lq] +1,
L'(n-q) Jo

where [g] denotes the integer part of the real number g.
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Definition 2.2 [3] The Riemann-Liouville fractional integral of order ¢ for a continuous
function / is defined as

1 L h(s)
11h(t) = Wq)/(‘) T ds, ¢q>0,

provided the integral exists.

Next we present an auxiliary lemma to define the solution for problem (1.1)-(1.2).

Lemma 2.3 Let y € L[0,1] and x € AC?[0,1]. Then the solution of the linear fractional
differential equation

‘Dix(t)=y(t), l<q=<2,t€]0,1], (2.1)

supplemented with boundary conditions (1.2) is equivalent to the integral equation

t _J\g-1 _ g1
x(t) = (-9 y(s) d. 1 8/ (09 y(s)ds

o T@ I'(q)
So t o (g — §)7-1-1
' (A(l =5 Z) (‘“ /0 g YO
~b /0 N (Qli(:;il; y(s)ds+c / / ot )q - )duds), (2.2)
where

- 1= 2- pa

_.,_ & 9 (B = B;7)
A_al“(2—u)+bl“(2—u)_c INCE) 70. (2.3)

Proof Tt is well known that the general solution of the fractional differential equation (2.1)
can be written as

tor a1
x(t) = ./o (tF(S;;I y(s)ds + ¢y + 18, (2.4)

where ¢y, c; € R are arbitrary constants. Applying the boundary conditions (1.2) and using
(2.3), we find that

o _ -1 1 _ —pu—-1
Co = 5 / o —sf y(s)ds + do (—a /Q M)’(S) ds
0

1-6Jo Tlg Al -9) INCED)
22 (g —5)I711 Pa s (s— y)a-r-1
- b/o 7F(q 0 y(s)ds + c/};l /0 7F(q ) y(u) du ds) (2.5)

and

1 _ —p—1
¢ = l(_a‘/g My(s)ds
0

A INCESD)
22 (g, — 5)d-1-1 B s (s — y)a-11
_b/(; Tan )’(S)ds+c//31 /0 T y(u)duds). (2.6)

Substituting the values of ¢y, ¢; in (2.4), we get (2.2). This completes the proof. O
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3 Main results
In relation to problem (1.1)-(1.2), we define an operator S : C —> C via Lemma 2.3 as
follows:

Le-s)t § [ (o-s)!
(Sx)(t) = fo qu)f(s,x(s)) ds + s /0 GF(;) f (s,%(s)) ds

+<A(1_8)+A)< d/(‘) F(q—/J,) f(S,x(S))dS

2 (g -s)1 !
~b | —=————f(s,x(5))d
/0 T(g-w) S o2(5) ds

u)q_“_l

B2 ps (s—
+c‘/ﬂ1 /0 mf(u,x(u)) duds), (3.1)

where C = C([0,1],R) denote the Banach space of all continuous functions from [0,1] to
R endowed with the norm: ||x|| = sup{|x(¢)|,¢ € [0,1]} and A is given by (2.3). Observe
that problem (1.1)-(1.2) has solutions if and only if the operator S has fixed points. For

computational convenience, we set

5 _ 1 . 18|02 +< |80 +L>
YT h(g+1) " 1-8T(g+1)  \JA@-3) " |4

of™ o3 (Bt — gyt
. (|a|l“(q—u+1) +|b|1“(q—u+1) +lel F(g—pn+2) ) (3.2)
Dy =B 1 (3.3

Now we state the known fixed point results which we need in the forthcoming analysis.

Lemma 3.1 (Krasnoselskii [21]) Let Q be a closed, convex, bounded and nonempty sub-
set of a Banach space Y. Let ¢y, ¢ be operators such that (a) ¢1v; + ¢ovo € Q whenever
vi,v2 € Q; (b) ¢ is compact and continuous; and (c) ¢y is a contraction mapping. Then
there exists v € Q such that v = g1V + ¢ov.

Lemma 3.2 [21] Let X be a Banach space. Assume that T : X — X is a completely con-
tinuous operator and the set V = {u € X|u = €Tu,0 < € < 1} is bounded. Then T has a fixed
point in X.

Lemma 3.3 (Nonlinear alternative for single-valued maps [22]) Let E be a Banach space,
E; be a closed, convex subset of E, V be an open subset of Ey, and 0 € V. Suppose that
U:V —> E is a continuous, compact (that is, U(V) is a relatively compact subset of E;)
map. Then either

(i) U has a fixed point in V, or

(ii) thereisx € 9V (the boundary of V in E;) and k € (0,1) with x = k U(x).

Our first existence result is based on Lemma 3.1.

Theorem 3.4 Let f:[0,1] x R — R be a continuous function satisfying the following con-
ditions:
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) lf(t»x) —f(t,}/)| S Elx_ylr E > 07 Vt € [0»1]1 x’y € R;
(Ha2) If(tx)| < w(2), V(t,x) € [0,1] x R, w € C([0,1], R").

Then problem (1.1)-(1.2) has at least one solution on [0,1] if L0, < 1, where ¥, is given by
(3.3).

Proof Let us introduce a set B, = {x € C : |lx]| < p} with p > |||, where |o| =
sup{lw(t)|,t € [0,1]} and ¥ is given by (3.2). Define the operators S; and S, on B, as

t(f_ a1
(Sw)(2) = /0 (tr(s;;f f(s,x(5)) ds,

o —s)1!

90 = - | o 2 (st ds
) t 01 ( _ )q—u_—l
+ (,4(1—0—8) + .71) (—a/o %f(s,x(s)) ds

2 (g2 =) (s =)t 1
- b./o f(s, ds + c/ / x(u)) du ds).

I'(g—w) I'(g - u)

For x,y € B, it is easy to show that ||(S1x) + (S29) || < llw||¥1 < p, which implies that Syx +
S»y € B,,. Applying the condition (#;), we find that

[(S2%) = (Soy)|

_ g1l
te[o 1]{ 1-96] / F(;) S,x(s)) _f(S»J’(S))|dS

18]o 2 (g1 =)
(s ) (o [ S o) s

-1

@2 (g2 — )17
+ |b|/ ﬁV(S'x(s)) —f(s,y(s))’ds

+|c| / -t u)q - 1 u x(u)) —f(u,y(u))|duds)}

<“up{ 18] +( 18| t>(| T S
= ionlii=sir@+n T \Aa-s) A T(g—-p+1)

A Sl M))}nx—yn
Ig—pn+1) C(g-pn+2)

< sllx—yll,

+b|

which, in view of the condition £1, < 1, implies that the operator S, is a contraction. Fur-
ther S, is continuous in view of the continuity of f. Also, S is uniformly bounded on B,

as

Szl < sup {f (t_s)q 1 If (s, %(5)) |ds} < sup { (t_s)q 1 ds}

te[0,1] te[0,1]

< o] sup{ t }< llwl
- teo C(g+1) ) ~ T'(g+1)
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With sup(, yeo1yx8, If (t:¥)] =fm <00 and 0 < #; <t < T, we have

|(S1%)(12) — (S1x)(11)
- /Otz Mf(s,x(s)) ds — /tl wf(s,x(s)) ds

I'(q) o Tg
(e -9~ (-5
5/0 e If (s,x(s))| ds
t _g)a1
e e g Pt )

which tends to zero independent of x as £, —t; —> 0. This shows that S; is relatively com-
pact on B,,. Hence, by the Arzeld-Ascoli theorem, S; is compact on B,,. Thus all the as-
sumptions of Lemma 3.1 are satisfied. So problem (1.1)-(1.2) has at least one solution on
[0,1]. This completes the proof. O

In the next result, we make use of Lemma 3.2.

Theorem 3.5 Assume that there exists a positive constant Ly such that |f(t,x)| < L, for all
t € [0,1], x € C. Then there exists at least one solution for problem (1.1)-(1.2).

Proof In the first step, it will be shown that the operator S is completely continuous.
Clearly the continuity of S follows from the continuity of f. Let V C C([0,1],R*) be
bounded. Then Vx € V), it is easy to establish that |(Sx)(¢)| < L1 = L,. Furthermore, we
find that

tr_ a2
(8% (8)] = ‘/0 %f(s,x(s)) ds
1

% (o1 —s)!
A <_a/0 INCED) f(5,5(9) ds

0 (g — 51471
—b/o ) f(s,x(s)) ds

B ps (s— u)qﬂkl
+ c/ﬂl ; mf(u,x(u)) duds)

<L(L+L|:|ﬂ|i
= \r@ " ML T@-p+1)

q—i —p+1 q—p+1
0, + |C|(IB2 - B )])
M(g-wp+1) Mg-n+2)

+b| =1L,

Hence, for #;,t, € [0,1], it follows that
5]
(SH(1) - (SH)(E)] < / |(S2)(9)] ds < Ls(ts — 1.
5]

Therefore, S is equicontinuous on [0, 1]. Thus, by the Arzeld-Ascoli theorem, the operator

S is completely continuous.
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Next, we consider the set U = {x € C : £5x,0 < & <1} and show that I/ is bounded. Then,
for t € [0,1], we have

Lt-9)T! 8 o (g — )]
) =/(; (tF(S;) f(s,x(s)) ds + — /0 (Gr(;)) £(s,%(5)) ds
Yo t o1 (g — 5)111
+ <m + Z) (—ﬂ/(; Wf(s,x(s)) ds

Q2 (gy — )1 H1 B2 s—u )q m= 1
—b/O mf(s,x(s))ds+c/1 / F(q » M x(u))duds>

and |x(2)| = §|(Sx)(t)| < L9, = Ly. In consequence, we get ||x|| < L, Vx e U, t € [0,1]. So
U is bounded. Thus, by the application of Lemma 3.2, problem (1.1)-(1.2) has at least one
solution. This completes the proof. O

The following theorem deals with the uniqueness of solutions for problem (1.1)-(1.2).

Theorem 3.6 Let f:[0,1] x R — R be a continuous function satisfying the condition
(H1) and that £51 < 1, where ¥ is given by (3.2). Then there exists a unique solution for
problem (1.1)-(1.2) on [0,1].

Proof In the first step, we consider the operator S : C —> C defined by (3.1) and show that

SE, C &, where &, = {x € C: ||x|| < r} with sup,(o;[f(£,0)| =« and r > 1010012 forx € &,

t € [0,1]. Using the fact that |f (s, x(s))| = |[f(s,x(s)) — f(s,0) + f(s,0)| < €r + a, we get

‘(- 5l [ (0 =)
||(8x)|| < sup {/0 F(Sq) [f(s,x(s))|ds+ |1—8|/0 UF(;) [f(s,x(s))|ds

te[0,1]

Sl “ -9
+(|A(1—5)| |A|>(| '/0 T(q-1) [f (5,x(5))| ds

eipl [ 1V(&x(s))\ds

+|c| /(S )qul u,x(u))|duds>}

<(r+ a)z?l <r.

This shows that S&, C &,, where we have used (3.2).
Now, for x,y € C and for each ¢ € [0,1], we obtain

|Sx—Syll < sup

te[0,1]

(o =
|1 8 / F(q) 5,%(5)) =f(5,5(5))| ds

|§|lo a1 (g — )11l
' (IA(1—5)| |Al)<| |/0 WV(M(S)) -/ (s,5(9))| ds

2 (g, —s)1
+ b / F(q Lf(s,x(s)) —f(s,y(s)) | ds

£l g1
{ ﬂ [f(s,x(s)) —f(s,y(s)) | ds

I'(q)




Ahmad et al. Advances in Difference Equations (2015) 2015:348 Page 8 of 11

P ps (S — u)‘I*llﬁl y
rle p Jo mlf(u,x(u)) —f(,y(w))| du s)}

<{eHllx-yl,

which, by the assumption £ < 1, implies that the operator S is a contraction. Thus, Ba-
nach’s contraction mapping principle applies and there exists a unique solution for prob-
lem (1.1)-(1.2). This completes the proof. O

Our final result relies on Lemma 3.3 (nonlinear alternative for single-valued maps).

Theorem 3.7 Letf:[0,1] x R — R be a continuous function, and assume that

(Hs) there exist a function p € C([0,1],R*) and a nondecreasing function ¢ : R* — R*
such that [f (t,x)] < p()e(llx|l), ¥(t, %) € [0,1] x R;
(Hy) there exists a constant M > 0 such that

v 1 |6|o? |80 1
|:<P ||p||{F(q+1)+ |1_5|F(q+1)+<|A(1—5)| +W)

o " 03 " (B2 — g7\ 177
x | |a] + |b| + ¢ > 1.
[(g—n+1) F(g-n+1) F(g—n+2)

Then problem (1.1)-(1.2) has at least one solution on [0,1].

Proof We complete the proof in several steps. As a first step, we show that the operator
S : C — C defined by (3.1) maps bounded sets into bounded sets in C. For a positive
number v, let B, = {x € C : ||x|| < v} be a bounded set in C. Then, for x € B,, using (H3)
we obtain

t _\g-1 k) a _\g-1
0] = [ T peiads s 5P [T e i) ds

|§|o t o1 (g — 5)1-1-1
JAI-0)] 1Al T— ) d
+<|A(1—a)| * |A|><Ia|/0 T p)o(llxl) ds

€2 (gy — 5)1 1
+ IbI/0 a0 ps)p(llxl) ds

P2 s (s — y)a1-1
o A /o mp(uw(llxn)duds)

< o) ||{ ! 8l ( 18l i)
=OWIPN T+ T -argey T Aa -9 1A

ol ol (B 171 — i)
x | lal + 1D +c| .
Mg-n+1) Mg-pn+1) [(g—wp+2)

Next, it will be shown that the operator S maps bounded sets into equicontinuous sets
of C. Let t1, t, € [0,1] with #; < 5. Then, for x € B,,, we have

|(S2)(t2) - (Sx)(11)|

1ty -5)"" = (=) 2 (t—s)1!
< /0 r -f (s, %(s)) ds + /n Tq)f(s,x(s))
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Ity - 11 o (01 —s)T !
= ] (| |/ 4_10 [f(s,x(s))|ds

I'(q

—s)ar1 —y)a#-1
eibl [T s \ds+|c|/ﬂ /(sr(q) ) s

2l -al"+15 -]  |L-tl
5‘”(”)”‘””[ Cgr) Al (" Fa-n+1)

Qg—ll (ﬂ q—pn+1 ﬂ q- ;L+1)):|

+ b

+1c|
Mg-p+1) Mg-n+2)
Clearly, the right-hand side tends to zero independent of x € B, as t; — ¢;. Thus, by the
Arzeld theorem, the operator S is completely continuous.
Let x be a solution of problem (1.1)-(1.2). Then, for A € (0,1), using the method of com-
putation employed to show the boundedness of the operator S, it can be found that

L 18"
I'g+1) [1-48|T(g+1)

n (L + |6lo >(|C| (By 111 _ g a1+l . (lalof™ + |b|Qg_M)):|
Al AQ-98)] I'(g+1) Mg-n+1) ’

In consequence, we get

1 |8l Bt 1
I [¢("x")"p"{ Fg+1)  1-8Il(g+1) & (|A<1—a)| ¥ W)

q-n q-i g-n+l _ p g-p+l -1
><<|a| o1 T b —22 G A )>” <1
M(g-p+1) Mg-pn+1) M(g—-pn+2)

In view of (H4), there exists M such that |x|| # M. Let us select a set V' = {x € C: ||x]| <
M + 1}. Observe that the operator S : N' — C is continuous and completely continuous.
From the choice of NV, there is no x € 3 such that x = AS(x) for some A € (0,1). Thus, by
Lemma 3.3, we deduce that the operator S has a fixed point x € N which is a solution of
problem (1.1)-(1.2). This completes the proof. d

%) =[S0 <<o(||x||)||p||[

Example 3.8 Consider a fractional boundary value problem given by
‘D¥2x(t) = §sinx + & ﬂtan‘lx+ L telo,1],
1 1/2 1/2 V2172 (34)
%(0) = 5x(1/3), 2¢pY x(1/6) +3°DY2x(3/4) = [, “D"x(s) ds.

Here, § = 1/2, q—3/2 a=2, b 3,c=1,0=1/3, 01 =1/6, 02 =3/4, B1 =3/7, By =1/2,
w=1/2and f(t,x) = § sinx + & " tan™! x. With the given data, ¢ %,

N N v
“re-w "'Te-w r@-uw

|Al = =3.797291,

1 .\ |8]c? +< |8]o +L>
" T(g+1) [1-8T(g+1)  \JAQ-8) |A|

q-K q-i g-u+l _ pa-i+l
( il +1p—22 o108 A )) ~1.815607.
Mg-n+1) Mg-pn+1) N(g-p+2)
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Clearly ¢ < 19%' Thus all the conditions of Theorem 3.6 are satisfied and, consequently,
there exists a unique solution for problem (3.4) on [0,1].

Example 3.9 Consider problem (3.4) with
f(t,x) = (t/3 +1)(cosx + sinx/5). (3.5)

Clearly, |f(¢,x)| < p(t)¢(|x|), where p(t) = g +1,0(x)) =1+ % By the assumption (H4):

el 1 |§]o? 8]0 1
{w( )||p||{ FgeD) T ergeD (IA(l—S)I ' W)

q- q-1 g-p+l _ pd-in+l -1
x(|a| o b —22 o108 1 ))” 1,
Mg-n+1) Mg-pn+1) Mg-p+2)

we find that M > 4.692964. As the hypothesis of Theorem 3.7 is satisfied, therefore, its
conclusion implies that there exists at least one solution for problem (3.4) with f (¢, x) given
by (3.5).
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