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Abstract 

This paper analyses cyclical behaviour of Orange stock price listed in French stock 
exchange over 01/03/2000 to 02/02/2017 by testing the nonlinearities through a 
class of conditional heteroscedastic nonparametric models. The linearity and 
Gaussianity assumptions are rejected for Orange Stock returns and informational 
shocks have transitory effects on returns and volatility. The forecasting results 
show that Orange stock prices are short-term predictable and nonparametric NAR-
ARCH model has better performance over parametric MA-APARCH model for short 
horizons. Plus, the estimates of this model are also better comparing to the 
predictions of the random walk model. This finding provides evidence for weak 
form of inefficiency in Paris stock market with limited rationality, thus it emerges 
arbitrage opportunities. 
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1. Introduction 

The empirical models in finance have been proposed to predict the share 
returns (Sharpe, 1964; Ross, 1976) or the premium of financial derivatives (Black 
and Scholes, 1973). Majority of these models assumes (1) linearity and (2) 
Gaussianity, and frequently being utilized as an empirical tool in testing validation 
of these assumptions that opine (1) a linear impact running from past values of 
stock market returns on to current ones, and (2) an identically and independently 
distribution (normal distribution) of the residuals. 

Stock prices are characterized by a particular structure that is fundamental to 
addressing the problem of modelling. Thus, the presence of nonlinearities in the 
financial series has important implications particularly with regard to the weak 
form of efficiency markets. Indeed, if a series exhibit a nonlinear dynamic, this 
implies nonlinear dependencies between the observations. In the other words, 
the past can influence the random variations of today. Theoretically, nonlinearity 
is the real source of diversity, complexity and volatility (Campbell, Lo, and 
MacKinlay, 1997). 

Financial time series, especially stock returns, is no longer predictable by 
linear models since these processes are based on restrictive assumptions such as 
presence of symmetric distribution and a linear structure. The Gaussian linear 
models can only generate symmetric behaviours in series, and cannot reproduce 
effects of presence of transaction costs and heterogeneous expectations of agents 
on stock markets. Moreover, the linear processes do not explain the phenomena 
of clustering of volatility and structural change. 

Many works are interested in the field of parametric nonlinear time series. 
Such parametric nonlinear models may be too restrictive in many cases. This leads 
to various nonparametric techniques being used to model nonlinear time series 
data that may be allowed to speak for themselves. The development of these 
methods has provided a solid theoretical basis for the nonlinear time series 
analysis (Robinson, 1983). They are considered as an alternative to the 
nonlinearity problem. The financial series is generally characterized by a time-
varying volatility that can be modelled by nonparametric ARCH-type models, 
which corresponds to a specific representation of nonlinearity allowing for 
simplified modelling of uncertainty. 

The nonparametric methods have boomed since studies of Tjostheim and 
Auestad (1994) and Yang and Tschernig (1998). Cheng and Tong (1992) propose a 
cross validation criterion, whereas Vieu (1995) puts forward penalized cross 
validation. On contrary, Yang and Tschernig (1998) suggest using the corrected 
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nonparametric FPE criterion by introducing a new term in the FPE criterion 
adopted by Tjostheim and Auestad (1994). Andersen, Bollerslev, and Diebold 
(2009) review and provide a unified framework for interpreting the parametric 
and nonparametric approaches, which include ARCH filters and smoothers 
designed to measure the volatility over infinitesimally short horizons, as well as 
recently-popularized realized volatility measures for fixed-length time intervals. 
Chikhi and Diebolt (2010) test weak form of Paris Stock Exchange market 
efficiency by nonparametric methods using kernel methodology. Kristensen 
(2010) proposes a kernel weighted version of the standard realized integrated 
volatility estimator and shows consistency and asymptotic normality of the kernel 
smoothed realized and the filtered spot volatilities. Mwamba (2011) tests the 
predictability of stock prices in more efficient and developed markets (US/UK) 
using dynamic random walk and univariate nonparametric kernel models based 
on local linear estimator. The nonparametric final prediction error (FPE) criterion 
introduced by Auestad and Tjostheim (1994), which is used to determine the 
appropriate number of lags. But this criterion has highest probability of over 
estimation. In addition, the nonparametric estimators are consistent under 
standard conditions used in nonparametric time series. There is a larger 
asymptotic probability to overfit than to underfit the correct model, where 
overfitting is meant to always include all correct lags plus some irrelevant lags. 
Therefore, we add in asymptotic final prediction error (AFPE), a correction factor 
that depends on the number of lags and observations. Hou and Suardi (2012) 
study oil price return volatility and show that out-of-sample volatility forecast of 
the nonparametric GARCH model yields superior performance relative to an 
extensive class of parametric GARCH models. In turn, Er and Fidan (2013) use the 
nonparametric GARCH model to analyze volatility of daily stock returns of Istanbul 
Stock Exchange 100 (ISE 100) market and find plausible results. On the other 
hand, Kung (2016) employs nonparametric kernel regression to deal with 
changing volatility based on Nadaraya-Watson estimator and compares the index 
option prices under nonparametric model with those under Black–Scholes and 
Stein–Stein models. The Nadaraya-Watson estimator has a poor bias rate if 
density of the lagged variable is not sufficiently smooth, especially with nonlinear 
processes. It is just a special case of local linear estimator since it locally estimates 
a function that is constant. The asymptotic bias of the Nadaraya-Watson 
estimator is more complicated than the asymptotic bias of local linear estimator. 
This estimator needs only continuity of the density to have an optimal 
convergence rate (Hardle, Tsybakov, and Yang, 1998). 

The present article, in contrast to studies that use Nadaraya-Watson 
estimator and FPE criterion, employs corrected asymptotic final prediction error 
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(CAFPE) based on local linear estimator to estimate nonparametrically conditional 
mean and conditional volatility by selecting optimal bandwidth and lags. We apply 
this technique to use examine informational shocks and nonlinearities in Orange 
stock returns using nonparametric version of conditional heteroscedastic 
nonlinear models. The short-term predictability of price of Orange Company at 
Paris stock markets provides evidence for inefficiency of Paris stock market (in a 
weak level) with limited rationality, which emerges arbitrage opportunities. 

The remaining paper is structed as following. Next section presents 
descriptive analysis of daily Orange stock price returns and volatility. In third 
section, we present core results of nonparametric modelling of stock Orange 
return series wehre we compare predictive quality of conditional heteroscedastic 
nonparametric Autoregressive (NAR-ARCH) and parametric MA-APARCH models 
with that of a random walk. The last section concludes the study outlining core 
findings.  

2. Descriptive Statistics and Data characteristics 

The data considered in this paper consists of daily price of Orange share 
listed in France stock exchange. The data of 17 years of daily price downloaded 
from Yahoo Finance covering a historical period from January 3, 2000 to February 
2, 2017, (4449 observations). Unit root tests results (Philips and Perron, 1988; 
Elliott, Rothenberg and Stock, 1996; Ng and Perron, 2001) reported in table 1 
show that the series is characterized by the presence of unit roots. The series is 
finally differenced by calculating returns as 𝑟𝑟𝑡𝑡 = 100ln(𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡/𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡−1), where 
ORAt is value of the index (Orange) at time point t (see figure 1). 

Table 1. Unit root tests  

Series Philips-
Perron 

Elliott-
Rothenberg-

Stock 

Ng-Perron 

MZa MZt MSB MPT 

Logarithmic series 
-1.4070 

(-1.9400) 
0.0760 

(3.2600) 
-0.1810 

(-8.1000) 
-0.18000 
(-1.9800) 

0.9940 
(0.2330) 

52.9490 
(3.1700) 

Returns 
-62.7870 
(-1.9400) 

53.5330 
(3.2600) 

-366.018 
(-8.1000) 

-13.5200 
(-1.9800) 

0.0369 
(0.2330) 

0.0752 
(3.1700) 

Notes: The numbers in the table are asymptotic critical values of unit root tests (the null 
hypothesis is H0: series has unit root) with Bartlett kernel spectral estimation method of 
Andrews bandwidth. The tested equation uses unrestricted intercept without any kinds 
of trends. The numbers in parentheses are asymptotic critical values at 5% significance 
level. MZa, MZt, MSB, MPT are the Ng-Perron statistics. Tested model uses  
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Figure 1. Stock exchange Orange (logarithmic and returns) 

In table 2, we provide some descriptive statistics for the return series. As it is 
seen from the skewness and kurtosis values, Orange return series is positively 
skewed and leptokurtic. The right tail of distribution is longer than the left one. 
That is, negative return frequencies occur much more than positive returns (see 
also Figure 2-A). The observed asymmetry may indicate the presence of 
nonlinearities in the evolution process of returns. The scatter plot of the series 
(Figure 2-B) does not appear in the form of a regular ellipsoid and confirms 
nonlinearity. Furthermore, the distribution is leptokurtic. The series is 
characterized by the presence of ARCH effects (see table 2). 

Table 2. Main characteristics of Orange returns series 

Mean Median Standard 
Deviation Skewness Kurtosis Jarque-

Bera ARCH(1) N 

-0.0293 0.0000 2.4002 0.4574 12.0127 
15209.64 
(0.0000) 

(0.0000) 4448 

Notes: The numbers in the table are statistics of descriptive analysis with the null 
hypothesis of H0: there is no difference between our distribution and a normal 
distribution. The numbers in the paranthesis are critical probabilities. 
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(A): Kernel estimation of density          (B): Scatter plot of Orange variations 

Figure 2. Kernel Estimation of Density and Scatter Plot of Orange Variations 

Table 3 shows results of BSD test (Brock, Dechert, Scheinkman & LeBaron, 
1996) that analyzes presence of nonlinear short-term dependencies.  According to 
the results, the test rejects assumption of random walk as its statistics is greater 
than the critical value at 5% significance level. This indicates that the stock 
exchange Orange prices are short-term predictable.  

Table 3. BDS test results on the series on Orange stock returns 

m BDS stat. m BDS stat. 
2 20.541 7 41.574 
3 26.459 8 45.353 
4 30.934 9 49.637 
5 34.563 10 54.442 
6 37.986   

Notes: The numbers in the table are BDS test statistics with the null hypothesis of H0: 
Returns are Independent and Identically Distributed (i.i.d). The BDS statistics are 
calculated by the fraction of pair’s method of epsilon with value of 0.7, and maximum 
correlation dimension (m) of 10. The critical values are 1.645, 1.960, and 2.575 for the 
10%, 5%, and 1% significance levels respectively. 

We have to analyse the cyclical behaviour of returns by considering longer 
horizons. So, we estimate fractional integration coefficient by the GPH method 
(Geweke and Porter-Hudak, 1983) with different spectral bandwidths. From Table 
4, it's obvious that the stock exchange Orange return series is not generated by 
long memory process. The values of the Student statistic (with a power of 0.8) are 
strictly less than the critical value at 5%. The returns are short-term predictable: 
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the presence of a short memory indicates that agents cannot anticipate their 
returns to a sufficiently long horizon. Indeed, the observed movements appear as 
the result of transitory exogenous shocks. 

Table 4. Results from the ARFIMA estimation using spectral methods on Orange 
returns 

Bandwidth d  Student stat. Prob. 
Without bandwidth 0.035 1.553 0.120 
Rectangular 0.006 0.273 0.784 
Bartlett 0.012 0.869 0.384 
Daniell 0.011 0.673 0.500 
Tukey 0.010 0.669 0.503 
Parzen 0.015 1.154 0.248 
B-priest 0.008 0.418 0.675 

Notes: The numbers in the table are the estimated fractional integration coefficient and 
its t-statistic using different spectral bandwidths (the null hypothesis H0: d is not 
significant). The numbers in the last column are critical probabilities. 

The results of the Hinich bispectrum test (Hinich and Patterson, 1989) for 
linearity and Gaussianity are shown in Table 5. The Gaussianity statistic is strictly 
greater than the critical value of standard normal at 5%, and the linearity statistic 
is greater than the critical value of 2χ  at 5% with two degrees of freedom. We 
reject the null hypothesis of linearity and Gaussianity. 

Table 5. Hinich bispectrum test for linearity and Gaussianity 

Frame Size Lattice Points Test Quantile Linearity Gaussianity 

67 272 0.8 
31.409 
(0.000) 

7978.107 
(0.000) 

Notes: The numbers in the table are nonparametric Hinich bispectral test statistics with 
the null hypothesis (H0) of linearity and Gaussianity, obtaining the chi-squared statistic for 
testing the significance of individual bispectrum estimates by exploiting its asymptotic 
distribution. The numbers in the parenthesis are critical probabilities. 

3. Nonparametric Modelling 

The modelling of our series turns towards a nonlinear process but its form is 
unknown. Faced with this situation, we use the nonparametric version of the 
conditional heteroscedastic nonlinear autoregressive process based on local linear 
kernel estimator (Tschernig and Yang, 2000). Any nonparametric model fitting 
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requires the selection of the relevant Markov coefficients and bandwidths. For 
that we use the nonparametric Corrected Asymptotic Final Prediction Error 
(CAFPE) introduced by Yang and Tschernig (1998): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝐴̂𝐴 + 2𝐾𝐾(0)𝑘𝑘(𝑛𝑛 − 𝑘𝑘 + 1)−1ℎ𝑜𝑜𝑜𝑜𝑜𝑜−𝑘𝑘 𝐵𝐵�� �1 +
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where the constant c is determined such that 𝑛̇𝑛 observations are excluded and  𝑛̇𝑛  
denotes the next larger integer of )1(05.0 +− kn . 

In all cases, the maximum number of lags is restricted to be four and the 
largest lag to be considered is eight. However, the idea introduced by Tjostheim 
and Auestad (1994) is to choose the Markov coefficients with respect to their 
contribution to this reduction. Thus, a bandwidth must be specified for each 
computation of the CAFPE. This can be done either by estimating the optimal 
bandwidth opth  or by conducting a grid search. To compute the residuals and the 
density that are used to estimate the expected variance of the conditional mean, 
we use a Silverman’s bandwidth (Silverman, 1986, eq. (4.14), p. 86). Moreover, 
the grid search procedure for determining the optimal bandwidth is used for all 
CAFPE where the grid covers the interval ][ SS hh 2,2,0  in 24 steps and in order to 
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estimate the Orange stock exchange series, we use the Gaussian kernel (Chikhi 
and Diebolt, 2010). 

Table 6 reports the results of the identification of the Orange stock exchange 
return process. It contains selected number of lags, values of the criterion, 
estimated optimal bandwidth, and estimated variance of the white noise. 
According the test results, estimated criterion is equal to 0.00051 and selected 
Markov coefficients are: 1, 3, 5 and 8. We notice that the residuals (Figure 3-A) 
are characterized by asymmetric and leptokurtic distribution (Figure 3-B and Table 
6). 

Table 6. Nonparametric specification and estimation of conditional mean using 
the local linear estimator 

Nonparametric lag selection Nonparametric estimation of 
conditional mean 

Lag selection 1, 3, 5, 8 
The user-specified 
bandwidth 

0.0231 

Optimal bandwidth hn 0.0231 
The estimated criterion 
CAFPE  

0.00051 

Associated criterion 
value CAFPE  

0.00044 
Estimated error 
variance 

0.000463 

Estimated variance of 
white noise 2ˆεσ  

0.000463 
Estimated conditional 
error variance 

0.00039 

Skewness Kurtosis Jarque-Bera ARCH(1) 

0.457 12.012 
15209.64 
(0.0000) 

(0.0000) 

Notes: The numbers in the upper part of the table are selected number of lags, values of 
the criterion, estimated optimal bandwidth, and estimated variance of the white noise. 
The numbers in the bottom part of the table are descriptive analysis and ARCH-LM 
statistic of NAR residuals (the null hypothesis H0: there is no difference between our 
distribution and a normal distribution and there is no ARCH effect in the return series). 
The numbers in the parenthesis are critical probabilities. 
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Figure 3. Nonparametric NAR residual using lags 3 and 8 & Kernel estimator of 
residuals’ density 

Table 7 clearly rejects the white noise hypothesis indicating that these 
residuals could present a nonlinear dependence structure as the BDS statistics 
lead us to rejection of i.i.d hypothesis for all embedding dimensions. However, the 
residuals still can be modelled using the ARCH models (Table 6) because the 
presence of an ARCH effect is confirmed by the result of the ARCH-LM test on the 
residuals ( =2nR 13.904 )1(2χ> ). Consequently, we identify and estimate the 
conditional volatility by the kernel methodology. 

Table 7. BDS test on NAR and NAR-ARCH residuals 

m NAR residual 
BDS statistics m NAR-ARCH residual 

BDS statistics 
2 10.243 2 0.114 
3 15.574 3 0.741 
4 21.547 4 0.015 
5 28.279 5 1.247 
6 39.412 6 1.452 
7 45.254 7 1.694 
8 50.247 8 1.781 
9 57.791 2 0.114 

10 62.432 3 0.741 
Notes: The numbers in the table are BDS statistics on NAR and NAR-ARCH residuals (the 
null hypothesis H0: Returns are Independent and Identically Distributed (i.i.d)) that are 
calculated by the fraction of pair’s method of epsilon with value of 0.7. 

(A): Nonparametric NAR residual using lags 3 & 8 (B): Kernel estimator of residuals’ density 
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Table 8 presents estimation results for identification of conditional volatility. 
As in table 6, we display estimates for lag selections, criterion values, optinal 
bandwidth estimation, and white noise variance estimation. The estimated 
criterion is equal to 0.0000014 and selected Markov coefficients are: 2, 3, 7 and 8. 
We can easily notice that the nonparametric NAR-ARCH residuals (Figure 4-A) are 
a white noise and have no serial correlation (Table 7). In addition, there are signs 
of nonlinearity (Figure 4-B) where the series has an asymmetric dynamic 
behaviour. These nonlinear dependencies of conditional mean and conditional 
variance can reproduce effects of transaction costs variable and heterogeneous 
expectations of agents on the stock market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Nonparametric NAR-ARCH residuals using lags 3 and 7 & Conditional 
mean and variance functions 
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Table 8. Nonparametric specification and estimation of conditional volatility using 
the local linear estimator 

Nonparametric lag selection Nonparametric estimation of 
conditional volatility 

Lag selection 2,3,7,8 
The user-specified 
bandwidth 

0.0214 

Optimal bandwidth hn 0.0214 
The estimated criterion 
CAFPE  

0.0000014 

Associated criterion 
value CAFPE  

0.0000012 
Estimated error 
variance 

0.0000012 

Estimated variance of 
white noise 2ˆεσ  

0.0000012 
Estimated conditional 
error variance 

0.0000010 

Notes: The table shows selected number of lags, values of the criterion, estimated optimal 
bandwidth, and estimated variance of the white noise. 

 To compare forecasting performance of nonparametric NAR-ARCH, MA-
APARCH, and the random walk models, we use the root mean square error 
criterion (RMSE). For the in-sample predictions, the estimation of the 
nonparametric NAR-ARCH model is only based on 4418 observations, in order to 
make further comparisons with the predictions of the 30 remaining observations.   

Table 9 contains statistical comparisons of forecasts provided by mentioned 
three models. We find that both nonparametric NAR-ARCH and MA-APARCH 
models outperform the random walk model in all forecasting time horizons. The  
NAR-ARCH model tend to have better predictive results comparing to MA-
APARCH one in 1, 2, 30, and 90 days for in-of-sample predictions, as well as in  1, 
2, 15, and 90 days for out-of-sample predictions. MA-APARCH outperforms NAR-
ARCH only in 15 days for in-of-sample predictions and in 30 days for out-of-
sample predictions. Morover, values of RMSE criterion increase with the 
prediction horizons because all the models take into account only the short-term 
memory of the series, and therefore completely neglect the long-term memory. In 
other words, the predictive power for Orange stock returns doesn’t reflect the 
possibility to forecast up to the longest horizon. 
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Table 11. Comparison of predictive qualities using the root mean absolute error 
criterion (RMSE) 

Prediction Horizon 

Bandwidth  
used for 

nonparametric 
prediction 

Nonparametric 
NAR-ARCH 

MA(2)-
APARCH 

Random 
Walk 

in-sample 
predictions 

1 0.0231 0.00014 0.00028 0.0198 
2 0.0230 0.00309 0.00314 0.0219 

15 0.0226 0.00531 0.00529 0.0860 
30 0.0221 0.00573 0.00607 0.1115 
90 0.0215 0.00820 0.00891 0.1784 

out-of-
sample 

predictions 

1 0.0471 0.00044 0.00095 0.0240 
2 0.0470 0.00298 0.00317 0.0339 

15 0.0466 0.00609 0.00618 0.0930 
30 0.0461 0.00650 0.00646 0.1317 
90 0.0458 0.00902 0.00911 0.1947 

Notes: The numbers in the table are the root mean absolute error criterion (RMSE). 

Given that the Orange returns are characterized by the presence of nonlinear 
dynamics in the equations of the mean and conditional variance and by 
heteroscedasticity, the nonparametric modelling allows computation of better 
short-term forecasts than the random walk model. This model is clearly superior 
to random walk model. Indeed, the returns are short-term predictable: the 
absence of a long memory indicates that agents can only anticipate their returns 
to a short time horizon. Indeed, the observed movements appear as the result of 
transitory exogenous shocks.   

4. Concluding Remarks 

This paper examines predictability of stock share prices using nonparametric 
nonlinear autoregressive model with nonparametric ARCH errors. This study is 
limited only to stock Orange price indices. In this context, we implement local 
linear kernel method to estimate our nonparametric model, taking into account 
the nonlinear phenomenon in the conditional mean and variance. According to 
our analysis, we document that informational shocks have transitory 
consequences on stock returns and volatility. Specifically, forecasts of nonlinear 
parametric and nonparametric models show a clear improvement comparing to 
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the random walk model at all horizons. Especially, in nonparametric NAR-ARCH 
model outperforms random walk model in all 1-90 days in- and out-sample 
predictions. In addition, estimations of root mean square error suggest that 
forecasts generated by nonparametric approaches tend to have relatively close 
(similar) estimates with more accurance. 

The empirical method used for the determination of Markov coefficients is not 
based on any validation theorem. Generally, existing results admit implicitly that the 
observed process is k-Markovian. This hypothesis is difficult to verify in practice. 
Despite this difficulty, the nonparametric methods are still a powerful tool for 
studying time series. If the structure of nonlinear parametric process is unknown, 
we could, through the nonparametric modelling, try to reduce our ignorance and 
minimize the random effects in the dynamic systems. Our results provide 
evidence for inefficiency of Paris stock market in a weak level with limited 
rationality, which emerges arbitrage opportunities. 
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