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Abstract
In this paper, we investigate the approximate controllability of the coupled system
with boundary degeneracy. The control functions act on the degenerate boundary.
We prove the Carleman estimate and the unique continuation of the adjoint system.
Then we get the approximate controllability by constructing the control functions.
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1 Introduction
In this paper, we investigate the approximate controllability of the coupled degenerate
system

ut –
(
xpux

)
x + λ1u + λ2v = 0, (x, t) ∈ (0, 1) × (0, T), (1.1)

vt –
(
xpvx

)
x + λ3u + λ4v = 0, (x, t) ∈ (0, 1) × (0, T), (1.2)

u(0, t) = g1χ[T1,T2], u(1, t) = 0, t ∈ (0, T), (1.3)

v(0, t) = g2χ[T1,T2], v(1, t) = 0, t ∈ (0, T), (1.4)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, 1), (1.5)

where 0 < p < 1, λi ∈ L∞((0, 1) × (0, T)), i = 1, 2, 3, 4, u0, v0 ∈ L2(0, 1), g1, g2 ∈ L2(0, T) are
the control functions, χ is the characteristic function, 0 < T1 < T2 < T .

Recently, the controllability of the following degenerate parabolic equation has been
investigated; see references [1–5]:

ut –
(
xpux

)
x + c(x, t)u = hχω, (x, t) ∈ (0, 1) × (0, T), (1.6)

where c ∈ L∞((0, 1) × (0, T)). The degenerate equation (1.6) can be obtained by suitable
transformations of the Prandtl equations; see [6]. The equation (1.6) is divided into two
cases, the weak degenerate case 0 < p < 1 and the strong degenerate case p ≥ 2. Different
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boundary conditions are proposed in two cases. When 0 < p < 1, the boundary condition
is

u(0, t) = u(1, t) = 0, t ∈ (0, T). (1.7)

When p ≥ 1, the boundary condition is

xpux(0, t) = u(1, t) = 0, t ∈ (0, T). (1.8)

In both cases, the initial value condition is

u(x, 0) = u0(x), x ∈ (0, 1), (1.9)

where u0 ∈ L2(0, 1); see [2].
The authors prove that the problem (1.6), (1.7) or (1.8) and (1.9) is null controllable if

0 < p < 2, and the problem is not null controllable if p ≥ 2, see the references [1–5]. On the
other hand, it is shown that, for every p > 0, the problem (1.6), (1.7) or (1.8) and (1.9) is
approximate controllability; see [7, 8]. In [9], the author investigated the null controllability
of the coupled system with internal control.

Moreover, it is considered whether the degenerate problem is controllable if the control
function acts on the degenerate boundary. The following problem is studied; see [10–12]:

ut –
(
xpux

)
x + c(x, t)u = 0, (x, t) ∈ (0, 1) × (0, T), (1.10)

u(0, t) = hχ[T1,T2], u(1, t) = 0, t ∈ (0, T), (1.11)

u(x, 0) = u0(x), x ∈ (0, 1), (1.12)

where 0 < p < 1. Note that it is not necessary that we propose the boundary condition on
the degenerate boundary when 1 ≤ p < 2; see [13]. Further, there are a lot of work on the
controllability; see references [14–17] and so on.

The degenerate parabolic system (1.1)-(1.5) is the mathematical model coming from
mathematical biology and physical phenomena; see [18, 19]. In the present paper, we prove
the approximate controllability for the system (1.1)-(1.5). That is to say, for any ε > 0 and
u0, v0, u1, v1 ∈ L2(0, 1), there exist g1, g2 ∈ L2(0, T), such that the solution (u, v) to the system
(1.1)-(1.5) satisfies

∥∥u(x, T) – u1(x)
∥∥2

L2(0,1) +
∥∥v(x, T) – v1(x)

∥∥2
L2(0,1) ≤ ε2.

First, we prove the Carleman estimate for the adjoint system. Next, the unique continu-
ation can be derived from the Carleman estimate. Then, by constructing the functional,
we show the functional has a unique minimum point. Finally, we construct the control
functions by the minimum point of the functional and get the approximate controllability.

The paper is organized as follows. In Section 2, we prove the Carleman estimate and
the unique continuation for the adjoint system. In Section 3, we prove the approximate
controllability of the coupled system (1.1)-(1.5).
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2 Unique continuation for the adjoint system
In this section, we prove the unique continuation for the adjoint system by Carleman es-
timate.

First, we study the well-posedness of the adjoint system

–yt –
(
xpyx

)
x + λ1y + λ3z = f1, (x, t) ∈ (0, 1) × (0, T), (2.1)

–zt –
(
xpzx

)
x + λ2y + λ4z = f2, (x, t) ∈ (0, 1) × (0, T), (2.2)

y(0, t) = 0, y(1, t) = 0, t ∈ (0, T), (2.3)

z(0, t) = 0, z(1, t) = 0, t ∈ (0, T), (2.4)

y(x, T) = yT (x), z(x, T) = zT (x), x ∈ (0, 1), (2.5)

where f1, f2 ∈ L2((0, 1) × (0, T)), yT , zT ∈ L2(0, 1).
Define H1

p (0, 1), H2
p (0, 1) are the closures of C∞

0 (0, 1) with respect to the norms; see [1],

‖u‖H1
p (0,1) =

(∫ 1

0

(
u2 + xpu2

x
)

dx
)1/2

, u ∈ H1
p (0, 1),

‖u‖H2
p (0,1) =

(∫ 1

0

(
u2 + xpu2

x +
(
xpux

)2
x

)
dx

)1/2

, u ∈ H2
p (0, 1),

respectively. Denote B = L∞(0, T ; L2(0, 1)) ∩ L2(0, T ; H1
p (0, 1)) and D = L2(0, T ; H2

p (0, 1)) ∩
H1(0, T ; L2(0, 1)) with respect to the norms

‖u‖B =
(

sup
t∈(0,T)

∫ 1

0

(
u(x, t)

)2 dx +
∫ T

0

∫ 1

0

(
u2 + xpu2

x
)

dx dt
)1/2

, u ∈ B,

‖u‖D =
(∫ T

0

∫ 1

0
u2

t dx +
∫ T

0

∫ 1

0

(
u2 + xpu2

x +
(
xpux

)2
x

)
dx dt

)1/2

, u ∈ D,

respectively.

Definition 2.1 A pair of functions (y, z) ∈ B × B is called a solution to the system (2.1)-
(2.5), if for any ϕ,ψ ∈ Bwith ϕt ,ψt ∈ L2((0, 1)× (0, T)) and ϕ(x, 0) = 0, ψ(x, 0) = 0, x ∈ (0, 1),
the following integral equalities hold:

∫ T

0

∫ 1

0

(
yϕt + xpyxϕx + λ1yϕ + λ3zϕ

)
dx dt =

∫ T

0

∫ 1

0
f1ϕ dx dt +

∫ 1

0
yT (x)ϕ(x, T) dx,

∫ T

0

∫ 1

0

(
zψt + xpzxψx + λ2yψ + λ4zψ

)
dx dt =

∫ T

0

∫ 1

0
f2ψ dx dt +

∫ 1

0
zT (x)ψ(x, T) dx.

By energy estimates, one can prove the well-posedness as the case of the single equa-
tions.

Theorem 2.1 There exists a unique solution (y, z) ∈ B × B to the problem (2.1)-(2.5) sat-
isfying

‖y‖B + ‖z‖B +
∥
∥xpyx(0, t)

∥
∥

L2(T1,T2) +
∥
∥xpyx(0, t)

∥
∥

L2(T1,T2) +
∥
∥xpzx(0, t)

∥
∥

L2(T1,T2)

≤ C1
(‖f1‖L2((0,1)×(0,T)) + ‖f2‖L2((0,1)×(0,T)) + ‖yT‖L2(0,1) + ‖zT‖L2(0,1)

)
,
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where C1 is depending only on T , T1, ‖λi‖L∞((0,1)×(0,T)), i = 1, 2, 3, 4. Further, if
(yT , zT ) ∈ H1

p (0, 1) × H1
p (0, 1), then there exists a constant C2 depending only on

T , T1, ‖λi‖L∞((0,1)×(0,T)), i = 1, 2, 3, 4, such that

‖y‖D + ‖z‖D ≤ C2
(‖f1‖L2((0,1)×(0,T)) + ‖f2‖L2((0,1)×(0,T)) + ‖yT‖H1

p (0,1) + ‖zT‖H1
p (0,1)

)
.

The proof is similar to Proposition 2.1 in [11] and Proposition 2.1 in [12].
Next, we prove the unique continuation. Consider the problem

wt +
(
xpwx

)
x = F , (x, t) ∈ (0, 1) × (0, T), (2.6)

w(0, t) = w(1, t) = 0, t ∈ (0, T), (2.7)

where F ∈ L2((0, 1) × (0, T)). Then we have the following two lemmas.

Lemma 2.1 (Theorem 2.3 [10]) Let w ∈ D be the solution to the problem (2.6) and (2.7)
and satisfying

(
xpwx

)
(0, t) =

(
xpwx

)
(1, t) = 0.

Then, for fixed q ∈ (1 – p, 1 – p/2), there exist two positive constants C and s0 such that, for
all s ≥ s0,

∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4w2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2w2

xe–2sxql(t) dx dt

≤ C
∫ T

0

∫ 1

0
F2e–2sxql(t) dx dt,

where l(t) = 1
t(T–t) .

From Lemma 2.1, we can prove the Carleman estimate for the system (2.1)-(2.5).

Theorem 2.2 Let (y, z) ∈D×D be the solution to the system (2.1)-(2.4) and suppose that,
for a.e. t ∈ (0, T),

(
xpyx

)
(0, t) =

(
xpyx

)
(1, t) =

(
xpzx

)
(0, t) =

(
xpzx

)
(1, t) = 0.

Then, for fixed q ∈ (1 – p, 1 – p/2), there exist positive constants C1 and s1 such that, for all
s ≥ s1,

∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4y2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2y2

xe–2sxql(t) dx dt

+
∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4z2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2z2

xe–2sxql(t) dx dt

≤ C1

(∫ T

0

∫ 1

0
|f1|2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
|f2|2e–2sxql(t) dx dt

)
.
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Proof It follows from Lemma 2.1 that there exist C and s0 such that, for all s ≥ s0,

∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4y2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2y2

xe–2sxql(t) dx dt

+
∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4z2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2z2

xe–2sxql(t) dx dt

≤ C
(∫ T

0

∫ 1

0
|f1|2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
|f2|2e–2sxql(t) dx dt

+
(‖λ1‖2

L∞(0,1)×(0,T) + ‖λ2‖2
L∞(0,1)×(0,T)

)∫ T

0

∫ 1

0
|y|2e–2sxql(t) dx dt

+
(‖λ3‖2

L∞(0,1)×(0,T) + ‖λ4‖2
L∞(0,1)×(0,T)

)∫ T

0

∫ 1

0
|z|2e–2sxql(t) dx dt

)
.

Note that 2p + 3q – 4 < 0 due to q ∈ (1 – p, 1 – p/2). Take

s1 = max

{

s0, 2–5/3T2C1/3

( 4∑

i=1

‖λi‖2
L∞(0,1)×(0,T)

)1/3}

.

Then, for s > s1, we have

∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4y2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2y2

xe–2sxql(t) dx dt

+
∫ T

0

∫ 1

0
s3l3(t)x2p+3q–4z2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
sl(t)x2p+q–2z2

xe–2sxql(t) dx dt

≤ 2C
(∫ T

0

∫ 1

0
|f1|2e–2sxql(t) dx dt +

∫ T

0

∫ 1

0
|f2|2e–2sxql(t) dx dt

)
.

The proof is complete. �

Similar to the proof of Theorem 3.1 [10] and Proposition 4.2 [12], one can prove the
following unique continuation properties.

Theorem 2.3 Let (y, z) ∈D×D be the solution to the system (2.1)-(2.4) and suppose that,
for almost every t ∈ (0, T),

(
xpyx

)
(0, t) =

(
xpzx

)
(0, t) = 0.

If f1(x, t) = f2(x, t) = 0, then y(x, t) = 0, z(x, t) = 0, where (x, t) ∈ (0, 1) × (0, T).

Theorem 2.4 Let (y, z) ∈ B×B be the solution to the system (2.1)-(2.5) and suppose that,
for almost every t ∈ (0, T),

(
xpyx

)
(0, t) =

(
xpzx

)
(0, t) = 0.

If f1(x, t) = f2(x, t) = 0, then y(x, t) = 0, z(x, t) = 0, where (x, t) ∈ (0, 1) × (0, T).
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3 Approximate controllability for the control system
In this section, we prove the approximate controllability for the control system (1.1)-(1.5).

Define the mapping

L : X→ T, (yT , zT ) 	−→ (
xpyx(0, t)χω1 , xpzx(0, t)χω1

)
,

where X = L2(0, 1) × L2(0, 1) with the norm

∥
∥(w1, w2)

∥
∥
X

=
(‖w1‖2

L2(0,1) + ‖w2‖2
L2(0,1)

)1/2, (w1, w2) ∈X

and T = L2(T1, T2) × L2(T1, T2) with the norm

∥∥(w1, w2)
∥∥
T

=
(‖w1‖2

L2(T1,T2) + ‖w2‖2
L2(T1,T2)

)1/2, (w1, w2) ∈ T.

For any (u1, v1) ∈X, define the functional

J
(
(yT , zT )

)
=

1
2
∥∥(

xpyx(0, t), xpzx(0, t)
)∥∥2

T
+ ε

∥∥(yT , zT )
∥∥
X

–
〈
(u1, v1), (yT , zT )

〉
X

,

where (yT , zT ) ∈X and 〈·, ·〉X is the inner product in X.

Proposition 3.1 J(·) is strictly convex and satisfies

lim inf
‖(yT ,zT )‖X→+∞

J((yT , zT ))
‖(yT , zT )‖X ≥ ε. (3.1)

Furthermore, J(·) achieves its minimum at a unique point (ŷT , ẑT ) in X and

(ŷT , ẑT ) = 0 a.e. in � ⇐⇒ ∥∥(u1, v1)
∥∥
X

≤ ε. (3.2)

The proof is similar to the proof of Proposition 3.1 in [7].
Now, we are ready to prove the approximate controllability of the system (1.1)-(1.5).

Theorem 3.1 The system (1.1)-(1.5) is approximately controllable. That is to say, for any
given u0, v0, u1, v1 ∈ L2(0, 1) and ε > 0, there exist g1, g2 ∈ L2(T1, T2) such that the weak so-
lution (u, v) to the system (1.1)-(1.5) satisfies

∥∥(
u(x, T) – u1, v(x, T) – v1

)∥∥
X

≤ ε. (3.3)

Proof Without loss of generality, we assume

u0(x) = 0, v0(x) = 0, a.e. x ∈ (0, 1). (3.4)

If ‖(u1, v1)‖X ≤ ε, (3.3) holds by taking g1, g2 = 0. Now we suppose ‖(u1, v1)‖X > ε.
In this case, Proposition 3.1 yields (ŷT , ẑT ) �= (0, 0). For any (θ0,ψ0) ∈ X, denote (θ ,ψ) to

be the solution of the coupled system (2.1)-(2.5) with (yT , zT ) = (θ0,ψ0). Since (ŷT , ẑT ) is
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the unique point of minimum of J(·), one gets

〈(
xpŷx(0, t), xpẑx(0, t)

)
,
(
xpθx(0, t), xpψx(0, t)

)〉
T

+ ε
〈(ŷT , ẑT ), (θ0,ψ0)〉X

‖(ŷT , ẑT )‖X
–

〈
(u1, v1), (θ0,ψ0)

〉
X

= 0. (3.5)

It follows from the definition of the weak solution (u, v) to the system (1.1)-(1.4) and (3.4)
that

∫ T

0

∫ 1

0

(
utθ dx dt + xpuxθx + λ1uθ + λ2vθ

)
dx dt = 0, (3.6)

∫ T

0

∫ 1

0

(
vtψ dx dt + xpvxψx + λ3uψ + λ4vψ

)
dx dt = 0. (3.7)

Additionally, the definition of the weak solution (θ ,ψ) to the system (2.1)-(2.5) with
(yT , zT ) = (θ0,ψ0) gives

∫ T

0

∫ 1

0

(
θut + xpθxux + λ1θu + λ3ψu

)
dx dt

=
∫ 1

0
θ0(x)u(x, T) dx –

∫ T2

T1

xpθx(0, t)g1 dt, (3.8)

∫ T

0

∫ 1

0

(
ψvt + xpψxvx + λ2θv + λ4ψv

)
dx dt

=
∫ 1

0
ψ0(x)v(x, T) dx –

∫ T2

T1

xpψx(0, t)g2 dt. (3.9)

From (3.6)-(3.9), one can get

∫ T2

T1

(
xpθx(0, t)xpŷx(0, t) + xpψx(0, t)xpẑx(0, t)

)
dt

=
∫ 1

0
θ0(x)u(x, T) dx +

∫ 1

0
ψ0(x)v(x, T) dx (3.10)

by taking

g1(t) =

{
xpŷx(0, t), t ∈ [T1, T2],
0, t ∈ [0, T1) ∪ (T2, T],

g2(t) =

{
xpẑx(0, t), t ∈ [T1, T2],
0, t ∈ [0, T1) ∪ (T2, T].

Combining (3.10) with (3.5) yields

〈(
u1 – u(x, T), v1 – v(x, T)

)
, (θ0,ψ0)

〉
X

= ε
〈(ŷT , ẑT ), (θ0,ψ0)〉X

‖(ŷT , ẑT )‖X ,

which implies (3.3) due to the arbitrariness of (θ0,ψ0) ∈X. �
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