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Abstract

Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease

(CHD), the most common cardiovascular disease, progresses over several years and affects millions of people world-

wide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one

of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions

the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive

cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can

activate each other and play an important role in immune response via degrading extracellular matrix components and

modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of

inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of

several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and

neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7).

The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived

biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent

immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the

contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic

involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.
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Introduction

Chronic periodontitis

Chronic periodontitis (CP), the most prevalent form of
periodontitis, is defined as an inflammatory disease of
the tooth-supporting structures. CP is caused by a com-
plex interplay between host defense and biofilm dysbiosis
indicated by growth of specific pathogens or complexes
of pathogens colonizing the subgingival area. To chal-
lenge the microbial biofilm and its virulence factors
(LPS, enzymes and toxins), an immune-inflammatory
response develops. Resident tissue cells induce and
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produce pro-inflammatory mediators, which enhance
the recruitment of inflammatory cells (primarily neutro-
phils) at the site of inflammation. Once neutrophils reach
the inflamed sites, they aggregate, form a wall separating
the epithelium from the bacterial biofilm, degranulate
large quantities of tissue destructive enzymes [e.g.
matrix metalloproteinase (MMP)-8, MMP-9 and neu-
trophil elastase (NE)] and generate ROS.1–3 These cas-
cades result in collagen loss and further progressive
breakdown of soft and hard tissues of the periodontium,
leading to pocket formation and/or recession. If not
treated, CP eventually leads to tooth loss.4–6

When periodontitis progresses the predominance
of Gram-positive bacterial species in the biofilm
changes majorly into Gram-negative species.7,8

According to culture and DNA hybridization tech-
niques, Porphyromonas gingivalis, Prevotella interme-
dia, Treponema denticola, Tannerella forsythia and
Aggregatibacter actinomycetemcomitans are considered
to be etiologically linked with periodontal diseases
(PDs) or frequently found in pathological periodontal
conditions.7,8 Culture-independent studies have
expanded the range of disease-associated organisms,9

and around 1000 bacterial species have been found in
the oral cavity.10 Periodontal bacteria or their products,
for example LPS, may enter the bloodstream through
inflamed periodontal tissues, especially after dental
treatment,11–13 gentle mastification or tooth brush-
ing.12,14 Similarly as during the acute-phase response,
in periodontitis patients and... during the acute-phase
response in periodontitis patients and in a mouse model
infected with A. actinomycetemcomitans,15–17 most of
the endotoxin activity is found in the pro-atherogenic
lipoprotein fraction. This alteration is considered to
promote pro-atherogenic properties of the lipoproteins,
including activation of macrophages and accumulation
of cellular cholesterol.18 Long-term or repeated epi-
sodes of bacteremia and endotoxemia are undoubtedly
threats to general health in both healthy people and
those with metabolic disorders.19–24

Coronary heart disease

Coronary heart disease (CHD) progresses over several
years and affects millions of people worldwide. The dis-
ease may lead to acute coronary syndrome (ACS)
[unstable angina pectoris and myocardial infarction
(MI)] which is considered as the major cause for mor-
tality in patients with cardiovascular diseases (CVD).25

Atherosclerosis is the underlying cause for CHD and
represents a multifactorial degenerative disease of
large- and medium-sized arteries. It leads to lipid-rich
plaque formation, artery wall thickening and atheroma
development. The incidence of atherosclerosis cannot
be fully explained by classical risk factors. The hypoth-
esis of infection as a potential cause of atherosclerosis
has gained favour and is supported by a large body of

epidemiological evidence.25–28 Inflammation is thought
to contribute to the progression of atherosclerotic
lesions and may also have a fundamental role in throm-
bosis and adverse acute outcomes causing death.29

Association of CP and CHD

Since Mattila et al. addressed an association between
oral infections and CHD in 1989,30 numerous epide-
miologic studies have revealed a link between CP and
CVD.31–39 Although the findings were modest and no
causal association could be found, these studies sug-
gested an independent consistent association that
cannot be attributed to common risk factors.37

CP, like other life-long infectious diseases, may
affect initiation, development and progression of
CHD either directly by bacterial vascular invasion or
indirectly through systemic inflammation or antigen
cross-reactivity (Figure 1).40–44 Most importantly, suc-
cessful treatment of periodontitis has positive effects on
CVD-associated risk factors.45–47

Bacteria may access the circulation during daily rou-
tine, oral hygiene procedures and during periodontal ther-
apy.22,48,49 The epithelial ulceration at the periodontal
pocket confers direct access of virulent Gram-negative
organisms (e.g. P. gingivalis and A. actinomycetemcomi-
tans) to the blood stream that causes recurrent and tran-
sient bacteremia, as well as low-grade systemic
inflammation.12,13,50 Trafficking of phagocytes represents
another direct route that periodontal pathogens may cir-
culate in the blood stream, invade endothelial cells and
possibly promote atherosclerosis-related vascular inflam-
mation.51 Systemic challenge to periodontal pathogens
and their soluble components induces a major vascular
response, which may alter the endothelial integrity; this
represents the earliest change in the vascular wall, fol-
lowed by leukocyte aggregation, cholesterol deposition,
atheroma formation and progression, and plaque rupture
in further consequence. These hypotheses are confirmed
by the detection of multiple periodontal pathogens, as
well as their identification at the DNA level, in human
atherosclerotic plaques.29,52–54

Host inflammatory response and molecular mimicry
represent another indirect mechanism linking CP and
CHD. Periodontal pathogens and virulence factors are
capable of inducing systemic inflammation, which, in
turn, affects all stages of the atherosclerotic process.
Locally secreted pro-inflammatory cytokines such as
TNF-a, IL-1 and IL-6 enter circulation, trigger the
release of acute-phase reactants (e.g. C-reactive protein)
and promote cell activation. This leads to production of
adhesion molecules, activation of TLRs and the release
of MMPs (e.g. MMP-9) and their regulators [e.g. tissue
inhibitors of metalloproteinase-1 (TIMP-1)] and NE,
respectively—processes accelerating the development
of the atherosclerotic process in the vessel
wall.41,43,55–57 Cross-reactive auto-antibodies against
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common antigens of periodontopathogens and the host
(e.g. heat shock proteins) generated by molecular mim-
icry may disturb the immune reaction and contribute to
the pathogenesis of PD and CHD, probably via similar
activation processes and cascades.58,59

Appropriate periodontal treatment has been reported
to be effective in reducing and improving markers
associated with CVD, for example CRP, IL-6, TNF-a,
cholesterol levels and endothelial dysfunction.45–47

Importantly, periodontal treatment may have a benefi-
cial effect also on the function and properties of all lipo-
protein classes.13,18,60 Thus, these reports point towards
a causal association between CP and CHD.

A large body of evidence reporting possible pathogenic
pathways that may link PD with CHD has been
published. The present review will primarily cover the pro-
teolytic role of MMPs and their regulators, as well as the
role of myeloperoxidase (MPO), a neutrophil-derived
enzyme that gets upregulated during inflammatory dis-
eases,61 including atherosclerosis, glomerulosclerosis,
glomerulonephritis and PD (see below).62–67

MMPs and their regulators
in periodontitis and CHD

The MMP family consists of at least 23 genetically
distinct but structurally related zinc- and calcium-
dependent endopeptidases, which cooperatively partici-
pate in a protease cascade to remodel almost all
extracellular matrix (ECM) and basement membrane
(BM) constituents. MMPs can process a number of sol-
uble proteins such as cytokines, chemokines and
growth factors, and activate individual MMPs, thus
generating cascade-type MMP-dependent immune
responses (Figures 1 and 2).68–71 Alternatively, pro-
MMPs in cascade can also be activated by microbial
proteases, serine proteinases and ROS (Figures 1
and 2). The ability of MMPs to cleave ECM compo-
nents and to regulate the activity of non-ECM bioactive
molecules confers their crucial roles in various physio-
logical and pathological processes such as tissue
development, immune responses, remodeling, and in
inflammatory and vascular diseases. MMPs are often
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Figure 1. Schematic representation of principal interactions of neutrophil-derived proteases and the anti-protease shield, addressing

a possible mechanistic link between CP and acute manifestations of CVD.
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categorized according to their modular domain
structure: (i) collagenases (MMP-1, MMP-8 and
MMP-13); (ii) gelatinases (MMP-2 and MMP-9); (iii)
stromelysins (MMP-3, MMP-10 and MMP-11); (iv)
matrilysins (MMP-7 and MMP-26); (v) membrane-
type MMPs (MMP-14, MMP-15-17, MMP-24 and
MMP-25); and (vi) others (MMP-12, MMP-19 to
MMP-21, MMP-23, MMP-27 and MMP-28).68,72

MMP-8 (collagenase-2)

Upon maturation in the bone marrow, neutrophils
(also called polymorphonuclear leukocytes) synthesize
and store MMP-8 (also called neutrophil collagenase)
in secondary granules as a latent enzyme. In response to
various extracellular stimuli neutrophils degranulate
and release mature MMP-8. Owing to its collagenolytic
properties, MMP-8 is contributing to leukocyte recruit-
ment at the site of inflammation. In addition to neutro-
phils (the main source of MMP-8), a variety of cells of
the non-polymorphonuclear leukocyte lineage, such as
monocytes/macrophages, plasma cells, endothelial
cells, fibroblasts and epithelial cells, can express
MMP-8 during inflammatory processes.2,68–70,72–76

MMP-8 can initiate the cleavage of collagen type
I–III; most importantly, MMP-8 has a high affinity
for type I collagen. Other MMPs, like gelatinases can
further cleave the proteolytic products of collagens
after the initial cleavage by collagenases.69,70,77–80

Collagen type I is the preferred substrate for MMP-8
that is secreted by different inflamed cells in the athero-
sclerotic plaque. Type I is the most abundant collagen
and the major load-bearing molecule in the atheroscler-
otic fibrous cap; it is obvious that MMP-8 plays a
crucial role in atherosclerosis.81 Furthermore, MMP-8
degrades apolipoproteins A–I (apoA–I; the major apo-
lipoprotein of high-density lipoproteins) thereby
decreasing the anti-atherogenic function of lipoproteins
of the high-density range during reverse cholesterol
transport.82 MMP-8 has been proposed to act as a suit-
able marker for cardiovascular outcomes.83–86 An
increased expression of MMP-8 was found in activated
inflammatory cells covering the shoulder region of the
atherosclerotic plaque.81,87,88 MMP-8 has been found
to be released excessively in patients with CVD

characterized by plaque progression,89 to be signifi-
cantly elevated in ruptured infarct tissue in patients
with MI,86 to potentially reflect coronary plaque
instability in patients with unstable angina pectoris,90

and to be linked with the severity of coronary
artery disease and ACS.91,92 In addition, high serum
MMP-8 levels are associated with ACS,93 particularly
in patients with acute MI, CVD and cardiac
arrest.86,94–96

MMP-8 is the predominant MMP associated with
periodontitis.69,70 Periodontal pathogens and their viru-
lence factors can activate resident cells to generate
inflammatory mediators,97–99 by which the latent
MMP-8 can be proteolytically and oxidatively acti-
vated.84 Active MMP-8 can degrade type I collagen,
the major component of the ECM in the periodontal
tissues, leading to undesired destructive lesions. Saliva
and gingival crevicular fluids (GCF) are easily and non-
invasively collectable diagnostic biological specimens
that are useful for the detection of early periodontitis.
Monitoring of candidate fluid biomarkers for both oral
and systemic conditions is a necessary tool to comple-
ment clinical examinations in epidemiological studies.
Nonetheless, it should be noted that smoking, vari-
ations in the salivary flow rates and other factors
may affect the usefulness of oral fluid marker ana-
lyses, and thus the levels should be considered with
caution when interpreting results.100 Several studies
have shown that MMP-8 levels in oral fluids correlate
with the severity of periodontal inflammation, being
elevated especially in severe periodontitis.85,101–109

MMP-8 levels decrease in response to different peri-
odontal treatments such as scaling, root planning or
application of the collagenase inhibitor doxycyc-
line.103,110 Kivelä-Rajamäki et al. even reported that
high MMP-8 levels have been identified in an active
form in diseased peri-implant sulcular fluids.111

To conclude, MMP-8 plays an important role not
only in periodontal tissue destruction, but also in
periodontal homeostasis and defense.112,113 However,
future studies are required to address whether saliv-
ary or mouth rinse analysis of MMP-8, MMP-9,
MPO and their regulators can be utilized as potential
diagnostic tools in systemic diseases such as
CVD.56,57

Microbial proteases

Serine proteases

Other MMPs

Myeloperoxidase

proMMP-3↑

proMMP-7↑

proMMP-8↑

proMMP-9↑
TIMP-1↓

Figure 2. Proteolytic and oxidative activation cascades of MMP-8 and MMP-9 associated with periodontitis and CVD. This activation

cascade can be potentiated by microbial proteases, serine proteases, other MMPs and MPO but will be inhibited by TIMP-1.
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MMP-9 (gelatinase B)

Similarly as reported for MMP-8, MMP-9 is mainly
synthesized by neutrophils and stored in their intracellu-
lar secondary granules as a latent enzyme.114 Upon bac-
terial challenge activated leukocytes migrate to the site of
inflammation and secrete MMP-9 as a latent form,
which is activated locally by trypsin, a-chymotrypsin,
cathepsin G, plasmin and other MMPs (e.g. MMP-3,
MMP-7 and MMP-10) by removal of the pro-peptide
(Figure 2).115–117 In addition to neutrophils, MMP-9 is
also secreted by macrophages, smooth muscle cells
(SMCs), epithelial and endothelial cells.115,118–122 In
order to facilitate leukocyte migration, expression and
activation of MMP-9 is increased during inflammatory
processes, including periodontitis.69,70,123–125 In addition
to gelatins, MMP-9 cleaves also ECM and BM compo-
nents such as collagen type IV/V, aggrecan, elastin and
other substances, for example IL-1b.122,126–130

Expression of MMP-9 can be induced by MMP-7, as
well as different cytokines, including IFN-g, IL-1, IL-2
and TNF-a, respectively.

MMP-9 plays a subtle role in the progression of CVD.
Expression of MMP-9 has been described in macro-
phages, SMCs and endothelial cells derived from athero-
sclerotic plaque material, particularly at the shoulder
region. Furthermore, MMP-9 cleaves type IV collagen
and denatured collagen, and may contribute to plaque
formation and destabilization via facilitation of medial
SMCmigration to the intima. Thus, it contributes to deg-
radation of the thin collagen cap that covers cholesterol-
rich plaques lining the coronary arteries, which leads to
plaque rupture, thrombosis and acuteMI.88,96,131–134 The
active form of MMP-9 is elevated in clinically defined
unstable carotid plaque, and MMP-9 levels are signifi-
cantly higher in ruptured infarct tissue in patients with
fatal MI.84,86,135 Furthermore, elevated serum or plasma
levels of MMP-9 have been reported in patients with car-
diac arrest, unstable angina and acute MI, or patients
with a history of MI.96,136–138

MMP-9 is considered as one of the major MMPs
expressed in periodontitis-affected gingiva. This protease
has been found to be associated with severe periodontitis
but its levels decrease after successful periodontal inter-
vention.69,70,125,139 Elevated serum levels of MMP-9 have
also been reported in patients with periodontitis, but
decreased significantly after 3 months of non-surgical
periodontal intervention.57,106 One cross-sectional study
showed thatGCF levels ofMMP-8 andMMP-9 correlate
with disease activity in patients with PD.105

MMP-7 (matrilysin-1)

Owing to the absence of the hemopexin-like domain
that is common to all other MMPs, MMP-7, the smal-
lest (28 kDa) of the known MMP family members, is
less susceptible to inhibition by TIMPs.140–143

Epithelial MMP-7 is secreted in its latent form and

can be effectively activated by plasmin and MMP-3
through proteolytic removal of the pro-domain.115,144

MMP-7 is secreted by various cells, including epithelial
cells and macrophages, but not by neutrophils, and can
degrade elastin, laminin, collagen type IV and IX and
fibronectin. MMP-7 cannot cleave interstitial collagen,
but it can activate latent forms of other MMPs (pro-
MMP-1, pro-MMP-2, pro-MMP-8 and pro-MMP-9)
(Figure 2), and thus potentiates proteolytic-cascades.
MMP-7 plays a key role in both epithelial repair
and defense,140 and it may have a specific role in the
intraepithelial cell migration process during renewal of
the epithelium when expressed by junctional epithe-
lium.111,140,145–147 In addition, MMP-7 may express
antimicrobial defense properties in response to bacter-
ial insult by converting antimicrobial pro-defensin
peptides into their active forms.140

MMP-7 is also expressed by lipid-laden macro-
phages in atherosclerotic lesions, and serum MMP-7
levels are elevated in cardiac arrest patients compared
with healthy controls.96 Increased MMP-7 expression
was found in macrophages and SMCs covering the
shoulder regions of the atherosclerotic plaque.148

Plasma MMP-7 concentrations are elevated in patients
with (un)stable coronary artery disease and CVD.94,149

Furthermore, MMP-7 may contribute to collagenolysis
preceding the atherosclerotic plaque rupture by cleav-
ing pro-MMP-8 into active MMP-8.150

MMP-7 is induced by microbial products such as
LPS.140 Furthermore, MMP-7 was found to be expressed
by periodontitis-affected human gingival sulcular epithe-
lium in vivo and in peri-implant sulcular fluid.111,151

MMP-7 is released in gingival tissues of patients with
periodontitis and is elevated in CP.145,151

TIMPs

TIMPs (TIMP-1–4) are natural MMP inhibitors.
Similar to MMPs, TIMPs are expressed at low levels
in normal tissues. However, TIMP expression rises
during tissue remodeling under both physiological
and pathological conditions.152,153 Although TIMPs
can inhibit all individual MMP proteins, the inhibitory
effect varies among the different MMP species. Owing
to the lack of the hemopexin domain various MMPs
are less tightly bound to TIMPs, and therefore are
poorly inhibited.154 The activity of MMP is inhibited
via non-covalent binding of the N-terminal portion of
TIMP to the C-terminal portion of MMP (Figures 1
and 2).68,71,146,153,154 The imbalance between MMPs
and their TIMP inhibitors leads to an excessive and
undesirable tissue destruction at the site of
inflammation.69,70

Various vascular tissue cells (e.g. endothelial cells,
monocytes/macrophages and SMCs) can express
TIMP-1. TIMP-1 expression and its release by neutro-
phils are very low or hardly detectable.155,156 Through
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inhibiting MMPs, TIMP-1 blocks SMC migration and
thus plays a beneficial role against progression of
atherogenesis.115 High serum TIMP-1 levels have been
correlated with plaque instability and tissue damage
and various forms of CVD (e.g. MI and cardiac mor-
tality),157,158 and may predict fatal future out-
comes.93,94 The MMP/TIMP ratio may be considered
an important parameter affecting atherogenesis.137

Furthermore, an increased MMP-8/TIMP-1 ratio was
found to be strongly associated with ACS and
CVD,93,137 and thus may be considered as a predictor
for coronary risk.94

TIMP-1 expression is found in several periodontitis-
affected gingival tissue cells such as endothelial
cells, monocytes/macrophages, keratinocytes and fibro-
blasts.159 In oral samples, the balance between MMPs
and TIMPs is regarded to mirror the proteolytic
burden.69,70 Low TIMP-1 levels have been demonstrated
in patients with periodontitis compared with controls,
and after periodontal treatment these levels appear to
rise. Furthermore, the MMP-8/TIMP-1 ratio in salivary
and GCFs can be used to discriminate patients with peri-
odontitis from controls.160–162

NE

NE (also termed polymorphonuclear leukocyte elastase)
is a serine protease. Activated neutrophils express and
store NE in their primary granules in order to combat
bacterial insult, but the enzyme may also contribute to
undesired tissue degradation.163,164 NE can degrade
elastin, collagen type I–IV, laminins, fibronectin and
proteoglycans.79,163,164 Moreover, NE is able to
degrade ECM by accelerating MMP cascades. NE is
also able to activate pro-MMPs, such as pro-MMP-9
and pro-MMP-3, and to inactivate TIMPs, a process
that essentially modulates the MMP/TIMP ratio.165,166

NE can modulate the activity of various cytokines and
favor thrombus formation.116,167 As macrophages pre-
sent in human lesion material express NE,168 an enzyme
that has been suggested to be associated with an
increased risk of CVD and plaque instability.94,169,170

Furthermore, NE can degrade non-collagenous
protein-covered collagen fibrils in the early destructive
stages of PDs.171 High serum levels of NE were
reported in untreated periodontitis than in periodon-
tally healthy controls.172 Most importantly, serum NE
levels were significantly decreased in response to non-
surgical periodontal intervention.173

MPO

Another circulating biomarker for CVD/CHD used to
predict clinical risk and prognosis of affected patients is
MPO.174–179 The predominant in vivo sources for MPO
released during the oxidative burst are neutrophils and
monocytes, in which MPO makes up to 5% and 1%

in the total cell protein content, respectively.
Furthermore, a subpopulation of macrophages express-
ing MPO is considered to play a particular role in
atheroma complication and ACS.180,181 MPO generates
the potent oxidant hypochlorous acid (HOCl) from
H2O2 and chloride ions. Besides its antimicrobial activ-
ity, MPO contributes to degradation of connective tis-
sues by impairing the crucial balance between proteases
and anti-proteases. MPO is also present in the ECM in
human lesion material;64 the enzyme co-localizes with
HOCl-modified epitopes/proteins at the endothelial
layer and macrophages,182,183 and most importantly
also with MMP-7.184 As shown by Weiss and cowor-
kers, with pro-MMP-8 and pro-MMP-9,185,186 and
later by Fu et al.,184 with pro-MMP-7, HOCl may rap-
idly activate these zymogens, a process apparently
depending on the oxidant:enzyme molar ratio.187 This
suggests that HOCl formed by the MPO-H2O2-halide
system of activated phagocytes provides an oxidative
mechanism for activating latent MMPs in vascular dis-
eases; a pathway that may play a critical role in the
rupture of atherosclerotic lesions,184,188 regulation of
neutrophil recruitment and inactivation of TIMPs
(Figures 1 and 2). Indeed, in vitro studies have shown
that HOCl added as reagent or generated by the MPO-
H2O2-chloride system inactivates TIMP-1 by oxidizing
the N-terminal cysteine residue of the enzyme,189,190 a
mechanism reported to occur in vivo under inflamma-
tory conditions.190 These data support the notion that
an imbalance between the proteolytic activity of MMPs
and the inhibitory activity of TIMPs is implicated in
many pathological conditions.190

A large body of data reported increased neutrophil
infiltration during CP, reflecting a heightened inflam-
matory state. As a consequence, MPO mass and/or
activity is upregulated in rapidly progressing CP,
GCFs, saliva and human dental pulp tissues in order
to combat pathogenic microbes.105,191–204 Miyasaki and
Nemirovsky reported that among dental and periodon-
tal bacteria tested,204 A. actinomycetemcomitans has the
highest capacity to promote the release of neutrophil-
derived MPO. Owing to its ability to form HOCl, MPO
is involved in the destruction of periodontal compo-
nents and can destroy the ECM by directly activating
latent MMP-8 and MMP-9, and by enhancing MMP
activity via inactivation of TIMP-1.101 Leppilahti et al.
reported that levels of MPO and MMPs (MMP-8,
MMP-13 and MMP-14) show highest diagnostic accur-
acy,196 while only MPO and MMP-8 were significantly
higher in periodontitis compared with gingivitis.
Furthermore, salivary concentrations of MPO and
NE, and the ratio of MMP-8/TIMP-1, were higher in
generalized CP and aggressive periodontitis than in
healthy controls.202 The high prognostic value of
MPO and MMPs, as well as TIMPs, in periodontitis
is supported by a marked decrease even after non-sur-
gical therapy.69,101,105,201 Basically, MPO levels in
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saliva are increased in patients with peri-implant dis-
ease with and without implants.205,206 In peri-implant
sulcus fluids, levels of MPO rose with the increase of
pocket probing depth and increasing gingival inflam-
mation but decreased significantly after non-surgical
therapy.207,208

Neutrophils, the first cellular responders to invading
microbes, exert most of their antimicrobial activity in
phagosomes, specialized membrane-bound intracellular
compartments formed by ingestion of microorgan-
isms.209 Alternatively, stimulated neutrophils may
combat microbes through the release of web-like
filamentous structures of decondensed chromatin, so-
called neutrophil extracellular traps. These traps are
composed of DNA and histones, and harbor antimicro-
bial peptides and enzymes such as cathepsin G, NE and
MPO.210 Neutrophil extracellular traps are present in
dental plaque samples, saliva, supragingival biofilms
and gingival connective tissue,211,212 and thus play a
significant role in the pathogenesis of periodontitis
(for a review see Cooper et al.211) probably by subse-
quent modulation of the immune response.213

High levels of MPO–DNA complexes, as observed
in severe coronary atherosclerosis,214 are most likely
due to periodontal bacteria (P. gingivalis, T. forsythia
and P. intermedia) that may trigger neutrophil activa-
tion. This suggests activation of similar pathways as in
atherosclerosis and periodontitis.215 Treatment of
periodontitis has further been reported to modulate
the atherosclerotic profile by exerting a beneficial
effect on endothelial cell function.47 This must be seen
in context: MPO-mediated endothelial dysfunction,
apparently due to consumption of NO,216 may be con-
sidered an important mechanistic link between inflam-
mation and CVD.217 Different MPO polymorphisms
have been found to be associated with plasma MPO
concentrations in patients with coronary artery dis-
ease.178 Whether such a link may also exist with peri-
odontitis needs further investigation.218–220

Neutrophil proteolytic activation cascades

Naruko et al. were the first to show neutrophil infiltra-
tion into culprit lesions in ACS.221 Later, Ionita et al.
reported that high neutrophil numbers in human caro-
tid atherosclerotic plaques are associated with charac-
teristics of rupture-prone lesions.222 Furthermore, a
positive association between the number of neutrophils
and plaque levels of MMP-8 and MMP-9 was found.222

From these data it is obvious that neutrophils play a
major role in mediating destabilization of the athero-
sclerotic plaque.221,222 Neutrophils are present in
greater numbers in periodontal patients, and acute
MI size is related to the extent of periodontitis.223

Furthermore, neutrophils play a crucial role in the ini-
tiation and/or progression of both periodontitis and
CHD, probably via proteolytic alteration in the local

balance of ECM.1,2,76,224 Collagen structures of both
periodontal ligament and atherosclerotic fibrous cap
are almost the same. In the periodontium, mainly
type I collagen and to a lesser extent type III collagen
represent the main component of the ECM in the soft
(gingiva and periodontal ligament) and hard (alveolar
bone) periodontal tissues.225,226 Similarly, the athero-
sclerotic fibrous cap is rich in collagen type I and
III.25,26,28,227 In order to approach the infected sites
and eradicate the infectious bacterial burden, neutro-
phils release several proteases from their granules to
degrade the collagen and gelatine moieties of the
ECM and BM components, and to fulfill their anti-
microbial function.2 CP can result in enhanced produc-
tion of neutrophil-derived proteases, both at local sites
and also in the circulation.2 The existence of periodon-
tal bacteria in atheromatous plaque lesion may trigger
neutrophil activation and recruitment at inflammatory
sites.215 Thus, proteolytic biomarkers released directly
from neutrophils at the atheromatous plaque site or
secreted in the circulation by neutrophils at sites of
periodontal lesions may be considered a link between
these inflammatory diseases (CP and CHD). Robust or
prolonged neutrophilic antimicrobial activities may
cause collateral uncontrolled destructive lesions.2,69,224

MMPs are the key players in this process by cleaving
almost all ECM constituents and regulating the action
of cytokines and chemokines.69–72,124,228

Doxycycline and other medications
used for reducing MMPs or MPO and
low-grade inflammation

Doxycycline, an approved adjunctive medication for
the treatment of CP, is a synthetic MMP inhibitor
and may be administered at three different pharmaco-
logical doses. It can be applied as either low- or sub-
microbial-dose doxycycline, 20–40mg, or at a normal/
regular dose (>100mg). Owing to its anti-MMP prop-
erties, doxycycline may decrease the risk of coronary
artery disease events. Doxycycline, at both low
and regular doses, can downregulate several MMPs
and other pro-inflammatory mediators, probably
owing to its immunomodulatory and anti-proteolytic
effects.42,162,229–231 In contrast, low or sub-antimicro-
bial adjunctive doxycycline medication does not exert
antimicrobial properties, thus differing clearly from
regular antimicrobial dosages.232 Doxycycline can
decrease MMP-7 and the MMP-8/TIMP-1 ratio,
modulate NE, MPO, cytokines (IL-6, IL-8, TNF-a)
and CRP, and most importantly increase TIMP-1
levels.42,133,139,162 Therefore, doxycycline seems to
exert its potential as an adjunctive medication for mul-
tiple pathological conditions and chronic inflammatory
diseases, including CP, CVD and ACS.85,133,139 In
line with previous studies, our data have shown that
MMP-7 and MMP-8, as well as the MMP-8/TIMP-1
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ratio, were diminished with doxycycline treat-
ment.42,161,229,233–235 Recently, at low doses, doxycycline
has been suggested to decrease MMP-8 and MMP-9
levels in serum and oral fluids (such as GCF) and, con-
sequently, beneficially modulate the MMP-8/TIMP-1
ratio.110,162,236 Frankwich et al. have demonstrated that
regular-dose doxycycline medication decreased serum
pro-inflammatory biomarkers and MMPs, resulting in
improved insulin sensitivity eventually by protecting
insulin receptor cleavage(s) by MMPs.237,238

Nevertheless, some adverse side effects (e.g. diarrhea,
fungal infections and super infections) have been
reported to occur when patients are treated with doxy-
cycline at regular doses.239

In rat models of experimental periodontitis, increased
levels of MPO may be considered an inflammatory dis-
ease marker.240–242 Therapeutic effects on MPO levels by
antioxidants such as alpha lipoic acid and vitamin C
have been reported.240 Both, carvedilol (an alpha/beta
blocker) or azilsartan/olmersartan (angiotensin II recep-
tor-AT1 blockers) reduced levels of MPO, MMP-2 and
MMP-9.243–246 Treatment with synthetic parstatin (a 41-
aa peptide, formed in vivo by proteolytic cleavage on
activation of the protease activated receptor-1) signifi-
cantly reduced MPO activity in gingivamucosal
tissue.242 Also, treatment of periodontitis with the tryp-
tase inhibitor Nafamostat mesilate for 14 days decreased
MPO activity in gingivomucosal tissue.247

The combination of alendronate (a bisphosphonate)
and atorvastatin (a cholesterol-lowering drug)
decreased MPO activity in the gingiva of rats following
ligature-induced periodontitis.248 Also simvastatin
(another inhibitor of 3-hydroxy-3-methylglutaryl-CoA
reductase, the key enzyme in endogenous cholesterol
biosynthesis pathway), which was previously reported
to downregulate MPO gene expression in human and
murine monocyte macrophages,249 was found to
decrease MPO activity dose dependently in experimen-
tal periodontitis.250 Additionally, a recent study in
patients with type-2 diabetes with hypercholesterolemia
demonstrated the mechanisms of lipid-lowering drugs
to reduce systemic pro-inflammatory factors and
MMPs.251

Inhibition of MPO or scavenging of HOCl might
represent an alternative strategy for the treatment of
PDs.252 In particular, taurine chloramine, which is gen-
erated from HOCl and its physiological scavenger (the
sulfur-containing aa taurine), is only about a third as
active as HOCl in activating MMP-8 but completely
fails to inhibit TIMP-1 at concentrations achieved at
sites of inflammation.253

Conclusion

A recent study correlating salivary biomarkers with MI
and periodontal status revealed that MMP-9 correlated
positively with MMP-8 and MPO but negatively

with TIMP levels.254 Indeed, MMP-8 and MMP-9 pri-
marily secreted from neutrophils in a latent form and
during inflammation can be activated by several pro-
inflammatory mediators, such as cytokines, MMP-7,
NE and MPO-derived/generated reactive intermediates
(including HOCl), as well as microbial proteases.99

MMP-8 is able to degrade collagen type I, the major
contributor to the tensile strength of the fibrous
cap, threefold more potently than other interstitial col-
lagenases.78,81 In addition to BM proteolysis, the pro-
teolytic products of collagens can further be degraded
by MMP-9.71 Through its ability to release chemokines,
epithelial MMP-7 is important for neutrophil influx to
the site of inflammation.124,255 Other enzymes of the
neutrophil granules, for example NE and MPO, and
MPO-generated reactants, secreted into the extracellu-
lar space can cleave the ECM. MMPs and their regu-
lators can promote auto-activation and form
proteolytic activation cascades.108 Alternatively, MPO
potentiates MMP proteolytic cascades by impairing the
crucial balance between proteases and anti-proteases
that may lead to potentially deleterious situations.256

MPO can also oxidatively convert latent MMP-8 and
MMP-9 into proteolytically active forms, inactivate
TIMPs and regulate neutrophil recruitment (Figures 1
and 2).69,76,101,190,257 All of these neutrophil-derived
markers, reported to be upregulated in atherosclerotic
lesions, are thought to play a fundamental role in
plaque rupture and are associated with subsequent
pathological CVD events.93,94,148,168,258,259 Thus, neu-
trophil-derived proteases implicated in the atheroscler-
otic plaque rupture may lead to acute manifestations of
the disease such as unstable angina pectoris or acute
MI. On the one hand, future CVD events could be pre-
dicted by determining serum MMP-7 and MMP-8,
TIMP-1 and the MMP-8/TIMP-1 ratio, as high
MMP-7 and MMP-8 levels have been associated with
several forms of CVD and increased incidence of fatal
heart attacks.92–96 Serum levels of these molecules
might reflect the progression and severity of CVD and
may thus be considered as candidate markers in
predicting future CVD events. On the other hand, the
usefulness of these molecules in oral samples, saliva,
mouth rinse or GCF as biomarkers of CVD requires
further investigations.

MMP inhibition via doxycycline represents a
promising route for periodontitis treatment.
Nevertheless, further research is needed that includes
large-scale/multinational intervention trials with a suf-
ficiently long follow-up period, standardized periodon-
tal measurements and proper adjustments for known
confounders. It is important to elaborate the under-
standing of molecular mechanisms related to neutrophil
proteolytic pathways by investigating the impact of
periodontal therapy on traditional CVD risk factors.
Furthermore, it is necessary to provide therapeutic stra-
tegies preventing and treating severe clinical outcomes,
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such as secondary CVD events or even mortality. The
strategy to balance MMPs and their regulators by
doxycycline treatment might offer a suitable approach
for CHD treatment by providing an anti-
proteolytic and anti-inflammatory barrier against
systemic inflammation and recurrent CVD events.
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