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Abstract
The aim of this article is to investigate MHD Carreau fluid slip flow with viscous
dissipation and heat transfer by taking the effect of thermal radiation over a
stretching sheet embedded in a porous medium with variable thickness and variable
thermal conductivity. Thermal conductivity of the fluid is assumed to vary linearly
with temperature. The constitutive equations of Carreau fluid are modeled in the
form of partial differential equations (PDEs). Concerning boundary conditions
available, the PDEs are converted to ordinary differential equations (ODEs) by means
of similarity transformation. The homotopy analysis method (HAM) is used for
solution of the system of nonlinear problems. The effects of various parameters such
as Weissenberg numberWe2, magnetic parameterM2, power law index n, porosity
parameter D, wall thickness parameter α, power index parameterm, slip parameter λ,
thermal conductivity parameter ε, radiation parameter R and Prandtl number on
velocity and temperature profiles are analyzed and studied graphically.

Keywords: magnetohydrodynamics (MHD); Carreau fluid flow; stretching sheet; slip
flow; variable thickness; variable thermal conductivity; thermal radiation

1 Introduction
The study of heat transfer and boundary layer flow over a stretching sheet has received a
great deal of attention from many researchers due to its importance in many engineering
and industrial applications, such as paper production, glass-fiber production, solidifica-
tion of liquid crystals, petroleum production, exotic lubricants, suspension solutions, wire
drawing, continuous cooling and fibers spinning, manufacturing plastic films and extrac-
tion of polymer sheet. Crane [] was the first person who studied the boundary layer flow
past a stretching sheet. He concluded that velocity is proportional to the distance from the
slit. Gupta and Gupta [] discussed the problem of the continuous moving surface with
constant temperature. The constant surface velocity case with a power law temperature
variation was studied by Soundalgekar et al. []. Elbashbeshy [] examined the heat trans-
fer over a stretching surface with variable heat flux and uniform surface heat flux. Grubka
et al. [] studied the stretching flow problem with a variable surface temperature. Hayat et
al. [] obtained the series solutions for stretching sheet problem with mixed convection
by using the homotopy analysis method (HAM). In the presence of a transverse magnetic
field, Chaim [] studied boundary layer flow due to a plate stretching with a power law
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velocity. Effect of variable thermal conductivity and heat source/sink on flow near a stag-
nation point on a nonconducting stretching sheet was studied by Sharma et al. [].

Georgiou [] investigated time-dependent Poiseuille flow of Carreau fluid in the pres-
ence of slip effect and concluded that the wavelength and amplitude of oscillations in radial
direction decrease with an increase in the slip effect. The peristaltic flow characteristics of
Carreau fluid in a uniform tube and the heat transfer characteristics of Carreau fluid were
discussed by El Hakeem []. Malik et al. [] studied the pressure-dependent viscosity in
Carreau fluid through a porous medium. The effect of transpiration on magnetohydrody-
namic stagnation-point flow of Carreau nanofluid toward a stretching/shrinking sheet in
the presence of thermophoresis and Brownian motion was numerically investigated by Su-
lochana et al. []. Akbar et al. [] investigated numerically the flow of peristaltic Carreau
nanofluid past an asymmetric channel and found that increasing values of magnetic pa-
rameter encourage the velocity profiles. Ali and Hayat [] presented the analytic solution
of mathematical modeling for the flow of incompressible Carreau fluid in an asymmet-
ric channel with sinusoidal wall variations. Suneetha et al. [] investigated the effect of
thermal radiation on a two-dimensional stagnation point flow of an incompressible MHD
Carreau fluid towards a shrinking surface in the presence of convective boundary condi-
tions. The unsteady peristaltic flow of an incompressible Carreau fluid in eccentric cylin-
ders was investigated by Nadeem et al. []. The boundary layer flow and heat transfer
to a Carreau model over a nonlinear stretching surface was discussed by Khan et al. [].
Masood et al. [] investigated the effect of magnetic field on the stagnation point flow of
a generalized Newtonian Carreau fluid.

The problem of free convection about a vertical impermeable flat plate in a Darcy porous
medium was studied by Cheng et al. []. The heat transfer and flow in a porous medium
over a stretching surface with internal heat generation and suction or blowing when the
surface is held at a constant temperature was studied by Elbashbeshy et al. []. Using
the homotopy analysis method, analytic solution was obtained by Hayat et al. [] for the
flow through a porous medium. Fang et al. [] studied the boundary layer over a con-
tinuously stretching sheet with variable thickness. The progress of thermal diffusive flow
over a stretching sheet with variable thickness was investigated by Subhashini et al. [].
Khader et al. [] obtained the numerical solution for the flow and heat transfer in a thin
liquid film over an unsteady stretching sheet in a saturated porous medium in the presence
of thermal radiation by using the finite difference method. Mostafa et al. [] studied the
flow and heat transfer of an electrically conducting non-Newtonian power law fluid within
a thin liquid film over an unsteady stretching sheet in the presence of a transverse mag-
netic field with variable viscosity and variable thermal conductivity. Anjali Devi et al. []
studied the boundary layer and heat transfer characteristics of hydromagnetic flow over a
stretching sheet with variable thickness. Numerical solution for the flow of a Newtonian
fluid over an impermeable stretching sheet with a power law surface velocity, slip velocity
and variable thickness was studied by Megahed et al. []. Eid et al. [] studied numerical
solutions for the slip flow and heat transfer of a Newtonian fluid due to an impermeable
stretching sheet which is embedded in a porous medium with a power law surface velocity
and variable thickness in the presence of thermal radiation, viscous dissipation and slip ve-
locity effects. The heat and mass transfer in Carreau fluid flow over a permeable stretching
sheet with convective slip conditions in the presence of applied magnetic field, nonlinear
thermal radiation, cross diffusion and suction/injection effects was numerically studied
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by Gnaneswara et al. []. Groza et al. [] presented a Newton interpolating series for
approximate solutions of the entire functions of multipoint boundary value problems for
differential equations. Marin [] extended the concept of domain of influence, proposed
by Cowin and Nunziato, in order to cover the elasticity of micro stretch materials. Ghita
et al. [] formulated some problems modeling the local hardening behavior of a plastic
material following a Prandtl-Reuss law. Directional linear hardening, which is similar to
Bauschinger’s effect in metals, is characterized by an anisotropic factor. The magnetohy-
drodynamic (MHD) flow of non-Newtonian nanofluid in a pipe was studied by Ellahi [].
Ellahi et al. [] theoretically investigated the problem of the peristaltic flow of Jeffrey fluid
in a non-uniform rectangular duct under the effects of Hall and ion slip. Marin et al. []
considered a right cylinder composed of a physically micropolar thermoelastic material
for which one plane end is subjected to an excitation harmonic in time.

The aim of the present work is to model and analyze the steady boundary layer flow of
MHD Carreau fluid slip flow with viscous dissipation and heat transfer by taking the effects
of thermal radiation over a stretching sheet embedded in a porous medium with variable
thickness and variable thermal conductivity. The system of nonlinear partial differential
equations is transformed into a system of ordinary differential equations using appropriate
similarity transformations. A model system of equations is solved analytically by means
of the homotopy analysis method (HAM).

2 Mathematical formulation
2.1 Description of the problem
Consider two-dimensional steady boundary layer flow of MHD Carreau fluid slip flow
over a stretching sheet embedded in a porous medium. The origin is located at the slit,
through the sheet is drawn in the fluid medium. The x-axis is taken in the direction of sheet
motion, and the y-axis is normal to it. The sheet is stretched with velocity Uw = U(x + b)m,
where U is the reference velocity. Assume that the sheet is not flat, which is specified as
y = A(x + b) –m

 , where the coefficient A is chosen small for the sheet to be sufficiently thin,
and m is the velocity power index. The problem is valid for m �=  because for m = , the
problem reduces to a flat sheet.

2.2 Governing equations and boundary conditions
The basic governing equations of continuity, boundary layer flow and heat transfer are

∂u
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+
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where the velocity components u and v are along the x and y axes, ν , ρ and σ are the kine-
matic viscosity, fluid density and electrical conductivity, respectively. Other parameters,
such as the acceleration due to gravity is g , T is the fluid temperature, κ is the thermal dif-
fusivity, � is the time constant, J is the magnetic field, k is the permeability of the porous
medium, qr is the radiative heat flux, cp is the specific heat at constant pressure and n is
the power law index. For n = , the Carreau model reduces to the Newtonian one.
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The radiative heat flux qr is employed according to Rosseland approximation [] such
that

qr =
σ ∗

k∗
∂T

∂y
, ()

where σ ∗ = . · – W mK– is the Stefan-Boltzmann constant and k∗ is the mean
absorption coefficient. Following Rapits [], we assume that the temperature differences
within flow are sufficiently small such that T may be expressed as a linear function of
the temperature. Expanding T in a Taylor series about T∞ and neglecting higher order
terms, we have

T ∼= T
∞T – T

∞. ()

The physical and mathematical advantage of the Rosseland formula () consists in the
fact that it can be combined with Fourier’s second law of conduction to an effective
conduction-radiation flux qeff in the form

qeff = –
(

κ +
σ ∗T∞

k∗

)
∂T
∂y

= –κeff
∂T
∂y

, ()

where κeff = (κ + σ∗T∞
k∗ ) is the effective thermal conductivity. So, the steady energy balance

equation, including the net contribution of the radiation emitted from the hot wall and
observed in the colder fluid, takes the form

ρcp
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(
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. ()

To obtain the similarity solutions, it is assumed that the permeability of the porous
medium k(x) is of the form k(x) = k(x + b)–m, where k is the permeability parameter.

The corresponding equations are subjected to the boundary conditions

u(x, y) = U(x + b)m + λ

(
∂u
∂y

)
, v(x, y) = ,

T(x, y) = Tw at y = A(x + b)
–m

 ,
()

u(x, y) = , T(x, y) =  at y → ∞, ()

where λ is the slip coefficient having dimension of length. For similarity solutions, it is
assumed that the slip coefficient λ is of the form λ = (x + b) –m

 .
The mathematical analysis of the problem is simplified by introducing the following

dimensionless coordinates:

η = y

√
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where η is the similarity variable, ψ is the stream function defined as u = ∂ψ

∂y and v = – ∂ψ

∂x
and 
(η) is the dimensionless temperature.

In this study, the equation for the dimensionless thermal conductivity κ is generalized
for temperature dependence as follows:

κ = κ∞( + ξ
), ()

where κ∞ is the ambient thermal conductivity and ξ is the thermal conductivity parameter.
Using these variables, the boundary layer governing equations ()-() can be written in

a non-dimensional form as follows:

F ′′′ + FF ′′ – DF ′ +



(n – )(m + )WeF ′′′F ′′ – MF ′ –
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m + 
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(
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)(
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)
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′) + F
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where We = �U
 (x+b)m–

ν
is the Weissenberg number, D = ν

kU(m+) is the porosity param-

eter, M = σJ


ρU
is the magnetic parameter, Pr = μcp

κ∞ is the Prandtl number, Ec = U
w

cp(Tw–T∞)

is the Eckert number and R = σ∗T∞
k∗κ∞ is the radiation parameter.

Boundary conditions ()-() will be transformed

F(α) = α

(
 – m
 + m

)[
 + λF ′′(α)

]
, F ′(α) =  + λF ′′(α), 
(α) = , ()

F ′(∞) = , 
(∞) = , ()

where λ =
√

U(m+)√
ν

is the slip velocity parameter, α = A
√

U(m+)
ν

is the parameter re-

lated to the sheet thickness, and η = α = A
√

U(m+)
ν

indicates the plate surface. In or-
der to facilitate the computation, we introduce the function f (ζ ) = f (η – α) = F(η) and
θ (ζ ) = θ (η – α) = 
(η). The similarity equations ()-() for f (ζ ) and the associated
boundary conditions ()-() become, respectively,

f ′′′ + ff ′′ – Df ′ +



(n – )(m + )Wef ′′′f ′′ – Mf ′ –
m
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(
 + R
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)(
( + ξθ )θ ′′ + ξθ ′) + f θ ′ + Ecf ′′ = , ()

f () = α

(
 – m
 + m

)[
 + λf ′′()

]
, f ′() =  + λf ′′(), θ () = , ()

f ′(∞) = , θ (∞) = , ()

where the prime denotes differentiation with respect to ζ . Based on the variable transfor-
mation, the solution’s domain will be fixed from  to ∞.

The physical quantity of interest in this study is the skin friction coefficient Cf and the
local Nusselt number Nux, which are defined as

Cf = –
√

m + 


Re
–


x f ′′(), Nu = –
√

m + 


Re


x θ ′(), ()

where Re(x) = UwX
ν

is the local Reynolds number and X = x + b.
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3 Solution by the homotopy analysis method
In this section we apply the HAM to obtain approximate analytical solutions of the MHD
Carreau fluid slip flow with viscous dissipation and heat transfer by taking the effect of
thermal radiation over a stretching sheet embedded in a porous medium with variable
thickness and variable thermal conductivity. We select initial guesses and the linear oper-
ator for equations () and () as

f(z) =
–e–z( – ez + m – mez – αez + mαez)

( + m)( + λ)
, θ(z) = e–z, ()

Lf =
∂f
∂z +

∂f
∂z , Lθ =

∂θ

∂z +
∂θ

∂z
, ()

the above auxiliary linear operators have the following properties:

Lf
(
c + cz + ce–z) = ,

Lθ

(
c + ce–z) = ,

()

where ci (i = -) are arbitrary constants. The zeroth order deformation problems can be
obtained as

( – q)Lf
[̂
f (z; q) – f(z)

]
= qhf Nf

[̂
f (z; q)

]
, ()

( – q)Lθ

[
θ̂ (z; q) – θ(z)

]
= qhθ Nθ

[̂
f (z; q), θ̂ (z; q)

]
, ()

Nf
[̂
f (z; q), θ̂ (z; q)

]
=

∂ ̂f (z; q)
∂z + f̂ (z; q)

∂ ̂f (z; q)
∂z –

m
m + 

(
∂ f̂ (z; q)

∂z

)

+
(n – )(m + )


We

(
∂ f̂ (z; q)

∂z

)
∂ ̂f (z; q)

∂z

– M
(

∂ f̂ (z; q)
∂z

)
– D

(
∂ f̂ (z; q)

∂z

)
, ()

Nθ

[
θ̂ (z; q)

]
= ( + R)

((
 + ξ θ̂ (z; q)

)∂θ̂ (z; q)
∂z + ξ

(
∂θ̂ (z; q)

∂z

))

+ Pr̂f (z; q)
∂θ̂ (z; q)

∂z
+ PrEc

(
∂ ̂f (z; q)

∂z

)

, ()

where q is an embedding parameter, hf and hθ are the non-zero auxiliary parameters and
Nf , Nθ are nonlinear operators.

For q =  and q = , we have

f̂ (z; ) = f(z), f̂ (z; ) = f (z),

θ̂ (z; ) = θ(z), θ̂ (z; ) = θ (z).
()

As the embedding parameter q increases from  to , f̂ (z; q) and θ̂ (z; q) vary from their
initial guesses f and θ to the exact solutions f (z) and θ (z), respectively.
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Taylor’s series expansion of these functions yields

f (z; q) = f(z) +
∞∑

k=

fk(z)qk ,

θ (z; q) = θ(z) +
∞∑

k=

θk(z)qk ,

()

where

fk =

k!

∂kf (z; q)
∂zk

∣∣∣∣
q=

,

θk =

k!

∂kθ (z; q)
∂zk

∣∣∣∣
q=

.
()

Keep in mind that the above series depends on hf and hθ . On the assumption that the non-
zero auxiliary parameters are chosen so that equations () converge at q = , we have

f (z) = f(z) +
∞∑

k=

fk(z),

θ (z) = θ(z) +
∞∑

k=

θk(z).

()

Differentiating k-times the zeroth order deformation of Eqs. () and () one has the kth
order deformation equations as

Lf
[
fk(z) – χkfk–(z)

]
= hf Rf ,k(z), ()

Lθ

[
θk(z) – χkθk–(z)

]
= hθ Rθ ,k(z), ()

where the boundary conditions () and () take the form

fk() = f ′
k () = f ′

k (∞) = ,

θ ′
k() = θk(∞) = ,

()

Rf ,k(z) =
∂fk–(z)

∂z +
k–∑
j=

fk––j(z)
∂fj(z)
∂z –

(
M + D

)∂fk–(z)
∂z

–
m

m + 

k–∑
j=

∂fk––j(z)
∂z

∂fk(z)
∂z

+
(n – )(m + )


We

k–∑
j=

[
∂fk––j(z)

∂z
∂fk(z)
∂z

]
∂fk–(z)

∂z + χk , ()

Rθ ,k(z) = ( + R)

((
 + ξθk(z)

)∂θk–(z)
∂z + ξ

k–∑
j=

∂θk––j(z)
∂z

∂θk(z)
∂z

)

+ Pr
k–∑
j=

fk––j(z)
∂θk(z)

∂z
+ PrEc

k–∑
j=

[
∂fk––j(z)

∂z
∂fk(z)
∂z

]
, ()
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χk =

⎧⎨
⎩

, k > ,

, k = .
()

Finally, the general solution may be written as follows:

fk(z) = f ∗
k + c + cz + ce–z,

θk(z) = θ∗
k + c + ce–z,

()

where f ∗
k and θ∗

k are the special solutions.

4 Error analysis
Before starting analysis of the problem, we first analyze the accuracy of the HAM on this
specific problem. For this purpose Figures - are drawn and Tables  and  are con-
structed. Error profiles of f for λ = . and . are plotted in Figures  and  versus the
order of approximations. It is observed that error is continuously reducing by increas-
ing the order of approximation, and satisfactory error is achieved at the th order. The
error for temperature distribution is shown in Figures  and  for λ = . and ., respec-
tively. From here one can observe that accuracy up to – is achieved on the th order
approximation. The optimal values of convergence control parameter as well as the mini-
mum values of total averaged squared residual error for various order of approximations is
shown in the table. Notice that the table is made to observe the error for velocity and tem-
perature fields for different orders of approximations. One can notice that error in velocity
component f and in temperature θ decreases as we increase the order of approximations.

Figure 1 Error profile of f , taking λ = 0.2,
n = 0.5, We = 0.03, M = 0.05, Pr = 0.7, m = 0.001,
α = 0.2, D = 0.5, R = 0.05, Ec = 0.02 and ξ = 0.01.

Figure 2 Error profile of θ , taking λ = 0.2,
n = 0.5, We = 0.03, M = 0.05, Pr = 0.7, m = 0.001,
α = 0.2, D = 0.5, R = 0.05, Ec = 0.02 and ξ = 0.01.
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Figure 3 Error profile of f , taking λ = 0.25,
n = 0.5, We = 0.03, M = 0.05, Pr = 0.7, m = 0.001,
α = 0.2, D = 0.5, R = 0.05, Ec = 0.02 and ξ = 0.01.

Figure 4 Error profile of θ , taking λ = 0.25,
n = 0.5, We = 0.03, M = 0.05, Pr = 0.7, m = 0.001,
α = 0.2, D = 0.5, R = 0.05, Ec = 0.02 and ξ = 0.01.

Table 1 Optimal value of convergence control parameters for different orders of
approximations

Order of approximation ���f ���θ εt
m

2 –1.50039 –0.52479 7.16404× 10–4

3 –1.14981 –0.42060 6.90592× 10–4

4 –1.19560 –1.16693 5.15041× 10–4

5 –1.24825 –0.30060 5.55759× 10–4

6 –1.31412 –1.28875 5.01547× 10–4

7 –1.35632 –1.31419 4.05433× 10–4

8 –1.38483 –1.36406 2.18914× 10–4

Table 2 Individual averaged squared residual errors using optimal values of auxiliary
parameters

m εf
m εθ

m

2 3.28588× 10–5 4.15975× 10–4

4 2.10586× 10–5 6.47816× 10–5

6 1.97175× 10–5 3.97772× 10–5

8 1.92867× 10–5 2.39297× 10–5

10 1.91356× 10–5 1.47931× 10–5

12 1.90796× 10–5 9.87921× 10–6

14 1.90562× 10–5 7.34606× 10–6

16 1.90439× 10–5 6.07003× 10–6

18 1.90350× 10–5 5.42235× 10–6

20 1.90271× 10–5 5.07083× 10–6

5 Results and discussion
In this article, the steady boundary layer flow of MHD Carreau fluid slip flow with viscous
dissipation and heat transfer is studied by taking the effects of thermal radiation over a
stretching sheet embedded in a porous medium with variable thickness and variable ther-
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Figure 5 Velocity profile f ′(η) versus η for
various values of D selecting fixed values for
other parameters.

Figure 6 Temperature profile θ (η) versus η for
various values of D selecting fixed values for
other parameters.

Figure 7 Velocity profile f ′(η) versus η for various
values of α with m = 5 selecting fixed values for
other parameters.

mal conductivity. The system of nonlinear ordinary differential equations ()-() with
boundary conditions () and () is solved analytically by HAM. The effects of Weis-
senberg number, power law index, magnetic parameter, velocity power index parameter,
porous parameter, wall thickness parameter, slip velocity parameter, thermal conductivity
parameter, radiation parameter, Eckert number and Prandtl number on the velocity and
temperature fields are analyzed with the help of graphical aids and numerical results.

The effects of porosity parameter D on the velocity profile f ′(η) and temperature profile
θ (η) are shown in Figures  and . It can be seen clearly that the velocity profile f ′(η)
decreases as the magnitude of porosity parameter increases. Furthermore, boundary layer
thickness decreases due to the increase in the porosity parameter, while the behavior of
temperature profile decreases with an increase in the porosity parameter. The effects of
wall thickness parameter α on the velocity profile f ′(η) have been analyzed and the results
are presented in Figures  and . It is noticed that the velocity profile f ′(η) decreases at
any point near to the plate as the wall thickness parameter increases for m > , the reverse
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Figure 8 Velocity profile f ′(η) versus η for
various values of α with m = 0.5 selecting fixed
values for other parameters.

Figure 9 Velocity profile f ′(η) versus η for
various values of λ selecting fixed values for
other parameters.

Figure 10 Temperature profile θ (η) versus η for
various values of λ selecting fixed values for
other parameters.

is true for m < . It is clear from figures that the thickness of the boundary layer becomes
thicker for higher values of α when m >  and becomes thinner for higher values of α when
m < .

The effect of the slip parameter λ on the velocity profile is shown in Figure . It is clear
that the velocity profile decreases quickly throughout the fluid with the increase in the
slip parameter λ. Boundary layer thickness decreases due to the effect of increasing the
slip parameter λ while keeping other parameters fixed. The behavior of temperature dis-
tribution for the variation of the slip parameter λ is shown in Figure . It is obvious that
the temperature profile increases with an increase in the slip parameter λ, while the other
parameters are fixed.

The influence of velocity power index m on the velocity profile is displayed in Figure .
The behavior of the velocity profile rises with a decrease in the values of velocity power
index m. Thickness of boundary layer becomes thinner as m increases along the sheet
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Figure 11 Velocity profile f ′(η) versus η for
various values of m selecting fixed values for
other parameters.

Figure 12 Velocity profile f ′(η) versus η for
various values of M selecting fixed values for
other parameters.

Figure 13 Temperature profile θ (η) versus η for
various values of ξ selecting fixed values for
other parameters.

keeping the values of all other parameters fixed. Figure  depicts the velocity distribution
for different values of M. As the magnetic parameter increases, the velocity distribution
gets decreased. Further the boundary layer thickness is decreased due to the influence of
magnetic parameter M while keeping other parameters fixed.

The variation of thermal conductivity parameter on the temperature profile is shown in
Figure . From here we see that the temperature profile as well as the thickness of thermal
boundary layer increase when the thermal boundary parameter is increased. The effect of
radiation parameter R on the temperature profile θ (η) is plotted in Figure . It is depicted
that the temperature field and the thermal boundary layer thickness increase with the
increase in R. Figure  displays the effect of Prandtl number on the temperature profile.
It can be seen that the behavior of temperature distribution decreases with an increase
in the Prandtl number. The temperature distribution for various values of Eckert number



Shah et al. Boundary Value Problems  (2017) 2017:94 Page 13 of 17

Figure 14 Temperature profile θ (η) versus η for
various values of R selecting fixed values for
other parameters.

Figure 15 Temperature profile θ (η) versus η for
various values of Pr selecting fixed values for
other parameters.

Figure 16 Temperature profile θ (η) versus η for
various values of Ec selecting fixed values for
other parameters.

Ec is plotted in Figure . It is that the temperature distribution θ (η) increases with the
increase in the value of Eckert number Ec keeping the other parameters fixed.

In order to investigate the accuracy of (HAM), we compared the values of skin friction
–f ′′() with those given in Eid et al. [] and Fang et al. [] for the case α = ., α = .
when We = , M = , λ = , n = . and D = , respectively, for different values of velocity
power index m.

The quantitative comparison is shown in Tables  and . Analytical and numerical re-
sults are found to be in good agreement. Table  demonstrates the effects of power law in-
dex, magnetic parameter, Weissenberg number, porosity parameter, wall thickness param-
eter, slip velocity parameter, velocity power index parameter, radiation parameter, Eckert
number, thermal conductivity parameter and Prandtl number on the skin friction coeffi-
cient and the local Nusselt number. It is noticed that the skin friction coefficient increased
but the local Nusselt number reduced with increasing porosity parameter and velocity
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Table 3 Values of –f ′′(0) for different values of m when n = 0.5, We = 0, λ = 0, M = 0, D = 0 and
α = 0.5

m Present value Eid et al. [28] Fang et al. [22]

9.0 1.05992 1.0590 1.0589
7.0 1.05606 1.0551 1.0550
5.0 1.04963 1.0487 1.0486
3.0 1.03685 1.0359 1.0359
2.0 1.02422 1.0234 1.0234
1.0 1.00000 1.0000 1.0000
0.5 0.97665 0.9798 0.9799
0.0 0.95050 0.9575 0.9576
–1/3 0.99301 1.0000 1.0000
–0.50 1.15585 1.1668 1.1667

Table 4 Values of –f ′′(0) for different values of m when n = 0.5, We = 0, λ = 0, M = 0, D = 0 and
α = 0.25

m Present value Eid et al. [28] Fang et al. [22]

10.0 1.14419 1.1434 1.1433
9.0 1.14126 1.1404 1.1404
7.0 1.13314 1.1324 1.1323
5.0 1.11992 1.1185 1.1186
3.0 1.09168 1.0904 1.0905
1.0 1.00000 1.0000 1.0000
0.5 0.93225 0.9339 0.9338
0.0 0.77766 0.7842 0.7843
–1/3 0.46962 0.5000 0.5000
–0.50 0.13856 0.0834 0.0833

Table 5 Values of –f ′′(0) and –θ ′(0) for various values of m, D, α, λ, ξ , R, Ec, Pr

D α m ξ R Pr Ec λ n We M –f ′′(0) –θ ′(0)

0.0 0.2 0.5 0.1 0.5 1.0 0.2 0.2 0.5 0.3 0.5 0.825155 0.475184
0.5 - - - - - - - - - - 0.974741 0.456129
1.0 - - - - - - - - - - 1.099356 0.438155
0.5 0.0 0.5 0.1 0.5 1.0 0.2 0.2 0.5 0.3 0.5 0.957396 0.444435
- 0.25 - - - - - - - - - 0.979058 0.459059
- 0.0 1.0 - - - - - - - - 1.008661 0.438441
- 0.25 - - - - - - - - - 1.005863 0.436451
0.5 0.2 0.0 0.1 0.5 1.0 0.2 0.2 0.5 0.3 0.5 0.914802 0.491316
- - 0.5 - - - - - - - - 0.974741 0.456129
- - 1.0 - - - - - - - - 1.006404 0.431844
0.5 0.2 0.5 0.0 0.5 1.0 0.2 0.2 0.5 0.3 0.5 0.974915 0.469772
- - - 0.2 - - - - - - - 0.974546 0.444876
- - - 0.5 - - - - - - - 0.972809 0.334618
0.5 0.2 0.5 0.1 0.5 1.0 0.2 0.2 0.5 0.3 0.5 0.974741 0.454128
- - - - 0.7 - - - - - - 0.974199 0.448591
- - - - 1.0 - - - - - - 0.973378 0.440501
0.5 0.2 0.5 0.1 0.5 0.7 0.2 0.2 0.5 0.3 0.5 0.974907 0.436983
- - - - - 1.0 - - - - - 0.974740 0.456128
- - - - - 3.0 - - - - - 0.977835 0.631131
0.5 0.2 0.5 0.1 0.5 1.0 0.0 0.2 0.5 0.3 0.5 0.974738 0.498102
- - - - - - 0.5 - - - - 0.974749 0.393482
- - - - - - 1.0 - - - - 0.974630 0.210871
0.5 0.2 0.5 0.1 0.5 1.0 0.2 0.0 0.5 0.3 0.5 1.300149 0.449268
- - - - - - - 0.5 - - - 0.724172 0.362024
- - - - - - - 1.0 - - - 0.514419 0.447731

Values of power law index, magnetic parameter and Weissenberg number are fixed.
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power index parameter. Skin friction coefficient increases with an increase in the wall
thickness parameter for m = . and . The local Nusselt number increases with an in-
crease in the Prandtl number. Moreover, it is clear that the local Nusselt number decreases
with an increase in the Eckert number, the thermal conductivity parameter and the radi-
ation parameter. The effect of slip parameter is to decrease the skin friction coefficient.

6 Conclusion
In this article, similarity solution of the steady boundary layer flow of MHD Carreau fluid
slip flow with viscous dissipation and heat transfer is analyzed by taking the effects of ther-
mal radiation over a stretching sheet embedded in a porous medium with variable thick-
ness and variable thermal conductivity. The characteristics of velocity and temperature
profiles are studied graphically. The main conclusion can be summarized as follows:

• The increase in porosity parameter D, wall thickness parameter α, slip parameter λ

and magnetic parameter M leads to the decrease in velocity; on the other hand,
velocity increases with an increase in velocity power index parameter.

• The increase in porous parameter D and Prandtl number Pr leads to the decrease in
heat transfer.

• The increase in slip parameter λ, velocity power index parameter m, magnetic
parameter M, thermal conductivity parameter ε radiation parameter R and Eckert
number Ec leads to the increase in heat transfer.

• The increase in porosity parameter D, wall thickness parameter α and velocity power
index parameter m leads to the increase in skin friction, while the skin friction
coefficient decreases with an increase in slip parameter.

• The increase in Prandtl number Pr leads to the increase in local Nusselt number. The
increase in porosity parameter D, velocity power index m, radiation parameter R,
thermal conductivity parameter ε and Eckert number Ec leads to the decrease in local
Nusselt number.
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