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Abstract

Chronic obstructive pulmonary disease (COPD), a major cause of mortality and morbidity worldwide, is considered an

archetypical disease of innate immunity, where inhaled particles and gases trigger an inflammatory response, favoring

tissue proliferation in small airways and tissue destruction in lung parenchyma, in addition to the recruitment of immune

cells to these compartments. Although cigarette smoking is still considered the main risk factor for developing COPD,

the trend of proposing biomass smoke (BS) exposure as a principal risk factor is gaining importance, as around 3 billion

people worldwide are exposed to this pollutant daily. A considerable amount of evidence has shown the potential of BS

as an enhancer of lung inflammation. However, an impairment of some innate immune responses after BS exposure has

also been described. Regarding the mechanisms by which biomass smoke alters the innate immune responses, three main

classes of cell surface receptors—the TLRs, the scavenger receptors and the transient receptor potential channels—have

shown the ability to transduce signals initiated after BS exposure. This article is an updated and comprehensive review of

the immunomodulatory effects described after the interaction of BS components with these receptors.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a
highly prevalent condition globally, with important
repercussions on the rate of mortality and high costs
of care. Global estimates place COPD as the fourth
leading cause of death worldwide and it is expected to
become the third in 2030,1 a position that it has already
reached in the USA.2 COPD is characterized by an
abnormal response of the lungs to toxic particles and
gases, resulting in a progressive and not fully reversible
airway obstruction whose main pathologic hallmarks
are bronchiolitis and lung parenchymal emphysema-
tous destruction.3 Although COPD is primarily a
disease of the lungs and airways, it also has several
extrapulmonary manifestations and comorbidities,
such as cachexia, skeletal muscle abnormalities,
osteoporosis, depression, anemia and cardiovascular
disease.3

Among the risk factors for developing COPD, both
genetic and environmental factors are included, result-
ing in a complex, multifactorial and probably multi-
genic disease.4 The environmental risk factor most

frequently and clearly associated with COPD is cigar-
ette smoking, with a prevalence of smokers who
develop COPD ranging from 15–20% to 50% in elderly
individuals.5,6 Nonetheless, estimates based on Global
Initiative for Lung Disease spirometric criteria suggest
that 17–38.8% of patients with COPD worldwide are
non-smokers.7 It is accepted that one of the most
important risk factors for developing COPD in these
subjects is biomass smoke (BS) exposure, as around
3 billion people worldwide are exposed to this pollu-
tant.8 Although the use of biomass fuels for cooking
and heating purposes is more widespread in developing
countries, an increasing number of households in
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developed countries also rely on biomass burning as a
source of energy, owing to its cheapness, availability
and near CO2 neutrality.

9

Solid biomass covers a wide range of materials from
wood, straws and agricultural residues to animal dung
or charcoal. The burning of these materials has the
potential to release many airborne pollutants, including
methane and volatile organic compounds, nitrogen
oxides, sulfur oxides, hydrogen chloride, polyaromatic
hydrocarbons, furans and dioxins, as well as organic
and inorganic aerosol particulates,10 known as particu-
late matter (PM). The respirable fraction of PM is clas-
sified according to its aerodynamic diameter into PM10

(diameter of �10 mm), PM2.5 (diameter of �2.5 mm) and
PM0.1 (diameter of �0.1 mm). The composition of these
PM is variable, although usually includes aeroallergens
like pollen and other biologics such as fungal or bac-
terial elements, i.e. endotoxin.11

There is no doubt about the potential noxious effects
that inhaling pollutants from combustion of biomass
may have on the respiratory system. It is sufficient to
say that some of these components are similar to those
present in cigarette smoke (Table 1).12–22 This review
will focus on the harmful effects of BS through mech-
anisms affecting innate immunity, which converts this
pollutant into an important risk factor for COPD.

BS enhances lung inflammation

COPD is considered an ‘archetypical disease of innate
immunity’,23 where inhaled particles and gases trigger
an inflammatory response, favoring tissue proliferation
in small airways and tissue destruction in lung paren-
chyma, in addition to the recruitment of immune cells
to these compartments.24 A considerable amount of
evidence, from in vivo and in vitro studies, shows the
potential of BS as an enhancer of this pulmonary
inflammation.

Studies of BS exposure in animals provide the first
line of evidence. A study by Fidan et al. reported severe
histopathological effects in lungs of rabbits exposed to
dried dung smoke, such as respiratory epithelial prolif-
eration, alveoli destruction and increased emphysema-
tous change scores.25 Similar results were observed in
rats exposed to BS. Thus, rats exposed to dried dung
smoke also manifested higher levels of perivascular and
peribronchial inflammation, as well as parenchymal
infiltration,26 while an increased number of inflamma-
tory cells in bronchoalveolar lavage fluid (BALF) was
observed in rats exposed to grain crust or wood
smoke.27,28 In a murine study, Mehra et al. demon-
strated that mice exposed to dung smoke had increased
lung macrophages.29 Moreover, these mice exhibited
more perivascular inflammation and had higher
granulocyte colony stimulating factor (G-CSF) and
granulocyte-macrophage colony stimulating factor
(GM-CSF) BALF levels than those exposed identically

Table 1. Main common harmful components in both biomass

and tobacco smoke.

Smoke component Toxic effects

Acetaldehyde Suspected human carcinogen,

irritant

Acrolein Irritant

Arsenic Carcinogen, respiratory toxicant,

neurotoxicant, cardiovascular

toxicant

Benzene Carcinogen, irritant, cardiovascular

toxicant, reproductive or

developmental toxicant

Benzo(a)anthracene Suspected human carcinogen,

cardiovascular toxicant

Benzo(a)pyrene Probable human carcinogen

Benzofluoranthenes Probable human carcinogens,

cardiotoxicants

Cadmium Carcinogen, respiratory toxicant,

kidney damage

Carbon monoxide Reproductive or developmental

toxicant, asphyxiant, cardiotoxic

Catechol Irritant, possible human carcinogen

Chromium Carcinogen, respiratory toxicant,

reproductive or developmental

toxicant

Chrysene Irritant, probable human carcinogen

Copper Irritant

Cresols Possible human carcinogens,

respiratory toxicants

Crotonaldehyde Irritant, possible human carcinogen

Dibenzo(a,h)anthracene Probable human carcinogen

Dibenzo(a,h)pyrene Possible human carcinogen

Ethylbenzene Irritant, respiratory toxicant,

neurotoxicant

Formaldehyde Carcinogen, irritant

Idenol(1,2,3-cd)pyrene Carcinogen

Lead Irritant, cardiovascular toxicant,

reproductive or developmental

toxicant, neurotoxicant

Manganese Carcinogen, respiratory toxicant,

neurotoxicant

Methyl chloride Neurotoxicant, cumulative liver and

kidney damage

Naphtalene Irritant, possible human carcinogen,

neurotoxicant

Nickel Carcinogen, irritant, respiratory

toxicant

Nitrogen dioxide Irritant

Phenol Irritant, cardiovascular toxicant

Propionaldehyde Irritant, cardiovascular toxicant

Selenium Respiratory toxicant

Toluene Irritant, cardiovascular toxicant,

reproductive or developmental

toxicant, neurotoxicant

Zinc Irritant, liver and kidney damage
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to cigarette smoke. In another study, instillation of
ultra-fine carbon black particles into the lungs of mice
also triggered higher numbers of pulmonary macro-
phages, neutrophils and higher levels of TNF-a in
BALF when compared with controls.30 In the same
vein, Sussan et al. reported higher pro-inflammatory
cytokine production, neutrophilic inflammation,
airway resistance and hyper-responsiveness in mice
acutely exposed to PM from cow dung compared
with those exposed to PM from wood, whereas the
latter showed higher eosinophilic inflammation in sub-
chronic exposures.31

Several in vitro studies have also shown the pro-
inflammatory effects that BS exerts over innate
immune cells. Thus, the epithelial type II pneumocyte
cell line A549 showed an increased production of
monocyte chemoattractant protein (MCP)-1 and IL-8
after exposure to PM from coal or wood smoke.32–34

Similarly, ambient air pollution PM10 particles induced
the production of IL-6, IL-8, IL-1b, GM-CF and
TNF-a in human bronchial epithelial cell lines.35,36 In
turn, Williams et al. reported an enhancement in RNA
transcript expression of the IL-1a, IL-1b, IL-6, IL-12,
TNF-a, IFN-a, IFN-b and IFN-g genes in CD14+

monocyte-derived dendritic cells stimulated with PM
with a median diameter of 1.8 mm.37 In another study,
Alfaro-Moreno et al. showed that endothelial cells
exposed to PM10 exhibited increases in the levels of
TNF-a and GC-CSF, while no increase in pro-inflam-
matory mediators were observed in a mast cell line
(HMC-1) under the same stimulation.38 Interestingly,
when this mast cell line was co-cultured with a macro-
phage cell line (THP-1) and stimulated with PM10, large
increases were observed for the levels of IL-6, IL-8,
G-CSF (>10-fold), MIP-1a and MIP-1b, IL-1b (up to
8-fold) and TNF-a (up to 100-fold). Indeed, alveolar
macrophages (AMs), considered key orchestrators of
immune responses in lungs, are one of most reactive
cell types when exposed to inhaled pollutants, and BS
is not an exception. In this sense, different studies
reported an increased production of Il-1b, IL-6, IL-8,
MIP-1, MIP-2, TNF-a and GM-CSF in cultured
macrophages after exposure to wood smoke or
PM.35,36,39–42 Furthermore, even cultured human lung
fibroblasts have proven to be stimulated after exposure
to wood smoke extract, showing an increased release of
IL-8 and higher deposition of perlecan and fibronectin,
two important extracellular matrix components that
could contribute to the characteristic airway fibrosis
in COPD.43

Finally, some studies performed in patients with and
without COPD are also consistent with the idea that BS
fosters an inflammatory response in the lungs. Thus,
increased pulmonary numbers of macrophages, neutro-
phils, eosinophils, mast cells and lymphocytes, as well
as higher sputum levels of IL-6 and TNF-a, were
reported in women exposed to biomass smoke when

compared with those who used other types of
fuel.44–46 Banerjee et al. also reported an increased
expression of surface receptors involved in adhesion
to endothelia and transmigration in circulating neutro-
phils of biomass users,46 which could explain the
increased extravasation of inflammatory cells to the
lung of BS-exposed patients. In another study, BS-
exposed patients with COPD showed significantly
higher levels of neutrophils, eosinophils and IL-8 in
induced sputum compared with healthy individuals.47

Moreover, patients exposed to BS have an increased
expression and activity of MMPs—involved in the
turnover of extracellular matrix molecules and related
to the pathogenesis of COPD—not only in lungs, but
also in blood.47–49 This underlines that the pulmonary
inflammatory response triggered by BS also has a sys-
temic effect. Consistent with this, increases in CD8+

lymphocytes, NK cells, IL-6, IL-8, TNF-a, C-reactive
protein and MCP-1 have been reported in the blood of
BS-exposed individuals.49–52

The aforementioned studies describe acute effects of
BS on immune cells; however, COPD is characterized by
a chronic inflammatory pattern that continues even after
the removal of the original noxious insults. While no
study has yet assessed the pulmonary infiltration and/
or activation of inflammatory cells after the BS exposure
cessation, ongoing inflammation in patients with COPD
that quit smoking has been reported.53–56 The reason
why this inflammatory pattern persists remains a mys-
tery, but most hypotheses point to a dysfunction affect-
ing both innate and adaptive immune cells.57

BS alters pulmonary host

defense mechanisms

Several epidemiological studies showed increased risks
of acute respiratory infections (ARI) associated with
BS exposure,58–62 a matter of interest as ARI stand
out as one of the leading causes of mortality, especially
among children, in developing countries.63 Moreover,
some studies reported an association between tubercu-
losis cases and biomass fuel smoke exposure compared
with exposure to cleaner forms of fuels.64

Despite the link between chronic exposure to BS and
the occurrence of respiratory infections being based
primarily on epidemiological data, few experimental
studies in animals have reinforced this idea. Thus,
Hatch et al. showed a significantly increased mortality
on mice with streptococcal pulmonary infection
instilled with carbonaceous particles.65 Additionally, a
higher susceptibility to infections with Staphylococcus
aureus in rats exposed to wood smoke in the range of
3 h–2 wk was also reported.66 Furthermore, mice
exposed to nitrogen dioxide, a main component of
BS, showed an increased mortality from aerosolized
Klebsiella and a reduced pulmonary antibacterial
defense against S. cursive.67,68
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Mechanisms of innate immunity

modulation by BS

Collectively, the above mentioned studies provide evi-
dence about the effect of BS as both an enhancer of
lung inflammation and an impairer of pulmonary anti-
microbial defense. A growing body of research has
focused on shedding light on the mechanisms by
which this pollutant alters the innate immune response.
In this respect, two main classes of cell surface recep-
tors—the PRRs and the transient receptor potential
(TRP) channels—have shown the ability of transducing
signals initiated after BS exposure (Figure 1).

BS activates PRRs

PRRs are crucial in detecting PAMPs, such as bacterial
and fungal cell wall components and viral nucleic acids.
Detection of PAMPs by PRRs induces inflammatory
responses and activates innate host defenses. In

addition to representing an important defense against
pathogens, among the several classes of known PRRs,
TLRs and the class A scavenger receptor (SR-A) have
also been shown to recognize elements of BS.

TLRs are key components of the innate defenses,
having both endogenous and exogenous ligands.
TLRs are predominantly expressed by monocytes/
macrophages and neutrophils, but they are also
expressed by mast cells, dendritic cells, NK cells, fibro-
blasts, airway epithelium, pneumocytes and even lung T
cells. There are 13 TLRs described, of which TLR2 and
TLR4 have been proved to bind PM.69 It is further-
more accepted that the microbial components of PM
are responsible for TLR activation after BS expos-
ure.70–72 Hence, it has been proposed that BS may ini-
tiate pulmonary signaling through PM–TLR2/TLR4
binding, thus activating NF-iB and activator protein
(AP)-1 pathways, and leading to the synthesis and
release of pro-inflammatory cytokines and chemokines
(Figure 1).73 Consistent with this, it has been shown
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Figure 1. Modulation of innate immune responses by biomass smoke in COPD. Three main classes of cell surface receptors, TLRs,

SRs and TRPs channels have shown the ability of transducing signals initiated after BS exposure. The binding of certain components of

BS, such as silica, to SR-A receptors seems to trigger an attenuation of the inflammatory response by decreasing the levels of

pro-inflammatory mediators and activating apoptosis in alveolar macrophages. This could lead to an impaired immune response

leading to the characteristic exacerbations in patients with COPD. BS is also capable of exerting two different responses via TLR4.

On the one hand, it has been reported that PM could activate the pro-inflammatory transcription factors AP-1 and NF-kB through

TLR4 binding. On the other hand, some studies have shown that PM down-regulates TLR expression and impairs macrophage activity.

Both responses have been associated with emphysema and airway limitation. Finally, some components present in BS, such as PMs,

acrolein, crotonaldehyde or zinc, elicit a pro-inflammatory response by signaling through the TRPA1 receptor. In addition to the

exogenous agonists, the ROS generated during the inflammation could also activate TRPA1, thus contributing to the amplification of

the immune response that is characteristic in COPD.
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that both antagonist blocking and gene deletion of
TLR2 and TLR4 inhibit the pro-inflammatory
response of pulmonary cells to PM.36,74–77 However,
and in spite of this pro-inflammatory effect through
the TLR pathway, it has been shown that BS actually
down-regulates the expression of these receptors. Thus,
Becker et al. showed a decreased expression of TLR4
mRNA in cultured human AMs exposed to coarse and
fine PM.36 Sahlander et al. found a decreased expres-
sion of TLR2 on blood monocytes of non-smoking pig
farmers exposed to organic material on a daily basis
when compared with non-farming smokers and con-
trols who underwent a bronchial LPS challenge.78

In addition, Williams et al. showed a marked down-
regulation of TLR2 and TLR4 in human myeloid
dendritic cells exposed to ambient PM.37 These results
are in the same line as those describing an impaired
phagocytosis and lymphocyte activation activity in
wood smoke-exposed macrophages, suggesting that
BS exerts something more than just a pro-inflammatory
stimulus on these cells.69,79,80 The notion of a dysregu-
lation in either TLR expression or in macrophage activ-
ity is of particular interest in COPD. Recent studies
have shown that down-regulation or deficiency in
TLR4 expression is associated with emphysema and
airflow limitation in smokers,81,82 while impaired
TLR responses in AMs correlate with propensity for
COPD exacerbations.83

Scavenger receptors (SRs) are another class of PRRs
that are able to bind a diverse array of endogenous and
foreign molecules. Although little is known about the
immunological effects of BS through SRs, it has been
reported that SR-A recognizes components of PM.84

SR-A is predominantly expressed by macrophages,
dendritic cells and mast cells, as well as epithelial and
endothelial cells.85 Intriguingly, unlike the pro-inflam-
matory response initiated after PM–TLR2/TLR4 bind-
ing, the activation of SR-A by BS components seems to
trigger an attenuation of inflammation (Figure 1).
Thus, SR-A2�/� mice exposed to silica, a main compo-
nent in the ash of herbaceous crops and residues,10

showed increased levels of TNF-a, mRNA levels of
chemokine (C-X-C motif) ligand (CXCL)3 and a sig-
nificantly increased neutrophilia when compared with
wild type mice.86,87 Moreover, it has been shown that
specific blocking of SR-A2 prevents PM10-induced
apoptosis in AMs.88 As COPD is characterized by a
decreased apoptosis of AMs,89 which contributes to
maintain the chronic inflammatory response, a hypo-
thetical reduction of SR-A expression in AMs of
patients with COPD would not be surprising.
Accordingly, Ganesan et al. reported an absence of
SR-A expression in AMs in an animal model of
COPD, involving mice infected with non-typeable
Haemophilus influenzae, an important bacterial
pathogen associated with COPD exacerbations.90

Furthermore, the authors suggested that the lack of

SR-A could be responsible for the observed defect in
bacterial phagocytosis in these mice. Currently, no
study assessing SR-A expression in human samples of
patients with COPD has been reported, and further
research is also needed in order to elucidate the mech-
anisms of BS through SR pathways.

BS activates TRPs

Recent attention has been paid to the TRP channels as
mediators of innate immune responses triggered by BS.
TRP channels—of which 28 members have been iden-
tified in mammals—are a family of cation-selective ion
channels that can be activated by numerous chemical
ligands (both exogenous and endogenous) or physical
stimuli, hence acting as cellular sensors capable of
responding to environmental changes.91 These TRPs
are subdivided into seven subfamilies: TRPC, TRPV,
TRPM, TRPP, TRPML, TRPA and TRPN. Although
there are some structural differences between TRP sub-
family members, these receptors have six transmem-
brane segments—forming a pore between S5 and
S6—and intracellular N- and C- termini.92 Many of
these TRPs exhibit Ca2+ permeability and are thus
considered important regulators of the intracellular
concentrations of this ion. This fact confers to TRPs
an enormous potential to influence many cellular pro-
cesses involved in lung diseases, as an increase of intra-
cellular Ca2+ concentration is a powerful stimulus to
the activation of virtually all pulmonary cell types.

Both the high capacity of TRPs to respond to a wide
range of environmental irritants and the importance of
smoking habit as a risk factor for lung disease have led
to a growing body of studies assessing the role of sev-
eral cigarette smoke components as TRPs agonists.93

Although fewer studies have focused on BS as a TRP
activator, many of the cigarette smoke components
recognized by TRPs, e.g. nitrogen dioxide, acrolein,
crotonaldehyde and zinc, are also found in BS
(Table 1). Therefore, similar effects on TRP activation
could be expected after cigarette smoke or BS exposure.
Beyond the well-known consequences of TRP activa-
tion in airway sensory nerves, leading to coughing and
neurogenic inflammation,94 the idea that these recep-
tors play a key role in regulating other inflammatory
mechanisms is growing stronger (Figure 1). Indeed,
TRPs are expressed not only in most cells of innate
immunity such as macrophages, neutrophils, mast
cells, eosinophils or epithelium, but also in endothe-
lium, fibroblasts, neurons, smooth muscle cells and
lymphocytes.95 Several effects on immune responses
have been described depending on the type of TRP
and the cell studied.

Among all TRP subtypes, the TRP ankyrin 1
(TRPA1) and the TRP vanilloid 1 (TRPV1) are prob-
ably the most important in mediating immune
responses after BS exposure. TRPA1 has been proved
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to be a molecular sensor for wood smoke PM in human
alveolar cells.96 Nassini et al. showed a release of IL-8
in cultured human airway epithelial cells, smooth
muscle cells and fibroblasts exposed to acrolein; inter-
estingly, this response was reduced by TRPA1 antag-
onists.97 Moreover, an increase of CXCL-1 was found
in BAL of wild type mice after intratracheal instillation
of acrolein, an effect significantly reduced after pre-
treatment with a TRPA1 antagonist and completely
absent in TRPA1�/� mice. Similar results were found
by Mukhopadhyay et al. in cultured human lung fibro-
blasts and alveolar epithelial cells, showing an increased
release of IL-8 in these cells when supplemented with
crotonaldehyde and zinc; again, this response was atte-
nuated by TRPA1-selective antagonists.98 For their
part, Deering-Rice et al. reported a coal ash-induced
release of IL-6 and IL-8 in airway epithelial cells,
which was inhibited by TRPV1 antagonists.99 In the
same study, the authors showed that instillation of
coal ash into wild type mice lungs led to an increased
expression of IL-6, as well as CXCL-1 and CXCL-2
mRNA in small airways, while this effect was attenu-
ated in TRPV1�/� mice. Moreover, it has been
suggested that TRPV1 may mediate PM-induced apop-
tosis.100 Thus, it has been reported that airborne PM-
induced apoptosis in human airway epithelial cells is
prevented by capsazepine, a TRPV1 antagonist;101

however, in bronchial human epithelial (BEAS-2B)
and A549 cells, TRPV1 agonists have been reported
to cause endoplasmic reticulum stress and cell death.102

In addition to TRPA1 and TRPV1, there is evidence
supporting a role for other TRP subtypes in pulmonary
pathology and modulation of lung immune responses,
although their association with BS is yet to be defined.
For instance, Zhu et al. have reported seven TRPV4
single nucleotide polymorphisms associated with suscep-
tibility to COPD.103 Moreover, AMs of patients with
COPD have a higher expression of TRP canonical 6
(TRPC6) mRNA compared with control subjects, sug-
gesting a possible role of these receptors in the pathogen-
esis of the disease.104 In a murine model of lung
inflammation, Tiruppathi et al. showed a reduced
plasma leakage in TRPC4�/� mice, underlining the
importance of this TRP as a regulator of pulmonary
microvascular permeability.105 In another murine study,
mast cells from TRP melastatin 4 knock-out mice
(TRPM4�/�) showed an enhanced release of histamine,
IL-6 and TNF-a compared with TRPM4+/+ cells,106

while activation of TRPM8 in lung cells showed an
enhanced expression of IL-1a and IL-1b, IL-4, IL-6, IL-
8 and IL-13, as well as TNF-a and GM-CSF.107,108

Conclusions

The increasing prevalence of COPD, which is already
among the five leading causes of death worldwide, is of
global concern. Although no hypothesis so far can fully

explain the pathogenic mechanisms of the disease, it is
accepted that an abnormal innate immune response
is involved. Furthermore, the paradigm of cigarette
smoking as the main risk factor for developing COPD
is beginning to shift towards BS exposure, as around
3 billion people worldwide are exposed to this pollutant
daily. Certainly, BS has proven to be a noxious agent
involved in the pathophysiology of several cardio-
respiratory diseases, although the mechanisms of its
detrimental effects on human health have just started
to be uncovered. Both in vivo and in vitro studies have
underlined the role of surface cell receptors such as
PRRs and TRPs as mediators of lung innate immune
modulation after cigarette smoke exposure. Although
cigarette smoke and BS have many components in
common, more research focusing specifically on the
effects of BS is necessary in order to clarify its actual
contribution to pulmonary disease. Moreover, the
immune modulation of this pollutant depends on the
type of cell surface receptor activated, ranging from a
pro-inflammatory response to an increase of apoptosis
in inflammatory cells. Therefore, following the
advancement in the understanding of TRLs, SRs and
TRPs as sensors of inhaled pollutants, future research
should test their potential role as therapeutic targets in
respiratory disorders such as COPD.
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