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1 Introduction

In this paper, we investigate the approximate controllability of the coupled degenerate

system
up— (Fuy) + hu+rv=0, (x,2)€(0,1) x (0, 7), (1.1)
Ve — (x”vx)x +A3u+A4v=0, (x,2)€(0,1)x(0,T), (1.2)
u(0,t) = g1 X[, T2 u(1,t)=0, te(0,7), (1.3)
(0, 8) = g2 X(T\,T5)» v(1,t)=0, t€(0,T), (1.4)
u(x,0) = uo(x), v(x,0) =vo(x), x€(0,1), (1.5)

where 0 < p < 1, A; € L%°((0,1) x (0, 7)), i = 1,2,3,4, uo,vo € L*(0,1), g1,82 € L*(0, T) are
the control functions, x is the characteristic function, 0 < 77 < To < T.

Recently, the controllability of the following degenerate parabolic equation has been
investigated; see references [1-5]:

U — (xpux)x +celx, u=hyx, (xt)e(0,1)x(0,T), (1.6)

where ¢ € L*((0,1) x (0, 7). The degenerate equation (1.6) can be obtained by suitable
transformations of the Prandtl equations; see [6]. The equation (1.6) is divided into two
cases, the weak degenerate case 0 < p < 1 and the strong degenerate case p > 2. Different
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boundary conditions are proposed in two cases. When 0 < p < 1, the boundary condition

is

u©,t)=u(l,£)=0, te(0,7). (1.7)

When p > 1, the boundary condition is

®uy(0,8) =u(l,t)=0, t€(0,T). (1.8)

In both cases, the initial value condition is

u(x,0) = up(x), xe€(0,1), (1.9)

where ug € L*(0,1); see [2].

The authors prove that the problem (1.6), (1.7) or (1.8) and (1.9) is null controllable if
0 < p <2, and the problem is not null controllable if p > 2, see the references [1-5]. On the
other hand, it is shown that, for every p > 0, the problem (1.6), (1.7) or (1.8) and (1.9) is
approximate controllability; see [7, 8]. In [9], the author investigated the null controllability
of the coupled system with internal control.

Moreover, it is considered whether the degenerate problem is controllable if the control

function acts on the degenerate boundary. The following problem is studied; see [10-12]:

w— (Wuy) +clx,)hu=0, (x,t)€(0,1) x (0,7), (1.10)
w0,8) = hyxir, ), u(1,8)=0, te(0,T), (1.11)
u(x,0) = up(x), x<(0,1), (1.12)

where 0 < p < 1. Note that it is not necessary that we propose the boundary condition on
the degenerate boundary when 1 < p < 2; see [13]. Further, there are a lot of work on the
controllability; see references [14—17] and so on.

The degenerate parabolic system (1.1)-(1.5) is the mathematical model coming from
mathematical biology and physical phenomena; see [18, 19]. In the present paper, we prove
the approximate controllability for the system (1.1)-(1.5). That is to say, for any ¢ > 0 and
U, Vo, t1,v1 € L2(0,1), there exist g1, g € L2(0, T), such that the solution (i, v) to the system
(1.1)-(1.5) satisfies

|, T) = 1) 1201y + [V T) =11 @) 2, < €

First, we prove the Carleman estimate for the adjoint system. Next, the unique continu-
ation can be derived from the Carleman estimate. Then, by constructing the functional,
we show the functional has a unique minimum point. Finally, we construct the control
functions by the minimum point of the functional and get the approximate controllability.

The paper is organized as follows. In Section 2, we prove the Carleman estimate and
the unique continuation for the adjoint system. In Section 3, we prove the approximate
controllability of the coupled system (1.1)-(1.5).
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2 Unique continuation for the adjoint system
In this section, we prove the unique continuation for the adjoint system by Carleman es-
timate.

First, we study the well-posedness of the adjoint system

Y= (yx) + hy+ haz=fi, (x1) €(0,1) x (0,T), (2.1)
—z— (W2x), + hay + haz=fo,  (x,2) €(0,1) x (0, T), (2.2)
y0,6)=0,  y(1,6)=0, te(0,7), (2.3)
2(0,6)=0,  z(1,£)=0, te(0,T), (2.4)
¥, T)=yrx), 2z T)=zr(x), x€(0,1), (2.5)

where fi,f> € L2((0,1) x (0, 7)), y1,zr € L*(0,1).
Define H,(0,1), H,(0, 1) are the closures of C3°(0, 1) with respect to the norms; see [1],

1 12
el 7201) = (fo (u® + 5P u?) dx) ., ueH)0,1),

1 12
2
l2tll 20,1, = (/0 (0 + &u + (Fuy))) dx) , ueH0,1),

respectively. Denote B = L*(0, T;L?(0,1)) N L*(0, T; H,(0,1)) and D = L*(0, T; H,(0,1)) N
H'(0, T; L*(0, 1)) with respect to the norms

172
||M||B—(SUP/(u(x,t) dx+/ / u +xpu)dxdt) , uecb,
te(0,T

/2

||u||D—</ /utdx+/ / u+xpu+x”ux) )dxdt> , ueb,

respectively.

Definition 2.1 A pair of functions (y,z) € B x B is called a solution to the system (2.1)-
(2.5),if forany ¢, ¥ € B with ¢, ¥, € L2((0,1) x (0, T)) and ¢(x,0) = 0, ¥ (x,0) = 0, x € (0, 1),
the following integral equalities hold:

T 1 T 1 1
/ / (Yor + Xyxpx + MYQ + A3zg) dxdt = / / frodxdt + / yr(x)o(x, T) dx,
o Jo o Jo 0

T 1 T 1 1
/ / (2 + X 2P + Aoy +A4z1//)dxdt:/ / v dxdt+/ zr(x) Y (x, T) dx.
o Jo o Jo

0

By energy estimates, one can prove the well-posedness as the case of the single equa-

tions.

Theorem 2.1 There exists a unique solution (y,z) € B x B to the problem (2.1)-(2.5) sat-
isfying

Iyllz + lzls + [|#5:0, 0 1o 7, 1) + [#920, 0] 1o, 1) + [ 20,0 1o, 1)

< G(IlAllzo <o) + Wellznxom) + 177120 + 1271201,
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where Cy is depending only on T, Ti, |Aillzeqonxory, ¢ = 1,2,3,4. Further, if
r.2r) € H;(O,l) X H;(O,l), then there exists a constant C, depending only on
T, Ty, [|Aillzeo o) x (0,7, £ = 1,2, 3,4, such that

Iylp + lzllp < Co (Il 2g00)x 0,7 + 2l z2¢0,1)x(0,1) + 17200 + ||ZT||H;(0,1))~

The proof is similar to Proposition 2.1 in [11] and Proposition 2.1 in [12].
Next, we prove the unique continuation. Consider the problem

+(wy) =F, (xt)€(0,1) x(0,T), (2.6)

w(0,t) =w(1,£)=0, te(0,7), (2.7)
where F € L%((0,1) x (0, T)). Then we have the following two lemmas.

Lemma 2.1 (Theorem 2.3 [10]) Let w € D be the solution to the problem (2.6) and (2.7)
and satisfying

(#wx)(0,8) = (5w ) (1,2) = 0.

Then, for fixed q € (1 — p,1 — p/2), there exist two positive constants C and sy such that, for
all s > so,

T 1
/ / SS[B(t 2p+3q—4 2 —Zqul dxdt+/ / Sl 2p+q—2 2 —Zqul(t dxdt
0 0
T 1
<Cf / F2e7 250 gy dt,
0 0

where [(t) = t(Tl_t).

From Lemma 2.1, we can prove the Carleman estimate for the system (2.1)-(2.5).

Theorem 2.2 Let (y,z) € D x D be the solution to the system (2.1)-(2.4) and suppose that,
fora.e.te(0,7T),

(#9:)(0,8) = (x”95)(1,2) = (#724)(0,£) = (#2,)(1,£) = 0.

Then, for fixed q € (1 —p,1 — p/2), there exist positive constants C, and s, such that, for all

=81,

T pl T pl
/ / S313(t)x2p+3q—4y26—23qu(t) dxdt + / / Sl(t)x2p+q—2y§e—2squ(t) dxdt
0

/ / 313(t)x2p+3q 4,2 —Zqul (2) dxdt+/ / Sl(t)x2p+q 2 2 —stql dxdt

G ( / / IfiPe™>"1O duxdt + / / [fo2e "1 dxdt).
0 0 0 0
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Proof 1t follows from Lemma 2.1 that there exist C and s such that, for all s > s,

T 1 T 1
/ / 3313(t)x2p+3q—4y23—25qu(t) dx dt +/ / Sl(t)x2p+q—2yie—23qu(t) dx dt
0
/ / 3[3(t 2p+3q—4 2 —2squ () dxdt+/ / Sl 2p+q 2 2 —stql dxdt
< c( f f Ifi PO dxd + / / al?e™>"") dxdt
0 0 0 0

T 1
_ q
+ (2101 0,1y + ||)‘2||i°°(0,1)><(0,T))f f ly12e 210 dx dt

2 ~2sx4i(t)
(”)‘3”L°°01)>< or) t ”)‘4”L°°01)>< 0.7) / / |z]7e™ =" dxdt)

Note that 2p + 3¢ —4 <0 duetog € (1 -p,1 - p/2). Take

4 13
$1 = maXlSO, 9513213 (Z ”)\i”iw(o,l)x(o,T)) }

i=1

Then, for s > s;, we have

T 1 T 1
/ / 3313(t)x2p+3q—4y26—25qu(t) dx dt +/ / Sl(t)x2p+q_2yi€_28qu(t) dx dt
0
/ / 313(t 2p+3q—4 2 —25qu (2) dxdt+f / Sl 2p+q 2 2 —stql (2) dx dt
< 2C( / f Ifi12e” 25O dx it + / / Ifa|2e~25511®) dxdt).
0 0 0 0

The proof is complete. d

Similar to the proof of Theorem 3.1 [10] and Proposition 4.2 [12], one can prove the

following unique continuation properties.

Theorem 2.3 Let (y,z) € D x D be the solution to the system (2.1)-(2.4) and suppose that,
for almost every t € (0, T),

(#9:)(0,2) = (x”2,)(0,2) = 0.
Iffi(x,£) = fo(x,t) = 0, then y(x,t) = 0, z(x, t) = 0, where (x,£) € (0,1) x (0, T).

Theorem 2.4 Let (y,z) € B x B be the solution to the system (2.1)-(2.5) and suppose that,
for almost every t € (0, T),

(#9x)(0,8) = (x”2,)(0,2) = 0.

Iffi(x,t) = fo(x,t) = 0, then y(x,t) = 0, z(x, t) = 0, where (x,£) € (0,1) x (0, T).
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3 Approximate controllability for the control system
In this section, we prove the approximate controllability for the control system (1.1)-(1.5).

Define the mapping
L:X— T, 01 21) > (820, £) Xy » 87 24(0, t)le)x

where X = L2(0,1) x L%(0,1) with the norm

[ w) |y = (w122 + IW2l2a00) " (Wi wn) €X
(0,1) 0,1)

and T = L*(Ty, T») x L*(Ty, T) with the norm

||(W17 WZ) ||'J1~ = (”Wl ||%2(T1,T2) + ||W2||22(T1,T2))1/27 (Wlx WZ) eT.

For any (u1,v1) € X, define the functional

]((yT’ ZT)) = % H (xpyx(or t): xPZx(O, t)) ||;~ + & || (yT:ZT) ”X - <(u1» Vl): (yTr ZT)>X1

where (y7,z7) € X and (-, -)x is the inner product in X.

Proposition 3.1 J(-) is strictly convex and satisfies

J((yr,21)) > e (3.1)
lorzn)lx—+o0 |y, 27)lIx
Furthermore, J(-) achieves its minimum at a unique point (yr,27) in X and
Or,21)=0ae inQ <— H(”b"l)Hx <e. (3.2)

The proof is similar to the proof of Proposition 3.1 in [7].

Now, we are ready to prove the approximate controllability of the system (1.1)-(1.5).
Theorem 3.1 The system (1.1)-(1.5) is approximately controllable. That is to say, for any
given ug, Vo, U1, V1 € L%(0,1) and € > 0, there exist g% € L*(Ty, T,) such that the weak so-
lution (u,v) to the system (1.1)-(1.5) satisfies

|| (u(x, T)—up,vix, T) - vl) ”X <e. (3.3)
Proof Without loss of generality, we assume
uo(x) =0, vo(x) =0, a.e.xe(0,1). (3.4)
If ||(u1,v1)Ix < &, (3.3) holds by taking g1,g, = 0. Now we suppose |[(u1,11)[x > €.

In this case, Proposition 3.1 yields (r,2r) # (0,0). For any (6o, %) € X, denote (6, %) to
be the solution of the coupled system (2.1)-(2.5) with (yr,zr) = (60, Vo). Since (J1,2r) is
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the unique point of minimum of J(-), one gets

(Orr>271), B0, Yo))x
1O 2r)lIx

- ((ulx Vl)) (907 ¢0)>X =0. (35)

((*3:(0,),#°2,(0, 1)), (x76x(0, £), & (0, 1)) ) + €

It follows from the definition of the weak solution (i, v) to the system (1.1)-(1.4) and (3.4)
that

T pl
/ / (th dxdt + xPu,0, + Aqud + szé) dxdt =0, (3.6)
o Jo

T pl
/ / (Vﬂﬁ dxdt + v, + Azuy + MVW) dxdt=0. (3.7)
o Jo

Additionally, the definition of the weak solution (6,y) to the system (2.1)-(2.5) with
O, z1) = (60, Vo) gives

T 1
/ / (Ouy + 2P Optay + 110 + A3u) dxdt
o Jo

1 T
= / Oo(x)u(x, T) dx — x0,(0, )¢ dt, (3.8)
0

51

T 1
/ / (Ve + &YV + Aobv + AaYrv) dxdlt
o Jo

T

1
= /0 Yox)vix, T) dx — xP (0, t)gr dt. (3.9)

T

From (3.6)-(3.9), one can get

T
/ (#0.(0,1)x77,(0, £) + " (0, £)x"2,(0, 1)) ddt
T

1

1 1
= / Oo(x)u(x, T) dx + / Yox)vix, T) dx (3.10)
0 0

by taking

xpj/x((), t), te [Tl’ T2]1
ai(t) =
0) te [0’ TI)U(TZ’ T])

xpéx(o) t)) te [Tl) T2],
£(t) =
0, te[0,T7) U (T, T].
Combining (3.10) with (3.5) yields

((ul - u(x, T)! V1 — V(xr T))’ (90! 1p()))x =€ ((yT|’| zyfT):;io)’”l}iO))X

which implies (3.3) due to the arbitrariness of (6, ¥) € X. O
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