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ABSTR ACT: Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often 
reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer’s disease. Anesthetics have 
been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment 
for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, 
reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotec-
tive against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a precon-
ditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of 
macular degeneration, neurological, and cardiac conditions.
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Introduction
Postoperative cognitive dysfunction (POCD) is a neurode-
generative condition, acquired after surgery and anaesthe-
sia,1,2 and is similar to Alzheimer’s disease (AD) in symptoms 
and risk factors such as age and education level.1,3 POCD 
has become a significant problem in the health-care system, 
in terms of both patient outcome and increased resources 
expended. As yet, there are a few effective therapeutic interven-
tions. Photobiomodulation (PBM) is the use of (nonthermal) 
visible and infrared light to promote therapeutic benefits.4–6 
Recently, PBM has been shown to be effective against neu-
rodegenerative disorders, including AD,7 Parkinson’s disease 
(PD),8 and depression,9 in both animal models and clinically. 
The concept of preconditioning in health with laser treatments 
has been explored over the past few years with increasing evi-
dence of its effectiveness.10 This paper reviews the effects of 
PBM treatment on the cytoskeleton as a mechanism behind 
preconditioning and its proposed use for preconditioning and 
neuroprotection against POCD. Cytoskeleton modulation, 
as well as the parallel between the evoked PBM response 
and endogenous mechanisms of neuroprotection in hiber-
nation, cortical spreading depression (CSD), N-methyl-d-
aspartate (NMDA) poisoning, and ischemic preconditioning, 
is reviewed. These mechanisms involve interaction between 

a number of proteins and signaling molecules, including 
TWIK-related spinal cord potassium channels (TRESK) and 
transient receptor potential vanilloid 1 (TRPV1) ion channels. 
These proteins may interact with the cytoskeleton,11,12 post-
synaptic density protein 95 (PSD-95), cypin, and prion protein 
(PrPC), which together organize cytoskeleton structure.13–15 
This review discusses the role of the cytoskeleton in allostasis 
in response to redox stress and cellular stress,15,16 which results 
in neuroinflammation17 and protein interactions of the axonal 
and synaptic densities.18 PBM has been shown to have a direct 
effect on the cytoskeleton, which is directly involved in neural 
blockade, in pain modulation19 and most probably in the pre-
conditioning effects of PBM, which may also be important 
in preconditioning against POCD. The emphasis is on the 
neuroprotective role of small, reversible axonal varicosities 
that are protective against the large destructive neural vari-
cosities seen in neurodegenerative disease and sympathetically 
dysregulated pain.

Postoperative Cognitive Dysfunction
POCD is also known, in the literature, as postoperative 
cognitive deficit, postoperative cognitive decline, periopera-
tive cognition deficit, and postoperative cognitive change. It 
is a widely recognized clinical condition, involving the loss 
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of cognition following anaesthesia and surgery. Although 
POCD has been extensively reviewed,1,20–24 it has no 
universally accepted definition. In fact, there is no Interna-
tional Statistical Classification of Disease code for POCD, 
Diagnostic and Statistical Manual of Mental Disorders code, 
gold standard diagnostic criteria, and recognized biomarker.22 
However, the perception of POCD as a problem and a con-
sequence of anaesthesia and surgery has been recognized 
since 1860 when Bigelow first used anesthetics.25 POCD has 
been increasingly documented since 195526 and has been well 
described as an objective diagnosis.27 An operational under-
standing of POCD is its manifestation as an acute but often 
subtle deterioration in cognition, with a loss of the ability to 
perform tasks involved with everyday living. It may affect a 
spectrum of cognitive abilities, including memory, speed of 
information processing, orientation, concentration, psycho-
motor ability, fine motor coordination, and attention span. 
POCD is observed in patients as the inability to accomplish 
simple cognitive tasks, such as crosswords,1 and is diagnosed 
using a variety of neuropsychological tests. Definitive diag-
nosis requires that the tests be performed preoperatively, in 
order to obtain a baseline from which a decline can be deter-
mined. Postoperative tests are best performed one week after 
surgery, after any postoperative delirium has passed, and after 
the cessation of any drugs and pain that might cause interfer-
ence in the testing. Most studies20,27,28 agree that the major 
factors that influence POCD are increasing age (.60 years, 
although some studies use .65  years or even .70 years), 
preoperative cognitive condition, and education. Cognitive 
reserve and trajectory are perhaps the most important factors 
that influence the risk of POCD.29 Additional factors include 
length and complexity of the surgery (with cardiac surgery 
possibly being more risky than noncardiac surgery),20,28 a 
history of alcohol abuse,30 previous stroke,28 diabetes mellitus, 
hypertension, atherosclerosis,31 and postoperative complica-
tions, especially respiratory complications and postoperative 
infections.27 A recent study has also identified gender as a fac-
tor, with females being at greater risk than males,32 as is the 
case with AD.33 Although POCD in the very young is less 
studied, most evidence, such as that obtained from twin stud-
ies34 and cohort studies,35 suggests that it is much less of a 
problem. However, Yin et al determined that propofol could 
impair short-term memory in children.36

Although there have been numerous studies that have 
reported POCD, many of these are anecdotal, are case 
studies, or are poorly controlled and inadequately tested. 
Some clinicians and researchers consider that there is a lack of 
statistical evidence to separate POCD from normal cognitive 
decline and reviews of case-controlled studies using stringent 
criteria have shown mixed results in the past.22 For example, 
a review of 25 randomized controlled trials did not demon-
strate unequivocal POCD response in patients37 and a meta-
analysis of 26 randomized controlled trials found no evidence 
of POCD.38 Part of the difficulty in the study of POCD is the 

variety of testing regimes and diagnostic tools that have been 
used in various studies and the consequent inability to com-
pare between studies. Other difficulties include the lack of 
appropriate control groups in many studies and the difficulty 
in determining the normal cognitive trajectory of surgery 
patients in the studies.22 In addition, many of the studies in 
the past have been small, lacked power, and were retrospec-
tive. Despite these problems, there is compelling evidence 
that POCD exists as a genuine phenomenon21,37,39 with a 
strong public and medical awareness of the consequences of 
the disorder. Recent prospective studies of POCD have indi-
cated that the risk of POCD posed by anaesthesia/surgery was 
1.3540 and 1.9941 compared with the general population. In 
recent years, a number of prospective, long-term, and cohort 
studies have been initiated in order to provide more definitive 
information and predictions for POCD.

The general acceptance of POCD as a real and measur-
able disorder has resulted in increased attention and research 
into the implications of POCD. Each day, millions of people 
around the world undergo anaesthesia and surgery. Increas-
ing life expectancy and the consequent increase in the elderly 
population, the advances in surgical procedures, the decline in 
mortality rates, and the shortening of postoperative recovery 
times point to an increasing number of surgical procedures 
performed on the elderly, the population most at risk of 
POCD. For example, statistics from the Australian Institute 
of Health and Welfare (http://www.aihw.gov.au/) indicate 
that in 2010, 32% of all anesthetics were given to .65 years 
old (13.5% of population). With the predicted percent-
age of  .65 years old in the population in 2051 increasing 
to 24.2%, anesthetics given to .65 years old is predicted to 
be 48% of all anesthetics administered. In addition to being 
major recipients of surgical procedures, elderly patients are at 
greater risk of cognitive decline and dementia, pointing to an 
increasingly important role for POCD in the postoperative 
recovery of elderly patients.

The reported incidence of POCD varies widely with 
different studies, most probably reflecting methodological 
differences. Incidence can range from 10% to 40% after 
one week and up to 15% after three months postoperatively 
in noncardiac surgery. The International Study of POCD 
(ISPOCD) has concluded that 26% of patients older than 
60 years developed POCD at one week postoperatively and 
10% had POCD at three months.27 Although it has been 
commonly accepted that cardiopulmonary bypass surgery 
has a higher risk of POCD than noncardiac surgery,20,28 this 
might in fact be due to the generally less rigorous criteria 
used in many cardiac surgery studies,22 the differences in 
diagnostic criteria21 or to specific factors common to cardiac 
surgery. Evered et al42 found that at three months, the number 
of patients with POCD were independent of whether the 
surgery was cardiac or total hip replacement and, in general, 
the number of patients with POCD at three months are 
similar in both groups.23
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POCD may be short-lived and reversible or may last for 
months or possibly years, with the potential to affect clinical 
outcomes for up to five years postoperatively.43 While up to 
47% of elderly patients could demonstrate some cognitive 
decline after 24 hours, this decreases to much lower levels 
by the time of discharge.21 Early POCD, lasting up to three 
months, may in fact be a common problem, affecting not only 
up to 10% of elderly surgery patients but also young patients, 
but in whom recovery is much faster.21 Recovery from POCD 
sets this condition apart from other neurodegenerative dis-
eases (AD, PD, etc.) and the recovery is similar (albeit much 
slower) to the recovery in cognitive decline that occurs within 
hours after CSD that accompanies migraine with aura and 
cluster headaches.44

POCD may also be progressive, with some patients who 
do not show early POCD at one week, progressing to POCD 
at three months. POCD might also be cumulative, with more 
episodes of anaesthesia/surgery leading to a greater incidence 
of POCD.31 Even if there is complete recovery from POCD, 
the effects of short-term POCD impact on patients’ quality 
of life and the ability to continue in employment. There is, 
therefore, a socioeconomic burden, including increased hos-
pital stays, increased out of hospital care, job loss, and depen-
dence on social payments.45 There may also be an increase in 
mortality, with POCD patients 1.63 times as likely to die as 
non-POCD patients.45

Persistent POCD is more contentious. Some studies have 
shown evidence of persistent POCD in a small number of 
patients. The ISPOCD showed that after one to two years, 1% 
of patients showed persistent POCD.46 Some early studies indi-
cated that dementia was still apparent after five years,47 with 
one study showing high levels of long-term POCD (42%) at five 
years.48 The ISPOCD long-term study found, however, no sig-
nificant relationship with dementia after 11 years,49 and other 
studies have shown little evidence of cognitive decline after a 
number of years when compared with nonsurgery patients.50–52

The cause or causes of POCD have remained elusive, 
despite intensive research over the past 25 years. As with other 
forms of dementia, the cause of POCD is almost certainly 
multifactorial. Part of the difficulty in determining etiologi-
cal factors involved in POCD is in the separation of anaes-
thesia, surgery, and perioperative care; it is not usual to give 
anaesthesia without surgery and surgery is most usually per-
formed under anesthetic. The time in hospital may also be a 
factor, the so-called hospital stay syndrome.53 Other contrib-
uting factors to POCD may include perioperative conditions, 
inflammation, pain, and comorbidities, although a number of 
specific factors, such as changes in cerebral blood flow, car-
diopulmonary bypass, hypoxemia, and microemboli, have 
been all but discarded as sole causes.23 In reviewing avail-
able evidence, Krenk et al21 suggest a multifactorial patho-
genesis with the potential involvement of postoperative sleep 
disturbance (exacerbated by opioid analgesia), inflammatory 
stress response, pain, and environmental factors. Fast-track 

hip and knee replacements, which included patient education 
and preparation, as well as shorter hospital stays, were shown 
to result in decreased short-term POCD, but not long-term 
POCD.54

POCD shows some similarities with other forms of 
dementia, such as AD, which it mimics in a number of ways3,55,56 
and POCD may in fact be triggered by AD pathways.55 Mild 
cognitive impairment (MCI) is a subjective decline in cogni-
tion and can be a precursor to AD, with a substantial minority 
with MCI (depending on age) progressing to AD.57 MCI is 
prevalent in the elderly population with between 14% and 18% 
of people over 75 showing symptoms.23 Since a substantial pro-
portion of elderly patients undergoing surgery will have MCI, 
it is possible that anesthetics and surgery could aggravate or 
unmask MCI and lead to progression to POCD and ultimately 
to AD. Aging of proteins and an increase in misfolded and 
unrectified proteins lead to an increase in protein-folding neu-
rodegenerative diseases (such as AD, PD, Huntington’s disease 
(HD), and prion diseases) and are most probably also linked 
with POCD.13,58 There is currently a great deal of research into 
the link between POCD, anaesthesia/surgery, and dementia, 
especially AD, since any connection would indicate a far 
greater and longer lasting impact of POCD.

The exact mechanism of action of anaesthesia is still 
unclear. General anesthetics have a number of common 
receptors in the central nervous system, including either 
blocking NMDA receptors (eg, ketamine and nitrous oxide)59 
or enhancing gamma-aminobutyric acid type A (GABAA) 
receptors.60 The fact that these receptors are known to affect 
memory61,62 raises the possibility of a direct link between anes-
thetics and POCD. Cell culture studies indicate that a num-
ber of anesthetics cause apoptosis39 and mounting evidence 
from animal studies has strengthened the link between anes-
thetics and dementia including POCD.55,63–65 For example, 
anaesthesia has been shown to cause cognitive deficit and 
neurodegeneration in developing (rat) brains,66–68 and vanil-
loid anaesthesia has been shown to lead to long-term memory 
impairment in adult and aged rats69 and mice,70 as well as a 
transient decrease in the expression of hippocampal neuro-
nal nitric oxide synthase (nNOS) and PSD-95 in aged rats, 
together with cognitive impairment.71 Anaesthesia and cog-
nitive deficit in animal studies has been linked with NMDA 
receptor expression,72 disruption of calcium homeostasis,73 
and neuroinflammation (see the following sections). Although 
many studies emphasize the potential link between anesthet-
ics and cognitive decline, Callaway et al found no link between 
sevoflurane and long-term cognitive impairment in aged rats74 
and found that the effects of desflurane were dose dependant 
and not long lasting.75

A number of neurodegenerative diseases (AD, PD, HD, 
tauopathies) have in common the disruption of the cytoskel-
eton, with the disassembly of microtubules (MTs) and the 
concomitant accumulation of tau fibrils and b-amyloid (Ab). 
Anesthetics are known to interact with the cytoskeleton,64,76–79 
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can bind to tubulin and cause MT disassembly,80 and so are 
appropriate targets as potential causative agents of POCD. 
Craddock et al80 have identified multiple (32) binding sites 
for volatile anesthetics on a- and b-tubulin and consider 
that anesthetics are prime candidates as causative agents 
of POCD, via altered tubulin and phosphorylation of tau, 
leading to MT instability. Animal studies have also sug-
gested that anesthetics (propofol, halothane, sevoflurane, 
and isoflurane) can increase AD b-amyloid24,63,81–83 and 
increase tau phosphorylation70,84,85 with the anesthetic sevo-
flurane shown to produce transient hyperphosphorylation of 
tau in mice on a single application and persistent tau hyper-
phosphorylation and memory impairment with repeated 
exposure.84 The anesthetic propofol was also shown to induce 
tau hyperphosphorylation in a mouse hippocampus model of 
AD.86 On the other hand, exposure of presymptomatic AD 
mice to anesthetics (halothane, isoflurane) did not accelerate 
the progression of the disease but, on the contrary, appeared to 
result in the preconditioning against neurodegeneration, due 
to increased phosphorylation of tau.87

Despite anecdotal and some epidemiological evidence of 
a link between anesthetics and AD,88 PD,89–91 and POCD,92 
clinical evidence does not, on the whole, support the animal 
studies. Large studies such as the ISPOCD93 as well as meta-
analyses94,95 have found no link between anesthetics and 
POCD or AD, including comparisons between general and 
regional anesthetics.93,96 However, an expert group attending 
the British Journal of Anaesthesia Salzburg Seminar in 2012 
reviewed the available data on POCD and concluded that 
there was mounting evidence to indicate that general anaes-
thesia can negatively affect cognition especially in the elderly 
(as well as the very young).70,97 Although there is little direct 
evidence that the type of anesthetic is a risk factor,37,70 it is 
possible that the route of anesthetic and depth of anaesthesia 
may have an impact on POCD. The use of the bispectral 
index to guide anesthetic titration has been found to reduce 
the occurrence of POCD in some studies.98,99 There are also 
indications that it is not simply anesthetic use that leads to 
POCD. Surgery-induced nociception without anesthetics was 
shown to induce POCD in mice.100

There are a number of studies that have shown that 
surgery/anesthetics can lead to increases in the biomarkers 
for AD,85,101 including b-amyloid102,103 and phosphorylated 
tau,101,103 strengthening the case for some involvement of anes-
thetics with the risk of AD.89,90 The presence of brain b-amyloid 
has in fact been found to be a good predictor of POCD risk in 
cognitively normal patients.104 A consensus statement issued 
from an international workshop on anesthetics and AD105 
concluded that there was sufficient evidence to warrant further 
investigations into the onset and progression of AD and neu-
rodegeneration after anaesthesia and surgery and that clini-
cal trials should be emphasized, which are led by anesthetists. 
Anesthetic delivery to patients undergoing surgery has always 
been a highly individualized process. This individual approach 

is amplified in elderly and other at-risk patients. There as yet 
have been no studies of POCD in groups that require different 
anesthetic regimes, such as redheaded women.106 The focus of 
research on POCD is moving from anaesthesia and surgical 
techniques that are common to all patients and moving toward 
individual patient-centered factors.2

The molecular mechanism of POCD (as with other neuro-
degenerative diseases) has been difficult to pin down. Induced 
POCD in mice has been shown to reduce NMDA receptor B 
levels,100 which, along with PSD-95, is implicated in synaptic 
plasticity and learning.107 Recently, aspartic acid, an agonist 
and activator of NMDA receptors which implicated in AD,108 
has been identified as a possible biomarker of POCD in aged 
rats.109 POCD was found to be linked with endogenous mela-
tonin levels and possibly circadian rhythms in patients who 
had undergone abdominal surgery.110 Proteomics has provided 
a window into possible molecular mechanisms of POCD and 
other neurodegenerative diseases. Li et al, in a study of aged 
rats with cognitive dysfunction following anesthetic and sur-
gery, identified 21 proteins that were altered (upregulated 
or downregulated) following surgery/anaesthesia.111 Four of 
these proteins were involved in oxidative stress, seven proteins 
with mitochondrial energy production, and three proteins 
were implicated in neuroinflammation. Kalenka et al112 found 
that 17 proteins differentially expressed in rat hippocampus 
after isoflurane anaesthesia, including proteins involved in 
stress response and cytoskeleton integrity. In a clinical pro-
teomic study, 58 separate polypeptides were found to have 
changed expression in patients identified with POCD fol-
lowing surgery.113 Interestingly, in a proteomic study of twins 
with no symptoms of AD, mitogen-activated protein kinase 
(MAPK) was found to be related to early cognitive decline 
over a 10-year period.114

Neuroinflammation may play a role in POCD,2,115–118 
as pain119 and alleviation of each may reduce short-term 
POCD.118,120 Injury and insult lead to the formation of an 
inflammasome, which initiates an inflammatory cascade 
involving inflammatory cytokines, including interleukin-1b 
(IL-1b), IL-6, tumor necrosis factor-a (TNF-a), and nuclear 
factor kappa enhancer of activated B cells (NF-kB), regulated 
by alpha-melanocyte-regulating hormone (a-MSH). The 
involvement of the inflammatory response in POCD is sug-
gested by a number of animal studies. Anaesthesia alone and 
anaesthesia combined with surgery can induce IL-1b121–125 
and TNF-a123 in mouse and rat models of POCD. Isoflurane 
without surgery has also been shown to increase TNF-a, 
IL-6, and IL-1b in mice.126 Li et al,111 identified three pro-
teins that were involved in neuroinflammation.

The link between inflammatory cytokines and POCD is 
also suggested by clinical studies, which parallels the suggested 
association between inflammatory cytokines and AD.127 High-
mobility group box 1 and IL-6 were found to be significantly 
correlated with POCD in patients who had undergone major 
surgery,128 while Ji et al129 found that IL-1b (but not IL-6) 
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was associated with POCD in total hip replacement surgery. 
Inflammation markers 1L-6, IL-1b, TNF-a, S-100B, and 
tau were also found to increase after surgery.103 Recent studies 
have also shown some link between POCD in patients and 
levels of insulin-like growth factor 1 (IGF-1) and IGF-1 bind-
ing protein 7, both were believed to be important in memory 
consolidation and AD.17 IL-6 has been suggested as playing 
a crucial role in the neuroinflammatory response leading to 
POCD.130 Inflammatory cytokines have also been associated 
with POCD after cardiac surgery131 and levels of S-100, an 
indicator of traumatic brain injury, was found to be an indica-
tor of POCD.132,133 In addition, in a meta-analysis of studies 
investigating the inflammatory response of patients, IL-6 and 
S-100B were identified as being correlated with POCD.134 The 
inflammatory cascade is, in part, controlled by the melanocor-
tin system including a-MSH, which downregulates inflam-
matory cytokines.135 Melatonin is important as a risk factor of 
AD136 and possibly POCD.110 The melanocortin system also 
has a PrPC regulatory involvement137 and Mariante et al138 
contend that PrPC is involved in a regulatory loop of inflam-
matory processes linked with systemic or cellular stress.

There is a need to identify patients at risk of POCD, 
but as yet, no common genomic indicators of POCD have 
been unambiguously identified. This includes apolipoprotein 
E (ApoE), which has been associated with POCD in some 
studies139 but not in others,140,141 although a recent prospective 
study has shown that patients carrying the ApoE4 genotype 
(the highest genetic risk factor for AD)142 had an increased risk 
of POCD.143 A review of the literature has identified a number 
of potential markers of POCD,144 including C-reactive protein 
(CRP), P-selectin (SELP), complement component 3 (C3F), 
inducible NOS (iNOS), and cytochrome P450. The presence 
of brain b-amyloid has also been found to be a good predictor 
of POCD risk in cognitively normal patients104 and a link has 
also been established between Ab42/tau ratio (an indicator of 
AD) in the cerebrospinal fluid of patients prior to surgery and 
POCD.129,145 Proteomic studies have suggested that fibrino-
peptide A is a potential biomarker.113

Neuroprotection by preconditioning is the use of sublethal 
insult to provoke a protective response and has had some suc-
cess in the prevention of ischemic stroke, AD, and PD in ani-
mal models.146 Neuroprotection against POCD has had mixed 
success. Bilotta et al,37 based on a review of clinical trials, sug-
gest that neuroprotection against POCD could be achieved 
with a number of drugs, such as atorvastatin. There is some 
evidence that amantadine, which increases glial-cell-line-
derived neurotrophic factor and decreases neuroinflammation, 
might reduce the effect of POCD.147 IL-6 receptor antagonists 
have also been found to act as a preventative measure against 
POCD.130 Remote ischemic preconditioning, however, was 
not found to be effective as neuroprotection against POCD;148 
nor was propofol (used to suppress electroencephalogram 
bursts),149 reduction in C5 complement,150 platelet activating 
factor antagonist151 or the corticosteroid dexamethasone.152 

Presurgical cognitive intervention has been shown to have 
some effect on reducing POCD.153 Interestingly, the adminis-
tration of melatonin prior to isoflurane anaesthesia in rats was 
shown to reduce cognitive impairment.154

PBM has been shown to have an effect on neurodegen-
erative diseases in animal models, including AD, PD, and 
depression.7,9,155,156 Purushothuman et al7 propose that the 
ability of PBM to reduce hyperphosphorylation of tau is neu-
roprotective in AD. It has also been shown that laser light is 
absorbed by b-amyloid,157 and Grillo et al158 have shown a 
decrease in b-amyloid with PBM. It is therefore proposed that 
the success of PBM in the preconditioning against AD and 
the treatment of PD suggest that it might also be an effective 
preconditioning agent against POCD.

Photobiomodulation
PBM has been defined as a “nonthermal process involving 
endogenous chromophores that elicit photophysical (linear 
and nonlinear effects) and photochemical events at various 
scales, resulting in beneficial photobiological responses.”4 
This is most often low-level laser therapy (LLLT) but may 
also be a noncoherent light-emitting diode (LED). Light 
was used in 1903 as a therapy for skin lesions, with an article 
published by Finsen in the Lancet in 1903159 reporting the 
striking results of the use of red light treatment to prevent the 
disfigurement of smallpox scars, providing that the interven-
tion was at an early stage of the disease. Additionally, Finsen 
was awarded the Nobel Prize in 1903 for the use of ultra-
violet (UV) light for the treatment of lupus vulgaris. Photo-
therapy as a treatment fell from favor until 1968 when Mester 
et al first showed that laser could stimulate wound healing 
and hair growth in mice.160 Another early use of laser therapy 
was the treatment of wound and skin lesions (radiation ulcers 
following the Chernobyl nuclear accident using argon lasers 
(450–530 nm).161 Over the past 45 years, PBM in the visible to 
infrared wavelengths (between 400 and 1072 nm) has become 
increasingly accepted as a therapeutic intervention, with 
randomly controlled clinical trials as well as animal models 
demonstrating a significant role for LLLT in the treatment of 
many conditions in veterinary as well as human patients. It has 
also become apparent that there is a biphasic dose response for 
LLLT, following the Arndt–Schulz curve,162 where increas-
ing dose corresponds to an increasing effect up to a maximum 
(a dose window), after which further increasing dose evokes 
a negative response. PBM is currently used to treat a variety 
of radiation and chemotherapy-induced ulcers,163 as well as 
oral and other wounds4,164 and wound infection.165 The use of 
PBM therapy can protect against damage to the skin by UV 
light as well as a number of other skin conditions, including 
vitiligo, psoriasis, and herpes simplex.166 LLLT is used for 
sports injuries,167 tendon repair,168 remodeling collagen fibers 
in tendon injuries,169 for lymphedema management,170 and for 
acceleration of tooth movement during orthodontics.171 PBM 
has been used in the treatment of cardiac disease and cardiac 
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protection in animal models via the modulation of iNOS and 
induction of mesenchymal stem cells.172–175

PBM has also been successfully used in the treatment 
of both acute and chronic pain in the periphery176,177 and in 
centrally mediated pain states including chronic neck pain.178–181  
The ability of photons introduced as LLLT to modify bio-
electrical signaling in peripheral nerves has been unequivo-
cally demonstrated in animal and human models.19,182 This 
is of primary importance in pain treatment as suppression of 
action potentials in nociceptors is one of the mechanisms for 
the direct analgesic effects of LLLT.177 Nociceptors are selec-
tively affected by laser irradiation, and it has been proposed 
that this effect underpins the pain-relieving effects of LLLT 
in the treatment of acute and chronic pain182 and the basis of 
the local anesthetic effect of LLLT, which can be effective as a 
pain block in such things as dental extraction.183

Most recently, there has been increasing evidence from 
animal studies for the use of PBM in cognitive and neuro-
degenerative diseases, such as depression,9,184 traumatic brain 
injury,185 AD,7,158,186–189 and PD.8,155,156,189,190 PBM has the 
added benefit of a wide dose window to achieve the effect and 
no identified harmful effects, within the correct dose param-
eters and following the contraindication recommendations of 
not directing PBM into eyes, over a carcinoma site or over a 
fetus.191

LLLT has also been shown to have a role in neuro
protection190 and preconditioning against such conditions 
as muscle fatigue, inflammation, and pain, as reviewed by 
Agrawal et al,10 macular degeneration,192,193 preconditioning in 
cardiac protection,172 PD190 and AD.7,186 In addition to target-
ing the site of the disease, this preconditioning and protection 
can also involve an abscopal (indirect) effect, where the effect 
is elicited by irradiating an area of the body remote from the 
site of disease or injury.189,194 This has been shown to occur in 
patients with macular degeneration, where the nonirradiated 
eye experienced the same protection as the irradiated eye.193 
The abscopal effect has also been shown for cardiac disease in 
rats, where LLLT to a remote site (tibia) elicited a response 
in protection against cardiac infarct,173 upregulating iNOS 
and mobilizing c-kit+ cells to be recruited to the heart damage 
site.172,174 This abscopal effect has been shown to be at least as 
effective as PBM at the site of injury.174 Tibial bone marrow as 
a target also improved cognition in a mouse model of AD.188 
LLLT delivered to the skull in mice was also shown to improve 
AD b-amyloid and cognition.186 Johnstone et al8,155 have shown 
neuroprotection in a rat model of PD, where remote precondi-
tioning produced a similar effect on trans-cranial LLLT. They 
propose a systemic effect with circulating cellular or molecular 
factors to induce the abscopal neuroprotective effect. Keszler 
et al suggest that direct application of LLLT to patients’ hearts 
may not be necessary for the protection against cardiac isch-
emia due to this systemic effect.175

Current known mechanisms of LLLT action have been 
well reviewed4,195,196 and include roles for cytochrome-c-oxidase 

and mitochondrial energy production,196 retrograde mito-
chondrial signaling,197 NOS modulation,173,181,196,198,199 
electron transfer via a redox reaction200 resulting in antioxi-
dant enzyme activity,201,202 restoration of balance between 
pro- and antioxidant mediators by increasing peroxisome 
proliferator-activated receptor expression and glutathione 
concentration,203 modulation of hypoxia-inducible factor 1a 
(HIF-1a),204 reduction in TNF-a,205 modulation of inflam-
matory cytokines and ILs, NF-kB,206,207 IL-6, and IL-1b,208 
modulation of growth factors IGF-1, and transforming 
growth factor beta-1 (TGF-b1),201 modulation of opioid and 
its precursor molecule proopiomelanocortin (the melano-
cortin signaling system),209 and cytokine abscopal effects.155 
LLLT is known to downregulate the inflammatory process210 
by increasing antioxidants and decreasing oxidative stress,211 
via the mechanisms described earlier and by increasing super-
oxide dismutase.201,203 PBM also directly affects the cell sig-
naling molecule MAPK.167,212

In addition to the photon receptors for the mechanisms 
described earlier, which includes the known chromophores of 
melanin, flavins, porphyrins, and cytochrome C oxidase,196 
there may be a second group of interactions where physical per-
turbations by photons cause conformational changes in recep-
tor proteins4,194,213 especially in redox-sensitive proteins. This 
perturbation involves a molecular switching mechanism214 
which includes the receptor tyrosine kinases,195,215 ion chan-
nels such as TRPV1 channels, which can respond to visible 
and infrared light,216,217 and potassium channels.218 Various 
opsin proteins, which belong to the G-protein-coupled recep-
tor family, also act as photoreceptors. These include rhodopsin 
molecules in rod cells of the retina and in the skin,219 photop-
sins in cone cells of the retina, melanopsins in retinal ganglion 
cells, encephalopsins (OPN3) in the brain,220 and neuropsin 
(OPN5) in spinal tissue (eye, brain, testes, spinal cord).221 
Light also regulates neuronal activity in the eye by direct 
allosteric modulation of GABA and NMDA receptor pro-
teins, which directly influence neuronal signaling, depending 
on the redox state of the receptor.222,223 This group of inter-
actions with receptors would involve physical perturbation of 
the molecular structure in the skin and neural membranes to 
facilitate the physiological function.4,194

There has been less attention to the role of cytoskeleton 
modulation as a primary LLLT mechanism. Evidence for the 
role of LLLT in cytoskeleton modulation, pain attenuation, 
and neurotransmission blockade has been demonstrated by 
Chen et al224 and Chow et al.19,177 As the cytoskeleton is both 
a receptor and an initiator of signal transduction, cytoskeleton 
modulation by PBM is a candidate for the observed abscopal 
effects of LLLT.

MT and Cytoskeleton Modulation
The cytoskeleton is an important component of all cells and 
consists of the MT network, neurofilaments, and actin fila-
ments. MTs provide structural support, connect targets, and 
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act as a track to direct vesicle and organelle traffic within 
the cell. MTs are composed of a- and b-tubulin dimers and 
have dynamic instability, where they grow and shrink, switch-
ing between assembly (rescue) and disassembly (catastrophe) 
according to the need, and are thus in equilibrium with unpo-
lymerized a- and b-tubulin. This process allows rapid reorga-
nization of the MT cytoskeleton. In neurons, MTs are found 
in the dendrites, cell body, and axon. In dendrites, MTs are 
short and have a mixed polarity. In axons, MTs form bundles 
of various lengths but with the same polarity,225 which is criti-
cal for neurite polarity and neurite growth226 as well as antero-
grade and retrograde transport.

The control of this dynamic instability is very complex 
and as yet poorly understood but appears to be regulated in 
part by multiple posttranslational modifications to the tubu-
lin protein (eg, tyrosination, polyglutamylation, acetylation, 
SUMOylation)225 and in part by MT-associated proteins 
(MAPs),227 which bind either tubulin or assembled MTs and 
are thus either stabilizing or destabilizing for MTs. MAPs, 
such as tau (in axons) and MAP2 (in dendrites), bind directly 
to MTs and form transient interactions that stabilize the MTs 
into the parallel arrays seen as bundles. Other MAPs can 
promote assembly (eg, MAP4) or disassembly (eg, stathmin) 
of MTs. Phosphorylation of tau is necessary for MT stabi-
lization, but under normal conditions tau phosphorylation 
is limited.228 With increased phosphorylation, the extent of 
binding to MT decreases. A number of neurodegenerative 
diseases (such as AD, PD, and other tauopathies)229,230 are 
characterized by hyperphosphorylation of tau, where up to 
100% of the available sites in the protein are phosphorylated. 
This destabilizes MTs and leads to the formation of intracellu-
lar aggregates (neurofibrillary tangles).229 An example of this 
is children in Mexico City, who are exposed to heavy pol-
lution, can develop hyperphosphorylation of tau and protein 
changes (aggregates) in the brain, particularly if they have 
ApoE variant gene, which is associated with adult AD.231 Tau 
may also provide a link with the plasma membrane and play a 
role in signal transduction.232

Other molecules that may influence MT dynamics 
include PrPC and PSD-95. PrPC is known to bind to tubulin, 
stathmin, and tau233–235 and has been proposed as a major 
player in MT assembly/disassembly.236 Schmitz et al237,238 
have shown that PrPC plays a direct role in the organization 
of the cytoskeleton, as well as cognition and behavior, as a 
result of its relationship with neurofilaments and MTs. Dys-
regulation (upregulation) of PrPC expression leads to hyper-
phosphorylation of tau and malformed stumpy neurites.239 
PrPC overexpression is also believed to be involved in the 
b-amyloid formation and cognitive dysfunction of AD via its 
interaction with nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase at the membrane, inflammatory cytokines, 
and the subsequent alteration of actin filaments.240 Interaction 
between PSD-95 and cypin has also been proposed to regulate 
MT organization in dendrites.14

MTs are central in cellular signaling and a major target of 
signaling pathways to maintain the balance in their dynamic 
instability and thus control cellular (neuronal) function. They 
are also an effector of downstream signaling, interacting 
with other signaling molecules such as NFkB, extracellular 
signal-regulated kinase 2, and MAPK and organizing signal 
pathways.241 Linden et al242 have suggested that PrPC, with its 
membrane scaffolding connection to the extracellular matrix, 
links a-tubulin, b-tubulin, and MT and is thus involved in 
multicomponent signal transduction with a wide range of allo-
steric effects in physiology and pathophysiology. PrPC acts as a 
redox sensor molecule for oxidative stress and triggers down-
stream processes.243 Goswami11 has suggested that a compo-
nent of MT signaling is centered around TRPV1 channels, 
which are redox sensors for infrared stimuli.244 Potassium 
leak channel TRESK may interact with cytoskeleton12 and is 
believed to be one of the two-pore domain potassium (K2P) 
ion channels that are important as targets for anaesthesia.245

MTs act as the scaffold for anterograde and retrograde 
axonal transport of organelles, vesicles, and proteins using 
kinesin and dynein motor proteins. The normal functioning of 
neurons depends on the integrity of the cytoskeleton for fast 
axonal flow. Because MTs are subject to constant catastrophe 
and rescue and because MT bundles are of different lengths, 
axons can normally cope with intermittent disruptions to the 
MT cytoskeleton. Varicosities or focal swellings form when 
complete breakage of the MT cytoskeleton leads to a buildup 
of cargo at the breakage point.246 Disruption of the cytoskel-
eton and varicosity formation has a profound effect on the 
bioelectrical function of nerves. Mitochondria, which deliver 
the adenosine triphosphate (ATP) required for many enzymes 
and the generation of action potentials, are not able to move 
along the cytoskeleton. Ion channels such as TREK247 and 
other signaling molecules such as nerve growth factor (NGF) 
and brain derived growth factor (BDGF) are also not able to 
move along the MT in retrograde or anterograde cargo trans-
port, which has marked effects on signal transduction.248

Assembly and disassembly of the neural (synaptic) proteins 
is also observed as a common process during hibernation in 
mammals,249 where it is involved in reversible neuroplasticity 
and resistance to neural damage. During hibernation, cell 
bodies and dendritic spines shrink, synapses are lost, and syn-
aptic proteins and MTs250 are disassembled. These proteins are 
stored in the axon until required for reassembly, rather than 
being degraded and then resynthesized de novo.249 Proteome 
variations during hibernation and arousal indicate that cyto-
skeleton changes are the dominant protein changes.251 MT 
disassembly is regulated by tau phosphorylation, which, in this 
case, does not form the fibrils that are typical of the tau hyper-
phosphorylation seen in AD.252 This regular disassembly/
reassembly of proteins leads to some memory loss in hiber-
nating ground squirrels when compared with non-hibernating 
squirrels.249 Human hypothermia with circulatory arrest and 
subsequent resuscitation can also commonly accompanied by 
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some memory loss,253 similar to POCD. Using this hiberna-
tion evidence, Arendt and Bullmann have proposed a model 
for cytoskeleton modulation in the process for neuroplasticity 
in the hippocampus and other cortical synapses.254

The appearance of varicosities in axons appears to be 
an endogenous mechanism that protects nerves from dam-
age, occurring as a response to multiple stimuli and stressors, 
including mechanical stress, axonal damage, heat and cold, 
toxins, and anesthetics. Originally considered as only a sign of 
neuropathology, it is now apparent that varicosities are revers-
ible and neuroprotective.14,255 There are numerous examples 
of neuroprotective varicosities. In the central nervous system, 
sublethal hypoxia can lead to reversible dendritic beading, 
which can be blocked by NMDA antagonists.256 Ikegaya 
et  al255 have shown that small reversible dendritic varicosi-

ties are produced endogenously as a response to a stressor and 
can act as a neuroprotection against greater damage to the 
neuron (Fig. 1A). Prevention of this response led to increased 
neuronal damage, collapse of normal neural function, and 
cell death. This same response has been demonstrated more 
recently by Tseng and Firestein,14 where a toxic assault 
(NMDA poisoning) resulted in the production of small pro-
tective varicosities (Fig. 1B), which, as long as the response 
was early, rapid and reversible, prevented the formation of 
larger, destructive neuronal swellings and neuronal death. 
Varicosity formation depends on the induction of nNOS and 
the interaction between PSD-95, cypin, and tau. Increased 
cypin and decreased PSD-95 resulted in an increased 
number of small protective varicosities, while decreased 
cypin and increased PSD-95 resulted in the opposite14  

Figure 1. Formation of neuroprotective endogenous varicosities: (A) confocal laser microscopy images of formation of dendritic varicosities 
in rat hippocampus neurons treated with 30 mM NMDA;255 (B) immunofluorescent images of formation of dendritic varicosities (arrows) in rat 
embryo hippocampus neurons, immediately after exposure to 30 mM NMDA (5 minutes) and reversal of varicosities after recovery (60 minutes);14 
(C) immunohistochemistry image stained for tubulin, showing varicosity formation in embryonic DRG neurons in response to resiniferatoxin activation of 
TRPV1;18 (D) two-photon laser scanning images, showing the transient increase in mouse neuron volume before (control), during spreading depression 
(SD) and after recovery from SD, including a merged image (overlap) showing the overlap (yellow), before volume (green), and during CSD (red).259
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This was suggested as a pathway in which MT cytoskeleton 
is regulated by sublethal changes to dendrites. PSD-95 (as 
well as nNOS) is also implicated in the remyelination process 
of regeneration of peripheral axons in a rat injury model.257 
The dopamine metabolite N-arachidonoyl-dopamine applied 
to dorsal root ganglia (DRG) neurites resulted in varicosity 
formation (Fig. 1C) implicating TRPV1 in the formation 
process.18 Endogenous dopamine metabolites are relevant to 
anesthetic induced responses.258

Neuroprotective cytoskeleton modulation is also present 
during the CSD associated with migraine with aura and corti-
cal trauma (involving TRESK polymorphisms), where neurons 
undergo a transient volume increase259 (Fig. 1D). These are seen 
as part of the neuroprotective process that protects the cortex, 
as an adaptive response to cortical injury and to provide toler-
ance to subsequent ischemic episodes.260,261 nNOS increases 
during CSD,260 and the genes upregulated in this neuropro-
tective response are iNOS and HIF-1a.262 This is an example 
of an immune memory process, as reviewed by Szentivanyi 
et al,263 and may be a similar mechanism to that involved in 
peripheral nerve injury and varicosity formation. Reversible 
varicosity formation has also been noted for a number of con-
ditions, such as ischemia264,265 and toxic assault,266–268 depend-
ing on the severity and/or duration of the stimulus.

Preconditioning of neurons can also involve the forma-
tion of small protective varicosities. Subjecting cell cultures of 
rat neurons to ischemic preconditioning269 resulted in the for-
mation of small varicosities in dendrites via a PSD-95 pathway 
(Fig. 2A). These were also reversible within four  hours and 
may have had a role in neuroprotection against NMDA 
receptor-mediated toxicity. The use of black widow spider 
venom to speed recovery from botulism neurotoxin resulted 
in rapid varicosity formation (Fig. 2B) that (under sublethal 
conditions) were reversible within 48 hours.270

In a strikingly similar process to endogenously induced 
varicosities, PBM has also been shown to cause MT disruption 
and varicosity formation in the cytoskeleton of neurons.19,224 
This has been demonstrated in cultured rat and murine DRG 
neurons for a number of wavelengths, including 650 (Chow, 
unpublished), 808,19 830,224 and 1064  nm (Chan, unpub-
lished). This MT disruption leads to a pain blockade effect. 
Immunohistochemistry of DRG neuronal cultures shows the 
interruption of cytoskeletal integrity within 5–10  minutes 
following 30 or 60 seconds of laser irradiation. This effect 
can be seen with confocal microscopy as the formation of 
varicosities along the axon (Fig. 3A and  B) and disruption 
of fast axonal flow (Fig. 3E). Specifically, β-tubulin from 
the MTs accumulates in the varicosities as do mitochondria, 

Figure 2. Formation of preconditioning neuroprotective varicosities: (A) immunofluorescent images of neuronal cultures, showing control (a) and the 
formation of varicosities (b) following ischemic preconditioning using nonharmful oxygen and glucose deprivation for 30 minutes;269 (B) confocal laser 
microscopy images of stem cell-derived neurons stained with calcein green, showing the formation of varicosities (arrows) within 22 minutes of the 
application of black widow venom still apparent after 24 hours, but reducing after 48 hours.270
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Figure 3. Confocal laser microscopy of axonal varicosities (arrows) produced by LLLT in cultured rat DRG neurons at wavelengths of 1064 nm (A) (Chan, 
unpublished) and 830 nm (B–F);19 (B) varicosity formation after 120 seconds of LLLT; (C) control; (D) reversal of varicosities 24 hours after irradiation; 
(E) magnified image of an axon showing a single varicosity formed after 30-second irradiation with mitochondria stained red; (F) control.

from which ATP is rapidly depleted. Importantly, this 
disruption is temporary and reversible, with the axon return-
ing to its previous state within 24 hours (Fig. 3C). Other 
effects of LLLT on unmyelinated nerve fibers include the 
fragmentation of the neurite in the growth cone,224 a decrease 

in the number of neurofilaments, and increases in the number 
of MTs.271

Interestingly, MT disassembly is also evident in cells, 
including neurons and lymphocytes, as a response to local77,79 
and general272 anesthetics. This is characterized by the 
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formation of varicosities in axons, in response to local anes-
thetics79 (Fig. 4A and B) and cell shape changes in macro-
phages273 and the formation of blebs in 3T3 cells (Fig. 4C).77

There is a question as to the primary target of LLLT 
in neurons which will cause the cytoskeletal disruption and 
varicosity formation. Several of the proteins involved in the 
dynamic instability of MTs (including PrPC and PSD-95) 
have the capability to undergo conformational change, which 
could lead to MT instability. PBM could induce such a 
structural change by direct absorption of the light energy by 
the proteins or by the redox-sensing proteins responding to 
reactive oxygen species (ROS), such as nitric oxide. A poten-
tial mechanism for neural protection could also be postulated 
based on TRESK ion channels. The volume increase following 
cytoskeleton modulation and varicosity formation caused by 
LLLT will result in neural membrane stretch. Membrane ten-
sion is known to reversibly increase TRESK K+ currents in 
the DRG.274 This has a dampening effect on excessive neu-
ron activation following injury and inflammation by reducing 

neural excitability.275 The inflammatory response is reduced by 
the downregulation of the calcium-activated cell stress cascade, 
including the unfolded protein response. This would have the 
effect of producing a preconditioning effect to allow the neuron 
a more efficient response due to immune memory.262 TRESK 
is phosphorylated by MT af﻿finity-regulating kinase276 and 
also responsible for the phosphorylation of tau.277 In addition, 
TRESK has a physical link with tubulin and possibly MTs, 
at least in vitro.12 This suggests a (hypothetical) scaffold of 
TRESK/PrPC/MT, which could react to photons (PBM) 
either directly or via another mechanism to facilitate MT 
disassembly and varicosity formation.

A number of chemicals are known to destabilize MT 
in a similar manner to PBM. Drugs such as colchicine and 
nocodazole bind to tubulins and, therefore, prevent assembly 
into MTs. Taxol and other taxane drugs bind to and stabi-
lize MTs preventing depolymerization, while demecolcine 
depolymerizes MTs.278,279 As previously noted, anesthetics 
are also known to interact with the cytoskeleton76–78 and 

Figure 4. Varicosities and MT changes due to anesthetics: (A) light photomicrographs of the effect of 2 × 10–3 M procaine on varicosity formation in 
cultured neurites from time zero to (a) two hours (b), three hours (c), and four hours (d);79 (B) scanning electron micrograph of swellings (S) in the neurite 
in response to 1 × 10-3 M procaine;79 (C) electron micrograph showing the formation of blebs on 3T3 cell surface, due to the disruption of membrane-
associated MT and microfilaments after treatment with 0.6 mM tetracaine.77
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can bind to tubulin and cause MT disassembly.80 Halo-
thane interferes with MT reassembly in peripheral nerves 
in animal models,280 and chronic exposure can cause 
behavioral impairment and neuronal damage including 
reduced dendritic branching.281 Propofol causes reversible 
retraction of neurites in cultured rat neurones, mediated by 
GABAAR. Isoflurane can affect MT and neuronal filaments 
in astrocytes.64 The anesthetic sevoflurane has been shown 
to produce transient hyperphosphorylation of tau in mice on 
a single application, while repeated anesthetic led to a per-
sistent tau hyperphosphorylation and a significant memory 
impairment (POCD).84 The anesthetic propofol was also 
shown to induce tau hyperphosphorylation in a mouse hip-
pocampus model of AD.86

Although small, reversible varicosities are seen as a 
response to stress and are neuroprotective, continuation of the 
assault or continued dysregulation of cytoskeleton assembly/
disassembly results in destructive cytoskeleton breakdown. 
Axonal trauma can trigger major MT breakage, inhibiting 
cargo transport to a greater extent than can be accommodated 
by normal catastrophe and rescue.282 Damage by trauma may 
not be readily repaired by the normal endogenous mechanisms, 
leading to a more long-term impact on neuron function and 
possibly damaged MTs, further accelerating the problem.65 
This is exemplified by traumatic peripheral axonal injury 
(dynamic stretch injury)246 that results in axonal swellings 
(Fig. 5A). These axonal swellings are also seen in head injury 
trauma (Fig. 5B).246 In addition to the pathological conditions 
in the peripheral axon, the same physiological mechanism can 
occur in the axonal synapse and hippocampus, which involves 
synaptic plasticity and long-term potentiation in memories 
and learning, both linked with PSD-95.107,283

Chung et al284 demonstrated pathological varicosities in 
sympathetic chronic pain when somatosensory nerves com-
municate with sympathetic nerves in the DRG (Fig. 5D). 
Focal swellings or spheroids are also evident in ischemia,285 
epilepsy,286 and brain tumor.287 Varicosities (also called 
focal swellings, beading, or spheroids) are hallmarks and 
often early indicators of neurodegenerative diseases,288 such 
as AD182,285,289–291 (Fig. 5F), PD292,293 (Fig. 5C), prion 
disease,294 multiple sclerosis,295 Wallerian degeneration,296 
rett syndrome,297 and children exposed to high levels of air 
pollution, who show signs of early AD.231 Overexpression of 
PrPC, which imitates prion disease,239 results in small con-
torted stumpy neurites with obvious swellings (Fig. 5E).

In summary, PBM may work well in a number of com-
plimentary ways to promote neuroprotection. PBM produces 
cytoskeleton modulation and neuroprotective varicosities that 
inhibit or reduce cargo transport and fast axonal flow, in the 
same way as has been demonstrated for pain blockade.19,182 
These varicosities mimic endogenous varicosities, and thus 
PBM may stimulate the body’s own neuroprotective mecha-
nism. Small reversible varicosities have been previously sug-
gested as a neuroprotective mechanism in animal models14,255 

and have been invoked as part of neuroprotection against 
ischemia.269 This PBM stimulation may operate via photon 
activation of redox signaling (mitochondrial or NADPH 
at the cell membrane) or via direct protein conformational 
changes (possibly in TRPV1)18 and cell signaling to the cyto-
skeleton via a (hypothetical) TRESK-PrPC-tau-tubulin scaf-
fold and would include the molecules PSD-95, cypin, and 
MAPK (also known to be modulated by PBM)212,298 and 
the transient phosphorylation of tau.14 This immune mem-
ory effect262 could protect neurons against anesthetic attack 
on the cytoskeleton. PBM also has the effect of modulating 
the inflammatory response, by the regulation of the expres-
sion of iNOS196,199 and HIF-1a,204 the downregulation of the 
inflammatory cytokines IL-6, IL-1b, and TNF-a,208 and the 
upregulation of growth factor IGF-1,201 all suspected to be 
involved in POCD. PBM also modulates the cellular redox 
balance by decreasing oxidative stress and increasing levels of 
antioxidants,203,211 as well as the upregulation of mitochon-
drial function, biomarkers of which were found to be impor-
tant in POCD.111

Conclusion
Despite early equivocal studies, POCD is recognized as a sig-
nificant problem in the modern health-care system, affecting 
elderly patients undergoing anesthetics and surgery. Although 
most POCD appears to be reversible within weeks or months, 
it nonetheless has an effect on the quality of life of patients 
and an impact on health-care resources. There is also a possi-
bility of long-term effects of POCD, including AD, in certain 
patients. The impact of POCD will increase into the future 
as medical and surgical procedures continue to improve and 
surgery becomes lengthier and more common. With an aging 
population, the patients most vulnerable to POCD are also 
the group with the greatest increase in surgical procedures.

The cause of POCD appears multifactorial but may 
involve similar mechanisms to AD, with which it shares some 
characteristics and common molecular markers. Anesthetic 
use and neuroinflammation are implicated, with many mark-
ers for neuroinflammation apparent in animal and clinical 
studies.

MTs, and the cytoskeleton generally, have a role in 
signal transduction, both as an initiator and a conduit. The 
dynamic stability of MTs, together with their function in 
directing neurite growth and in cellular signaling, gives the 
cytoskeleton a role in the stability of the neuron and they 
therefore have an allosteric role more generally in the nervous 
system. This would include reaction to the stimuli of injury 
and inflammation, including anaesthesia and surgery, which 
is in addition to any direct effect that anesthetics have on the 
cytoskeleton of neurons. Assembly and disassembly of the 
cytoskeleton is central to neuroplasticity and involves molecu-
lar switching. Disassembly and subsequent reassembly of MT 
is responsible for the neuroprotective effect in hibernation, 
in the CSD-associated migraine with aura, in the cortical 
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Figure 5. Pathological varicosities: (A) immunofluorescent images of axonal swellings produced during dynamic stretch injury of cultured neurons, 
stained for tubulin (a), tau (b), amyloid precursor protein (c), and neurofilament (d);246 (B) immunohistochemical stain against amyloid precursor protein, 
showing axonal varicosities in the corpus callosum of traumatic brain injury cases, caused by motor vehicle collision (a, e, f), falls (b, c), and blunt 
force trauma (d);246 (C) confocal laser microscopy images of putamen tissue from Parkinson’s disease cases, showing varicosities, stained for tyrosine 
hydroxylase (TH), a-synuclein (s-129), with a merged image;292 (D) electron micrograph of TH immune reactivity showing an axonal (synaptic) varicosity in 
rat DRG as a result of sensory and sympathetic interactions;284 (E) immunostained image of varicosity formation in a neuronal cell culture after exposure 
to prion protein peptide 106–126, showing varicosities (arrows 1–5);239 (F) immunohistochemical stains showing varicosities and spheroids in a mouse 
model of Alzheimer’s disease, stained for neurofilament (a, b, c) and the spinal cord of an early onset Alzheimer’s disease case, stained for amyloid 
precursor protein (d).289
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adaptive response to injury, and in neuroprotection against 
toxic assault, such as NMDA and possibly anesthetics. Given 
the role of MT in such neurodegenerative diseases as AD, PD, 
and tauopathies, it is not unreasonable to suggest that similar 
mechanisms could be important in POCD.

Since there is no available treatment for POCD, pre-
conditioning and neuroprotection would appear to be 
the optimum intervention for its prevention. Although 
neuroprotective drugs and cytokine antagonists have shown 
some success in animal models, it is suggested that PBM 
would be a viable option in preconditioning against POCD. 
PBM has been shown to directly affect MT and to cause 
small, reversible varicosities that affect cellular signaling, 
fast axonal transport, and pain blockade. This could occur 
via photoreceptors at the membrane such as opsins (neu-
ropsin), NADPH, or TRPV1, which could in turn interact 
with tau and the MTs via ROS or via signal transduction 
involving PrPC and/or PSD-95. The varicosities produced 
by PBM mimic the endogenously produced varicosities that 
are known to be neuroprotective against the large, destruc-
tive varicosities, swelling, and greater damage to the neuron. 
Thus, PBM-generated varicosities act to precondition neurons 
against damage in an analogous mechanism to the varicosities 
produced during ischemic preconditioning. PBM is known 
as a preconditioning treatment in other diseases and condi-
tions, such as macular degeneration, cardiovascular disease, 
and muscle performance. Taken together with the success of 
PBM in the prevention and treatment of animal models of 
neurodegenerative disease, it is proposed that the use of PBM 
preoperatively would have a preconditioning role for the pre-
vention of POCD in patients undergoing surgery, especially 
in elderly, vulnerable patients.

Since POCD is not responsive to treatment, there is a 
need to identify patients at risk of POCD, including iden-
tifying MCI and serum markers of POCD risk. This would 
enable patients who would benefit from PBM precondition-
ing to be identified, especially those elderly patients with 
patterns of vulnerability to POCD, AD, and other forms of 
dementia. This would, however, not preclude the more wide-
spread use of PBM on elderly surgical patients. PBM has 
the benefit of no identified harmful effects within the cor-
rect dose parameters and following contraindication recom-
mendations. Elderly surgical patients who would most benefit 
from PBM preconditioning could include patients with con-
ditions known or suspected to be related to POCD or AD 
(including preexisting cognitive decline, MCI, type I and 
type II diabetes, alcohol abuse, hypertension, and atheroscle-
rosis); patients with markers and potential markers of AD and 
POCD (including b-amyloid, ApoE4, Ab42/tau ratio, CRP, 
SELP, C3F, iNOS, cytochrome P450, aspartic acid, and 
melatonin); patients with melanocortin signaling variations 
(such as redheaded women); patients with photophobia, CSD 
migraine with aura, and cluster headaches; and other patients 
with TRESK polymorphisms.
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