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Abstract

We extend the main results of Aamri and El Moutawakil and Pant to the weakly
compatible or R-weakly commuting pair (T, f) of maps, where T is multivalued. As
applications, common fixed point theorems are obtained for new class of maps
called R-subcommuting maps in the setup of locally convex topological vector
spaces. We also study some results on best approximation via common fixed point
theorems.
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1. Introduction and preliminaries
The study of common fixed points of compatible mappings has emerged as an area of

vigorous research activity ever since Jungck [1] introduced the notion of compatible

mappings. The concept of compatible mappings was introduced as a generalization of

commuting mappings. In 1994, Pant [2] introduced the concept of R-weakly commut-

ing maps which is more general than compatibility of two maps. Several authors dis-

cussed various results on coincidence and common fixed point theorem for compatible

single-valued and multivalued maps. Among others Kaneko [3] extended well-known

result of Nadler [4] to multivalued f-contraction maps as follows.

Theorem 1.1. Let (X, d) be a complete metric space and f : X ® X be a continuous

map. Let T be closed bounded valued f-contraction map on X which commutes with f

and T(X) ⊆ f(X). Then, f and T have a coincidence point in X. Suppose moreover that

one of the following holds: either (i) fx ≠ f2x implies fx ∉ Tx or (ii) fx Î Tx implies lim

fnx exists. Then, f and T have a common fixed point.

It is pointed out in [5] that condition (i) in the above result implies condition (ii). A

great deal of work has been done on common fixed points for commutative, weakly

commutative, R-weakly commutative and compatible maps (see [1,2,6-11]). The follow-

ing more general common fixed point theorem for 1-subcommutative maps was

proved in [12].

Theorem 1.2. Let M be a nonempty τ-bounded, τ-sequentially complete and q-star-

shaped subset of a Hausdorff locally convex space (E, τ). Let T and I be selfmaps of M.

Suppose that T is I-nonexpansive, I(M) = M, Iq = q, I is nonexpansive and affine. If T

and I are 1-subcommutative maps, then T and I have a common fixed point provided
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one of the following conditions holds:

(i) M is τ-sequentially compact.

(ii) T is a compact map.

(iii) M is weakly compact in (E, τ), I is weakly continuous and I - T is demiclosed at

0.

(iv) M is weakly compact in an Opial space (E, τ) and I is weakly continuous.

In this article, we begin with a common fixed point result for a pair (T, f) of weakly

compatible as well as R-weakly commuting maps in the setting of a Hausdorff locally

convex space. This result provides a nonmetrizable analogue of Theorem 1.2 for

weakly compatible as well as R-weakly commutative pair of maps and improves main

results of Davies [13] and Jungck [14]. As applications, we establish some theorems

concerning common fixed points of a new class, R-subcommuting maps, which in turn

generalize and strengthen Theorem 1.2 and the results due to Dotson [15], Jungck and

Sessa [16], Lami Dozo [17] and Latif and Tweddle [18]. We also extend and unify

well-known results on fixed points and common fixed points of best approximation for

R-subcommutative maps.

Throughout this article, X will denote a complete Hausdorff locally convex topologi-

cal vector space unless stated otherwise, P the family of continuous seminorms gener-

ating the topology of X and K(X) the family of nonempty compact subsets of X. For

each p Î P and A, B Î K(X), we define

Dp(A,B) = max
{
sup
a∈A

inf
b∈B

[p(a − b)] , sup
b∈B

inf
a∈A

[p(a − b)]
}
.

Although p is only a seminorm, Dp is a Hausdorff metric on K(X) (cf. [19]). For any

u Î X, M ⊂ X and p Î P, let

dp(u,M) = inf
{
p(u − y) : y ∈ M

}

and let PM(u) = {y Î M : p(y - u) = dp(u, M), for all p Î P} be the set of best M-

approximations to u Î X. For any mapping f : M ® X, we define (cf. [6])

Cf
M(u) =

{
y ∈ M : fy ∈ PM(u)

}
and Df

M(u) = PM(u) ∩ Cf
M(u).

Let M be a nonempty subset of X. A mapping T : M ® K(M) is called multivalued

contraction if for each p Î P, there exists a constant kp, 0 < kp <1 such that for each

x, y Î M, we have

Dp(Tx, Ty) ≤ kpp(x − y).

The map T is called nonexpansive if for each x, y Î M and p Î P,

Dp(Tx, Ty) ≤ p(x − y).

Let f : M ® M be a single-valued map. Then, T : M ® K(M) is called an f-contrac-

tion if there exists kp, 0 <kp < 1 such that for each x, y Î M and for each p Î P, we

have
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Dp(Tx, Ty) ≤ kpp(fx − fy).

If we have the Lipschitz constant kp = 1 for all p Î P, then T is called an f-nonex-

pansive mapping. The pair (T, f) is said to be compatible if, whenever there is a

sequence {xn} in M satisfying lim
n→∞ f xn ∈ lim

n→∞ Txn (provided lim
n→∞ f xn exists in M and

lim
n→∞ Txn exists in K(M)), then lim

n→∞Dp(fTxn, Tf xn) = 0, for all p Î P. The pair (T, f)

is called R-weakly commuting, if for each x Î M, fTx Î K(M) and

Dp(fTx,Tfx) ≤ R dp(fx,Tx)

for some positive real R and for each p Î P. If R = 1, then the pair (T, f) is called

weakly commuting [10]. For M = X and T a single-valued, the definitions of compat-

ibility and R-weak commutativity reduce to those given by Jungck [1] and Pant [2],

respectively.

A point x in M is said to be a common fixed point (coincidence point) of f and T if x

= fx Î Tx. (fx Î Tx). We denote by F(f) and F(T) the set of fixed points of f and T,

respectively. A subset M of X is said to be q-starshaped if there exists a q Î M, called

the starcenter of M, such that for any x Î M and 0 ≤ a ≤ 1, aq + (1 - a) x Î M.

Shahzad [20] introduced the notion of R-subcommuting maps and proved that this

class of maps contains properly the class of commuting maps.

We extend this notion to the pair (T, f) of maps when T is not necessarily single-

valued. Suppose q Î F(I), M is q-starshaped with T(M) ⊂ M and f(M) ⊂ M. Then, f

and T are R-subcommutative if for each x Î M, fTx Î K(M) and there exists some

positive real number R such that

Dp(fTx,Tfx) ≤ R
h
dp(hTx + (1 − h)q, fx)

for each p Î P, h Î (0, 1) and x Î M.

Obviously, commutativity implies R-subcommutativity (which in turn implies R-weak

commutativity) but the converse does not hold as the following example shows.

Example 1.1. Consider M = [1, ∞) with the usual metric of reals. Define

Tx = {4x − 3}, fx = 2x2 − 1 for all x ∈ M. Then,

| Tfx − fTx |= 24(x − 1)2.

Further |Tfx - ftx| ≤ (R/h)|(hTx + (1 - h)q) - fx| for all x in M, h Î (0, 1) with R = 12

and q = 1 Î F(f). Thus, f and T are R-subcommuting but not commuting.

The mapping T from M into 2X (the family of all nonempty subsets of X) is said to

be demiclosed if for every net {xa} in M and any ya Î Txa such that xa converges

strongly to x and ya converges weakly to y, we have x Î M and y Î Tx. We say X

satisfies Opial’s condition if for each x Î X and every net {xa} converging weakly to x,

we have

lim inf p(xα − x) < lim inf p(xα − y) for any y �= x and p ∈ P.

The Hilbert spaces and Banach spaces having a weakly continuous duality mapping

satisfy Opial’s condition [17].
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2. Main results
We use a technique due to Latif and Tweddle [18], based on the images of the compo-

sition of a pair of maps, to obtain common fixed point results for a new class of maps

in the context of a metric space.

Theorem 2.1. Let X be a metric space and f : X ® X be a map. Suppose that T : X

® CB(X) is an f-contraction such that the pair (T, f) is weakly compatible (or R-weakly

commuting) and TX ⊂ fX such that fX is complete. Then, f and T have a common fixed

point provided one of the following conditions holds for all × Î X:

(i) fx ≠ f2x implies fx ∉ Tx

(ii) fx Î Tx implies

d(fx, f 2x) < max{d(fx,Tfx), d(f 2x,Tfx)}

whenever right-hand side is nonzero.

(iii) fx Î Tx implies

d(fx, f 2x) < max{d(Tx,Tfx), d(fx,Tfx), d(f 2x,Tfx), d(Tx, f2x)}

whenever right-hand side is nonzero.

(iv) fx Î Tx implies

d(x, fx) < max{d(x,Tx), d(fx,Tx)}

whenever the right-hand side is nonzero.

(v) fx Î Tx implies

d(fx, f 2x) < max{d(Tx,Tfx), [d(Tx, fx) + d(f 2x,Tfx)]/2,

[d(fx,Tfx) + d(f 2x,Tx)]/2}

whenever the right-hand side is nonzero.

Proof. Define Jz = Tf -1z for all z Î fX = G. Note that for each z Î G and x, yf-1z, the

f-contractiveness of T implies that

H(Tx,Ty) ≤ kd(fx, fy) = 0.

Hence, Jz = Ta for all a Î f-1z and J is multivalued map from G into CB(G). For any

w, z Î G, we have

H(Jw, Jz) = H(Tx,Ty)
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for any x Î f-1w and yf-1z. But T is an f-contraction so there is k Î (0, 1) such that

H(Jw, Jz) = H(Tx,Ty)

≤ kd(fx, fy) = kd(w, z)

which implies that J is a contraction. It follows from Nadler’s fixed point theorem [4]

that there exists z0 Î G such that z0 Î Jz0. Since Jz0 = Tx0 for any x0 Î f-1z0, so fx0 =

z0 Î Jz0 = Tx0.

Thus, by the weak compatibility of f and T,

fTx0 = Tf x0 and f 2x0 = f f x0 ∈ fTx0 = Tf x0. (2:1)

If the pair (T, f) is R-weakly commuting, then

H(fTx0,Tf x0) ≤ Rd(f x0,Tx0) = 0,

implies that (2.1) holds.

(i) As fx0 Î Tx0 so we get by (2.1)

f x0 = f 2x0 ∈ fTx0 = Tf x0.

That is, fx0 is the required common fixed point of f and T.

(ii) Suppose that fx0 ≠ f2x0. Then,

d(f x0, f 2x0) < max{d(f x0,Tf x0), d(f 2x0,Tf x0)}
= d(f x0,Tf x0) ≤ d(f x0, f 2x0)

which is a contradiction. Thus, fx0 = f2x0 and result follows from (2.1).

The conditions (iii) and (iv) imply (ii) (see [2] for details).

(v) Suppose that fx0 ≠ f2x0. Then,

d(f x0, f 2x0) < max
{
d(Tx0,Tf x0) , [d(f x0,Tx0) + d(f 2x0,Tf x0)]/2,

[d(f 2x0,Tx0) + d(f x0,Tf x0)]/2
}

≤ max
{
d(f x0, f 2x0), [d(f 2x0, f x0) + d(f x0, f 2x0)]/2

}
= d(f x0, f 2x0)

which is a contradiction. Hence, fx0 = f 2x0 and so fx0 is the required common fixed

point of f and T.

Theorem 2.2. Let X be a metric space and f : X ® X be a map. Suppose that T : X

® C(X) is an f-Lipschitz map such that the pair (T, f) is weakly compatible (or R-

weakly commuting) and cl(TX) ⊂ fX where fX is complete. If the pair (T, f) satisfies the

property (E. A), then f and T have a common fixed point provided one of the conditions

(i)-(v) in Theorem 2.1 holds.

Proof. As the pair (T, f) satisfies property (E. A), there exists a sequence {xn} such

that fxn ® t and t Î lim Txn for some t in X. Since t Î cl(TX) ⊂ fX so t = fx0 for

some x0 in X. Further as T is f-Lipschitz, we obtain

H(Txn,Tx0) ≤ kd(f xn, f x0).
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Taking limit as n ® ∞, we get lim Txn = Tx0 and hence fx0 Î Tx0. The weak com-

patibility or R-weak commutativity of the pair (T, f) implies that (2.1) holds. The result

now follows as in Theorem 1.2.

Theorem 2.3. Assume that X, f and T are as in Theorem 2.2 with the exception that

T being f-Lipschitz, T satisfies the following inequality;

H(Tx,Ty) < max
{
d(fx, fy) , [d(Tx, fx) + d(fy,Ty)]/2,

[d(fx,Ty) + d(fy,Tx)]/2
}
.

Then, conclusion of Theorem 2.2 holds.

Proof. As the pair (T, f) satisfies property (E. A), there exists a sequence {xn} such

that fxn ® t and t Î lim Txn for some t in X. Since t Î cl(TX) ⊂ fX so t = fx0 for

some x0 in X. We claim that fx0 Î Tx0. Assume that fx0 ∉ Tx0, then we obtain

H(Txn,Tx0) < max
{
d(f xn, f x0), [d(Txn, f xn) + d(f x0,Tx0)]/2,

[d(f xn,Tx0) + d(f x0,Txn)]/2
}
.

Letting n ® ∞ yields,

H(A,Tx0) < max
{
[d(A, f x0) + d(f x0,Tx0)]/2, [d(f x0,Tx0) + d(f x0,A)]/2

}
= max

{
d(f x0,Tx0)/2, d(f x0,Tx0)/2

}
= d(f x0,Tx0)/2.

As fx0 Î A, so d(fx0, Tx0) ≤ H(A, Tx0) and hence d(fx0, Tx0) < d(fx0, Tx0)/2 which is

a contradiction. Thus, fx0 Î Tx0. The weak compatibility or R-weak commutativity of

the pair (T, f) implies that (2.1) holds. The result now follows as in Theorem 1.2.

3. Applications
There are plenty of spaces which are not normable (see [[21], p. 113]). So it is natural

to consider fixed point and approximation results in the context of a locally convex

space. In this section, we show that the problem concerning the existence of common

fixed points of R-subcommuting maps on sets not necessarily convex or compact in

locally convex spaces has a solution.

Remark 3.1. Theorem 2.1 (i) holds in the setup of a Hausdorff complete locally con-

vex space X (the same proof holds with the exception that we take T : X ® K(X) and

apply Theorem 1 [22]instead of Nadler’s fixed point theorem to obtain a fixed point of

the multivalued contraction J).

Theorem 3.1. Let M be a weakly compact subset of a Hausdorff complete locally con-

vex space X which is starshaped with respect to q Î M. Let f : M ® M be an affine

weakly continuous map with f(M) = M, f(q) = q, T : M ® K(M) be an f-nonexpansive

map and the pair (T, f) is R-subcommutative. Suppose the following conditions hold:

(a) fx ≠ f2x implies lfx + (1 - l)q ∉ Tx, l ≥ 1 (cf. [23]),

(b) either f - T is demiclosed at 0 or X is an Opial’s space.

Then, f and T have a common fixed point.
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Proof. For each real number hn with 0 < hn <1 and hn ® 1 as n ® ∞, we define

Tn : M → K(M) by Tnx = hnTx + (1 − hn)q

Obviously each Tn is f-contraction map. Note that

Dp(Tnfx, f Tnx) ≤ hnDp(Tfx, fTx)

≤ hn(R/hn)dp(hnTx + (1 − hn)q, fx)

= Rdp(Tnx, fx),

which implies that (Tn, f) is R-weakly commutative pair for each n. Next, we show

that if fx ≠ f2x, then fx ∉ Tnx for all n ≥ 1. Suppose that fx Î Tnx = hnTx + (1 - hn)q.

Then, fx = hnu + (1 - hn)q for some u Î Tx which implies that (hn)
-1[fx - (1 - hn)q] Î

Tx and this contradicts hypothesis (a). By Remark 3.1 each pair (Tn, f) has a common

fixed point. That is, there is xn Î M such that

xn = f xn ∈ Tnxn for all n ≥ 1.

The set M is weakly compact, we can find a subsequence still denoted by {xn} such

that xn converges weakly to x0 Î M. Since f is weakly continuous so fxn converges

weakly to fx0. Since X is Hausdorff so x0 = fx0. As fxn Î Tnxn = hnTxn + (1 - hn)q so

there is some un Î Txn such that fxn = hnun + (1 - hn)q which implies that fxn - un =

((1 - hn)/hn)(q - fxn) converges to 0 as n ® ∞. Hence, by the demiclosedness of f - T

at 0, we get that 0 Î (f - T)x0. Thus, x0 = fx0 Î Tx0 as required.

In case X is an Opial’s space, Lemma 2.5 [24] or Lemma 3.2 [25] implies that f - T is

demiclosed at 0. The result now follows from the above argument.

If T : M ® M is single-valued in Theorems 3.1, we get the following analogue of

Theorem 6 [16] for a pair of maps which are not necessarily commutative in the set

up of Hausdorff locally convex spaces.

Theorem 3.2. Let M be a weakly compact subset of a Hausdorff complete locally con-

vex space X which is starshaped with respect to q Î M. Suppose f and T are R-subcom-

mutative selfmaps of M. Assume that f is continuous in the weak topology on M, f is

affine, f(M) = M, f(q) = q, T is f-nonexpansive map and fx ≠ f2x implies lfx + (1 - l)q
≠ Tx for × Î M and l ≥ 1. Then, there exists a Î M such that a = fa = Ta provided

that either (i) f - T is demiclosed at 0, or (ii) × satisfies Opial’s condition.

If f is the identity on M, then Theorem 3.2 (i) gives the conclusion of Theorem 2 of

Dotson [15] for Hausdorff locally convex spaces. A result similar to Theorem 3.2 (ii)

for closed balls of reflexive Banach spaces appeared in [8].

Finally, we consider an application of Theorem 3.2 to best approximation theory; our

result sets an analogue of Theorem 3.2 [6] for the maps which are not necessarily

commuting in the setup of locally convex spaces and extends the corresponding results

of Shahzad [20] to locally convex spaces.

Theorem 3.3. Let T and f be selfmaps of a Hausdorff complete locally convex space X

and M ⊂ X such that T(∂M) ⊂ M, where ∂M is the boundary of M in X. Let u Î F(T)

⋂ F(f), D = Df
M(u) be nonempty weakly compact and starshaped with respect to q Î F

(f), f is affine and weakly continuous, f(D) = D, and fx ≠ f2x implies lfx + (1 - l)q ≠ Tx

for × Î D and l ≥ 1. Suppose that T is f-nonexpansive on D ⋃ {u} and f is
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nonexpansive on PM(u) ⋃ {u}. If f and T are R-subcommutative on D, then T, f have a

common fixed point in PM(u) under each one of the conditions (i)-(ii) of Theorem 3.2.

Proof. Let y Î D. Then, fy Î D because f(D) = D and hence f(y) Î PM(u). By the

definition of D, y Î ∂M and since T(∂M) ⊂ M, it follows that Ty Î M. By f-nonexpan-

siveness of T we get

p(Ty − u) = p(Ty − Tu) ≤ p(fy − fu) for each p ∈ P.

As fu = u and fy Î PM(u) so for each p Î P, p(Ty - u) ≤ p(fy - u) = dp(u, M) and

hence Ty Î PM(u). Further as f is nonexpansive on PM(u) ⋃ {u}, so for every p Î P, we

obtain

p(fTy − u) = p(fTy − fu) ≤ p(Ty − u) = p(Ty − Tu) ≤ p(fy − fu)

= p(fy − u) = dp(u, M).

Thus, fTy Î PM(u) and hence Ty ∈ Cf
M(u). Consequently, Ty Î D and so T, f : D ®

D satisfy the hypotheses of Theorem 3.2. Thus, there exists a Î PM(u) such that a = fa

= Ta.

Remark 3.2. (i) Theorem 3.2 extends Theorem 1.2 to multivalued f-nonexpansive

map T where the pair (T, f) is assumed to be R-subcommutative. Here we have also

relaxed the nonexpansiveness of the map f.

(ii) Theorem 3.3 extends Theorem 3.3 [12], which is itself a generalization of several

approximation results.

(iii) If f(PM(u)) ⊆ PM(u), then PM(u)Cf
M(u)and so Df

M(u) = PM(u) (cf. [1]). Thus,

Theorem 3.3 holds for D = PM(u). Hence, Theorem 3.1 [12], Theorem 7 [16], Theo-

rem 2.6 [26], Theorem 3 [27], Corollaries 3.1, 3.3, 3.4, 3.6 (i), 3.7 and 3.8 of[28]and

many other results are special cases of Theorem 3.3 (see also Remarks 3.2 [12]).
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