
RESEARCH Open Access

Simulation of greenhouse energy use: an
application of energy informatics
Richard T. Watson1* , Marie-Claude Boudreau1 and Marc W. van Iersel2

* Correspondence: rwatson@terry.
uga.edu
1Department of Management
Information Systems, University of
Georgia, Athens, GA 30602-1575,
USA
Full list of author information is
available at the end of the article

Abstract

Greenhouse agriculture is a highly efficient method of food production that can greatly
benefit from supplemental electric lighting. The needed electricity associated with
greenhouse lighting amounts to about 30% of its operating costs. As the light level
of LED lighting can be easily controlled, it offers the potential to reduce energy costs
by precisely matching the amount of supplemental light provided to current weather
conditions and a crop’s light needs. Three simulations of LED lighting for growing
lettuce in the south-east of the US using historical solar radiation data for the area
were conducted. Lighting costs can be potentially reduced by approximately 60%.

Keywords: Controlled-environment agriculture, Horticulture, Supplemental lighting,
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Background
In January 2007, the first two authors of this article started a project to link informa-

tion systems (IS) scholarship to ecological sustainability. They were concerned that IS

scholars were paying minimal attention to global warming and that they did not

consider it a problem worthy of their attention. While leading scientists (Holdren

2009) were calling for their peers to spend 10% of their time solving the existential

threat resulting from the burning of fossil fuels, IS scholars were generally ignoring the

issue. Consequently, this important problem has remained a marginal IS research topic

(Gholami et al. 2016; Malhotra et al. 2013). Since 2010, we have advocated for academic

leaders (journal editors in particular) to embrace environmental sustainability as a core

principle in the research they publish (Watson et al. 2010); the emergence of this journal

constitutes a critical step in engaging more scholars in solving the problem of our time.

The project to engage IS scholars in sustainability scholarship resulted in a proposal to

create Energy Informatics as a new field of IS research (Watson et al. 2010) (Watson and

Boudreau 2011). Leveraging the Energy Informatics framework, we produced a case study

on how one of the world’s major logistic companies was applying the principles to reduce

energy consumption and advance sustainability (Watson and Boudreau 2011). Energy

efficiency, the invisible fuel, reduces the demand for fossil fuels and thus contributes to

carbon emission reduction.

The Energy Informatics framework identifies the central elements of an energy supply

and demand system, including the key stakeholders, the three major eco-goals, and the

major social forces influencing an energy production/consumption system. The framework
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© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Watson et al. Energy Informatics  (2018) 1:1 
https://doi.org/10.1007/s42162-018-0005-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s42162-018-0005-7&domain=pdf
http://orcid.org/0000-0003-0664-8337
mailto:rwatson@terry.uga.edu
mailto:rwatson@terry.uga.edu
http://creativecommons.org/licenses/by/4.0/


directs attention to flow networks, sensor networks, and sensitized objects as these are the

source and destination of the necessary data inputs and outputs to advance energy efficiency

through the use of information systems. The framework arose from reviewing many energy

production/consumption systems, such as traffic congestion management and building

energy management.

The principal observation is that economies consist of flow networks (e.g., cars, water,

people, packages, containers) that consume energy. The management of the energy con-

sumed by such flows requires sensor networks to provide digital data streams reporting on

the current status of the flow network so that high quality decisions can be made about the

status of sensitized objects that can control the flow network. Actions might be as simple as

turning off a valve supplying hot air to a work space. They may also be remotely controlled,

such as in the management of hundreds of traffic lights to reduce city traffic congestion.

The original Energy Informatics framework has proved robust because it identifies

the main components of an energy flow network and the means of controlling them. It

highlights the central role of an information system, linking the interdependencies

between supply and demand and the major components (i.e., flow networks, sensor

networks, and sensitized objects).

The Energy Informatics framework has been applied to multiple domains, such as

road pricing, farming, logistics, bicycle sharing, and others. Recently, we have applied

this framework to another major existential problem: food security.

Food security
Food security is a critical problem that demands the attention of IS scholars, as well as

horticulturists, agricultural scientists, and others concerned with food production. Over

the next 30 years, the world’s population is predicted to grow by up to 34% and

urbanization will increase by around 20%. To feed this wealthier and larger population,

food production must increase by an estimated 70% (Food and Agriculture Organization

of the United Nations 2009). Achieving food security by minimizing variations in supply

and adjusting to the growth in food demand presents many challenges that will likely

require a major adjustment in current agricultural practices (Magnin 2016). Food security

could be enhanced by reducing personal meat consumption and shifting to a predominantly

vegetarian diet, but this would require significant behavioral changes to well-established

customs and practices. Our focus in this research is on modifying agricultural practices

rather than promoting behavioral change.

A solution

Controlled-environment agriculture (CEA), such as indoor farms and greenhouses, is a

key path to increasing food production. CEA can produce up to 20 times as much

high-end, pesticide-free produce as a similar-size plot of soil but requires electric lighting

to do so (Science Illustrated 2011). Such facilities will be necessary to meet the future

demand for quality fruits and vegetables, particularly in China with its rapidly growing

and large middle class (Science Illustrated 2011).

In 2016, the CEA market was dominated by Europe, Middle East, and Africa (EMEA),

following by the Americas, and Asia Pacific, with percentage shares and values of 62%,

23%, and 15% of a market valued at USD 20.25 billion. The Netherlands, Spain, and Italy
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dominate EMEA production; in the Americas, horticulture is mainly in North America;

and China has been growing rapidly with more than one million greenhouses.1

The smart greenhouse is emerging as a solution, offering various collections of integrated

technologies in a greenhouse, to improve the productivity of CEA. The smart greenhouse

vision is based on sensors, actuators, and monitoring and control system that can optimize

plant growth and quality and automate the growing process. This market was valued at

approximately USD 680.3 million in 2016. With a short-term compound annual growth rate

of around 14.12%, it is expected to reach approximately USD 1.3 billion by 2022.2 At this

stage, the smart greenhouse market is about 3% of the world market.

The greenhouse industry’s current practices can require considerable energy to power

electric lighting to maintain plant growth on overcast days, so as to meet production

schedules. Electricity for lighting can make up to 30% of the costs for greenhouses (van

Iersel MW, Gianino D: An adaptive control approach for LED lights can reduce the en-

ergy costs of supplemental lighting in greenhouses, Submitted). Currently, many commer-

cial greenhouses use high intensity discharge (HID) lights,3 which have high output, cover

wide areas, and emit high heat. These lights have timers or automated control systems

that use sensors to turn on all lights at full power when natural light levels drop below a

predetermined intensity, even when only a fraction of the light might be required to reach

a crop’s needs for growth. In the extreme, some growers might leave the lights on full

power for a substantial portion of the day (as most plants need between 12 to 18 h of light

per day, depending on the species). This approach to growing crops is inefficient, resulting

in energy waste, higher operational costs, and often unnecessary carbon emissions.

Prior research to reduce CAE electricity costs by making greenhouses smarter has pro-

duced a variety of ‘branded’ solutions. Intelligrow (Aaslyng et al. 2003; Markvart et al. 2007),

DynaLight (Kjaer et al. 2011, 2012) (Clausen et al. 2015), and DynaGrow (Sørensen et al.

2016) are successive developments of software for optimizing greenhouse production and

minimizing energy costs. DynaGrow, the most recent and advanced of cumulative research

in Danish greenhouses, applies multi-criteria methods to control a greenhouse’s climate.

The solution has been physically implemented through software and associated sensors and

actuators within a greenhouse and produces savings of 64% with LED lighting (Sørensen

et al. 2016), the concern of this article.

The study reported in this article differs in several ways. First it is a simulation rather

than a physical implementation. A key purpose is to identify the savings generated by

adaptive LED lighting and what form of software as a service (SaaS) might be economic-

ally viable. Simulation enables inexpensive consideration of alternatives. Second, there is a

single objective of minimizing electricity cost subject to ensuring that a crop receives

sufficient light each day to meet growth needs for on time contract delivery. This research,

like the Danish stream, is based on current knowledge of plant physiology.

Plant physiology

Plants grow by converting photons (sunshine or supplemental lighting), water, and CO2 to

sugars4 and oxygen. The environmental conditions and physiology of each plant determine

the rate of photosynthesis. For the purposes of this research, we can think of a plant using

photons to transport electrons. In the light reactions of photosynthesis, photons are

absorbed by photosynthetic pigments, and the energy is used to transport electrons. This
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electron transport then results in the production of chemicals required for the synthesis of

sugars. The electron transport rate (ETR) is a direct measure of the light reactions of photo-

synthesis in response to photosynthetic photon flux (PPF) (Fig. 1). ETR is the driving force

for photosynthesis and ultimately crop growth. Both ETR and PPF are measured in micro-

moles5 per square meter per second (μmol m− 2 s− 1 of electrons and photons, respectively).

The efficiency of the conversion of the energy of photons into electron transport varies by

plant species, but in general we can represent this relationship as a saturation curve of the

form ETR= a.(1-e(−b.PPF)), where a and b vary by species. The fitted saturation curve for

lettuce illustrates the nature of this relationship (Fig. 1). As the saturation curve shows,

conversion of photons into electron transport is most efficient at low levels of PPF, which is

an important consideration when electric lighting is used. Essentially, low levels of lighting

for long periods are more energy efficient than high levels for short periods. Furthermore,

supplemental light provided when sunlight levels are low will be used more efficiently than

supplemental light provided when sunlight levels are high.

A plant needs to transport a threshold number of moles of electrons per day to optimize

its growth. This is particularly important for commercial crops, which are usually grown

under contract with a scheduled harvesting date and defined delivery volume. Based on

experiments at the University of Georgia, it has been determined that lettuce, for example,

needs to transport approximately 3 mol m− 2 day− 1 of electrons. On a typical day, this rate

of electron transport requires approximately 18 mol of photons m− 2 day− 1. This is close

to the recommended daily light level for year-round production of high-quality lettuce of

17 mol m− 2 day− 1 (Both et al. 1994).

We can convert daily electron transport into a required level of photons per second,

as follows:

D = ETR in moles m− 2 day− 1 to maximize growth

Fig. 1 Electron transport rate (ETR) of lettuce as a function of the photosynthetic photon flux (PPF). Source:
Unpublished University of Georgia research

Watson et al. Energy Informatics  (2018) 1:1 Page 4 of 14



Tetr = threshold ETR in μmoles m− 2 s− 1 to achieve D

Tppf = threshold PPF in μmoles m− 2 s− 1 to achieve D

t = seconds of operation per day of the greenhouse

Tetr ¼ D � 106
t

Tppf ¼ 1
b

log
a

a−Tetr

� �

The innovation

Supplementary lighting typically lacks intelligence and can be left on continually during

the hours of operation, if not for an entire day. This means that energy can be wasted

by providing more photons than a crop needs to optimize its daily growth.

A recent development in the context of commercial greenhouses is the replacement of

HID lights with LED technology. LED technology has many advantages, such as smaller

size (and thus easier to mount) than its HID predecessor and it is more energy efficient.

More importantly, LEDs can be designed to produce light in the part of the spectrum that

drives photosynthesis (400–700 nm), without producing infra-red radiation (which is not

used for photosynthesis). LEDs are also fully dimmable, unlike HID lights, thus allowing

growers to precisely control how much supplemental light is provided. For a LED light,

the relationship between energy consumption and photons generated is essentially linear

(National Electrical Manufacturers Association 2015), and we so assume in this research.

Leveraging this kind of lighting, a local company, Phytosynthetix,6 collaborated with the

University of Georgia’s Horticultural Physiology Laboratory to develop an innovation that

could be transformative to the industry: adaptive LED lighting, which uses a built-in light

intensity sensor to determine how much supplemental lighting to provide when natural

lighting falls below a crop’s threshold needs (van Iersel MW, Gianino D: An adaptive

control approach for LED lights can reduce the energy costs of supplemental lighting in

greenhouses, Submitted). Adaptive lighting provides just enough light to assure optimal

crop growth and reduces electricity use compared to conventional control algorithms.

The amount of supplemental light to provide can be based on the crop’s physiological

ability to use that light efficiently (see Fig. 1). This is an important innovation in green-

house production as none of the available similar solutions take into consideration both

natural light levels and crop-specific light use efficiency.

Enhancing adaptive lighting by applying Energy Informatics

The value of adaptive LED lighting can be increased by the application of Energy Inform-

atics principles (Watson et al. 2010) to manage the lighting system to minimize electricity

costs while meeting schedule constraints. The CEA version of the Energy Informatics

framework (Fig. 2) incorporates all elements of an energy supply and demand system for

greenhouses. We have taken the basic Energy Informatics framework, the yellow section

of Fig. 2, and added details of the digital data streams (energy prices and solar radiation

forecasts) and databases (plant details and production schedule) necessary to control the

sensitized object (LED lighting). These four additional components illustrate how the core

Energy Informatics information system can be extended for CEA.
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Simulations
To understand the advantage of adaptive LED lighting, while leveraging the Energy

Informatics framework adapted to the context of CEA, we ran three simulations with

increasing levels of sophistication. The first simulation leverages LED adaptive lighting.

The second incorporates a daily decision, where the adaptive lights are turned off for the

day when the expected daily solar radiation exceeds the ETR that optimizes growth. As to

the third simulation, it leverages “within day” decision making, where the adaptive lights

are turned off when the target solar radiation for the day has been achieved. Note that

whereas Fig. 3 suggests an energy price forecast, we assumed a fixed energy cost for the

time being. Moreover, rather than solar radiation forecasts, we used historical solar

radiation data for a specific location and period. Last, for sake of simplicity in this first set

of simulations, we did not consider the cost of production schedule delays.

The simulations were based on a 5-year period of growing lettuce in Athens, Georgia,

with the following parameters:

D = 3 mol m− 2 day− 1

t = 20 h day− 1

a = 124.3 μmol m− 2 s− 1

b = .002737 m2 s μmol− 1

Electricity cost = USD .12/kWh (the rate charged by the local utility)

LED light = 600 W

LED light range is 0–200 μmoles m− 2 s− 1

Fig. 2 Energy Informatics framework
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We assumed 70% transmittance of the received solar radiation into the greenhouse.

We compared the results of all three simulations to a baseline scenario, which involved

non-adaptive LED lighting. This baseline scenario, along with the three simulations, are

further detailed next. The greenhouse lighting layout assumes the use of 1,200 600 W

LED lights per hectare, capable of providing a PPF of 200 μmoles m− 2 s− 1 with all

lights on at full power.

Baseline scenario: non-adaptive LED lighting

Based on a recent survey of growers,7 we assume a typical greenhouse uses supplemental

lighting for an average of 3.25 h per day (9 h in winter, 2 h in fall and spring, and 0 in

summer). The annual cost for this level of LED lighting is .12*3.25*365.25*600/1000 =

USD 85.47 per light per year. A one hectare greenhouse needs about 1200 lights, so the

cost would be USD 102,562 per year.

Simulation#1: Adaptive lighting

This scenario assumes that the lights can be dimmed to any PPF between 0 and 200

μmoles m− 2 s− 1, and the relationship between energy use and PPF is linear between 0

and 600 W. At its peak, adaptive lighting consumes the same energy as non-adaptive

lighting. We use these parameters for the simulation.

Using solar radiation data collected in 10-min intervals in Athens, Georgia in 2010–

2014, we simulate the use of adaptive lighting by computing Tppf for lettuce and setting

the lights to maintain the mix of natural and supplemental lighting at this level. As the

threshold for Tppf in this case is 149 μmoles m− 2 s− 1, the adaptive lights were set to

maintain this level. When there is sufficient natural light, the adaptive lights will consume

0 W and when there is complete darkness, they will consume 149/200*600 = 447 W.

Fig. 3 Average cost per light per day (USD) of adaptive lighting
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The cost of operating the adaptive lighting in 2010–2014 to grow lettuce for 20 h per

day is estimated to be USD 194.78 per light per year or for a one hectare greenhouse

USD 233,738 per year. As expected, the lights are costlier to operate in winter than in

summer (Fig. 3).

Simulation#2: daily decision making

We simulated a model that would inform the grower whether to turn the adaptive lights

off for the day when the forecast solar radiation for the day exceeds the total required to

achieve an ETR of D moles m− 2 day− 1. Such an approach requires minimal investment

and under a Software as a Service (SaaS) business model, the grower could be sent a text

message on the recommended status of the adaptive lighting early each day.

The cost of operating the adaptive lighting under daily decision making in 2010–2014

to grow lettuce with 20 h of light per day is estimated to be USD 86.92 per light per year

or for a one hectare greenhouse USD 104,302 per year, slightly above the baseline

scenario. As to be expected, on many days there is no need to turn on the lights (Fig. 4).

Simulation#3: within day decision making

A major shortcoming of a daily decision making model is that the forecasted radiation for

a day could be just below the threshold, but the lights are turned on for the entire day.

Ideally, once the target for the day has been achieved, the lights should be turned off for

the remainder of the day. We simulated such a model (Fig. 5), which shows that on some

days the lights come on, but only for a short period with a corresponding lower cost.

The cost of operating the adaptive lighting under this approach in 2010–2014 to

grow lettuce for 20 h per day is estimated to be USD 32.28 per light per year or for a

one hectare greenhouse USD 38,732 per year, about one third of the baseline scenario.

Fig. 4 Average cost per light per day (USD) of adaptive lighting with daily decision making
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Under a Software as a Service (SaaS) business model, the within day approach

requires that the grower invests in a lighting control system that can be controlled

remotely. The controller would receive periodically a message to set the status (on or

off ) of the lights in the greenhouse. Thus, some of the energy savings will be lost to the

operation and maintenance of a lighting control system, but we expect these to be

minor compared to the energy use of the lights themselves.

Execution

The simulations were written in R, and the code is in four modules (see Additional file 1).

The main module (simulation.R) loads modules to read the parameters for a simulation

(parameters.R) and prepares data for the simulation (prepare.R). Another module

(report.R) reports the results for each of the simulations discussed previously.

The simulations take advantage of R’s vector-oriented operations for operating on

data frames, and a typical run with 5 years of data takes a few seconds. In comparison,

an earlier loop-based version of the model took 10 or so minutes to run.

The simulations require two binary input files, coded in R’s feather format,8 which

are described in Appendix.

Return on investment
The findings of the analysis show that only within day decision making will result in a

reduction in total lighting cost compared to current manual practices (Table 1). Partial

solutions, while they might deliver light precisely to ensure optimum plant growth, are

likely to be subject to grower resistance because there is no cost advantage. Growers

can save around 60% of the current cost of lighting by retrofitting their current LED

lighting systems. Note that in the within day decision simulation, the lights are on half

the time of the current manual or timer practice, but the electricity saving is higher

Fig. 5 Average cost per light per day (USD) of adaptive lighting under within-day decision making

Watson et al. Energy Informatics  (2018) 1:1 Page 9 of 14



because the adaptive lighting generally does not operate the lights at full power. The

energy savings are similar in magnitude to those reported for DynaGrow (Sørensen

et al. 2016), however the two sites are at different latitudes, with Denmark in the mid

50s° and Athens, Georgia close to 34°, thus resulting in different light environments.

To compute the ROI, we conservatively estimate that the cost of equipping a green-

house with a single solar radiation sensor, control software, and connecting existing LED

lighting to the control software is USD 100 per light with a lifetime of 10 years, or USD

120,000 for a one-hectare greenhouse. The computed ROI is 68% for within day decision

making. If we triple the cost estimate to USD 300 per light, then the ROI is 14%. In effect,

anything below USD 300 per light for retrofitting a greenhouse is financially sound and

likely to provide additional benefits from exact contract fulfillment.

Although the prior simulations are based on a fixed energy cost of USD 0.12 per kWh,

we wrote the code so that it can also process a file of historical real-time electricity prices.

Such pricing is typically available only to large consumers (e.g., a factory or a university).

In this case, the within day simulation determines which time periods during the day are

the least expensive for operating the lights in order to meet the daily ETR goal.

Limitations
Solar radiation and electricity prices are dependent on local conditions. In this situation,

based on 5 years of solar radiation data measured at the University of Georgia, the average

solar radiation is 5.22 kWh m− 2 day− 1. The University is in the sunny south-east of the

US, and thus our results show the advantage of this additional solar energy. Also, the

region has some of the cheaper electricity in the US. The US average is USD .13 kWh,

with a range of USD .10 to .29 kWh. Georgia, at USD .125, is towards the lower end of

this range.9 If the simulations had been based on solar radiation in the north-east of the

US, for example, savings would be different because of less solar radiation, more required

supplemental lighting, and higher electricity prices. In essence, our results should be inter-

preted as being appropriate for a relatively sunny region with relatively cheap electricity.

Our simulation framework can easily be used to simulate different locations.

The main purpose of these simulations is to show the potential of using solar radiation

and electricity cost forecasts to reduce the cost of operating a greenhouse. However,

rather than forecasts, we have simulated the perfect information situation where electri-

city prices and solar radiation can be precisely predicted. As most greenhouses are too

small to presently avail themselves of real-time pricing, treating the price of electricity as

fixed is appropriate. Thus, in moving beyond perfect information, the focus needs to be

on solar radiation forecasting.

It can be argued that simulations represent a simplified reality. However, such simplicity

means that they can be readily explained to a grower, which in turn is likely to increase

the likelihood of adoption. The simple decision rules are very effective in reducing cost,

Table 1 Simulation summary

Model Cost per LED light per year (USD) Average hours of LED light per day

Current manual practice 85.47 3.25

Adaptive 194.78 11.2

Adaptive with daily decision 86.92 5.09

Adaptive within day decision 32.28 1.69
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and additional complexity is unlikely to be required or produce significant additional

savings. Furthermore, the second and third simulations can be easily implemented from a

central source using a SaaS model, which lowers the cost for adoption and maintenance.

Future research
As mentioned earlier, by using historical data, we assume perfect information. Thus, the

next step is to simulate the effects of solar radiation forecasts with varying degrees of

accuracy to determine the sensitivity of the findings to forecast precision. We speculate

that sensitivity will be low for two reasons: (1) the goal is to determine whether or not to

turn on adaptive lighting for a set period, such as 10 min; and (2) a multi-period forecast

for the remainder of day can be continually adjusted throughout the day.

The essential problem, whether to turn the lights on or off for a set period would

seem to be a simpler problem than trying to forecast the level of radiation for the same

period. Intelligent adaptive LED lighting provides the precision to ensure plants receive

the necessary photons to meet growth goals, provided the LED light is on. We plan to

build two forecasting models, one for the binary decision of LED light on or off and

the second to forecast radiation levels. Based on prior research, it would appear that a

neural network (Wollsen and Jørgensen 2015) with allowance for autocorrelation is

appropriate for radiation level forecasting, whereas logistic regression might be suitable

for the binary decision.

The goal is to deliver sufficient photons each day for a plant to reach its daily growth

needs. Throughout a day, the forecast system must continually adapt to meet this target.

As the forecast period becomes shorter, then adaption can be faster. Thus, one of the

issues is to simulate the precision of the forecasting system to the length of the decision

period (e.g., 5 versus 20 min). As we expect the computing cost of each forecast to be

quite small and the communication cost of the on/off decision to each light to also be

small, the selected time period might make little financial difference for an individual

grower given the gains achieved by efficient management of LED usage. Nevertheless,

these assumptions need to be validated.

Since natural light conditions vary greatly among locations, it will also be important

to run simulations for a range of regions, especially those where greenhouses most

commonly use supplemental light, like Canada, the Northern US, and Northwestern

Europe.

We need to elaborate the simulation model to embrace more decision parameters, such

as those considered in prior research (e.g., Clausen et al. 2015; Kjaer et al. 2011, 2012;

Mærsk-Møller and Jørgensen 2011; Markvart et al. 2007; Rytter et al. 2012; Sørensen et al.

2011; Sørensen et al. 2016), and apply photosynthesis theories that take account of light

wavelength and the capability of controlling the wavelength of LED lighting.

There is much to learn about LED lighting because it is a relatively recent introduction

to the greenhouse environment. It enables control over spectral power distribution,

optical intensity distribution, form factor, and active color tuning. It can be used, as in this

study, to tailor light to a specific crop to improve productivity by controlling precisely the

photons delivered to ensure threshold needs for growth are met. Other aspects of plant

growth such as height, bushiness, and color or nutritional content are potential areas for

research (Pattison 2017). This research simulates LED usage approaches to minimize

electricity cost by applying prior research on threshold curves. It assumes that if a plant
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receives sufficient photons, or the right amount of light, to meet daily growth needs, the

quality of the crop will be of commercial standard. Assessment of this assumption is a

topic for future research, and the power of simulation is to help identify opportunities for

fruitful research.

Conclusion
This initial study of the application of Energy Informatics to CEA illustrates the poten-

tial to considerably reduce the energy required to operate a greenhouse. Our plans are

to extend the research to cover other commercial crops (e.g., red leaf lettuce, spinach,

basil, tomatoes, and cucumbers) as well as ornamental species, including high-light

crops (roses, petunias, and marigolds) and low light crops (impatiens, begonia, and

hellebore). Moreover, we plan to consider four diverse regions of the continental US,

because solar radiation varies greatly across this region (i.e., from an average of 3.0 to

over 6.5 kWh m− 2 day− 1).10

This research shows the value of the Energy Informatics framework for addressing

practical problems. It helps scientists communicate with growers by focusing on the three

elements that are necessary for an information system to manage an energy flow. In the

case of CEA, engaging growers will be critical to adoption of information systems

augmented adaptive lighting. It also demonstrates the potential for using simulation to

explore the effects of energy management options.

The Lawrence Livermore National Laboratory publishes annually an infographic on

energy use in the U.S. The 2016 version estimates that about two thirds of the energy

generated is wasted.11 The application of Energy Informatics thinking to CEA illustrates

that in some areas of the economy, significant energy efficiency gains can be achieved

with simple solutions. We expect that CEA is not an exception and the launching of

Energy Informatics can potentially alert more scholars and practitioners to the synergis-

tic gains of integrating engineering advances, such as adaptive lighting, and information

systems to achieve higher levels of energy efficiency. Creating a sustainable society is

dependent on engineering and IS scholars combining minds and knowledge.
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Appendix
Data availability

electricity.feather

https://www.dropbox.com/s/dxvep9kglspy47n/electricity.feather?dl=0

A binary file containing a timestamp and electricity price in cents per kWh. Measure-

ments are hourly.

radiation10.feather

https://www.dropbox.com/s/ozvtrfudnymmug8/radiation10.feather?dl=0

A binary file containing a timestamp and incident solar radiation in Watts m− 2 s− 1.

Measurements are for every 10 min, and derived from a file of measurements made

every 2 min.

These files must be stored in an R project working directory along with the R modules.

The location of this working directory must be specified in the second line of parameter.R

Additional file

Additional file 1: R code. (TXT 6 kb)
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