
Xie et al. Advances in Difference Equations  (2016) 2016:184 
DOI 10.1186/s13662-016-0892-5

R E S E A R C H Open Access

Permanence and global attractivity of a
nonautonomous modified Leslie-Gower
predator-prey model with Holling-type II
schemes and a prey refuge
Xiangdong Xie1*, Yalong Xue1, Jinhuang Chen2 and Tingting Li3

*Correspondence:
latexfzu@126.com
1Department of Mathematics,
Ningde Normal University, Ningde,
Fujian 352300, P.R. China
Full list of author information is
available at the end of the article

Abstract
A nonautonomous modified Leslie-Gower predator-prey model with Holling-type II
schemes and a prey refuge is studied in this paper. Persistent property and stability
property of the system are investigated. Some findings about the influence of prey
refuge are obtained.
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1 Introduction
Throughout this paper, for a bounded continuous function g defined on R, let gL and gM

be defined as

gL = inf
t∈R

g(t), gM = sup
t∈R

g(t).

During the last two decades, the study of dynamic behaviors of predator-prey system in-
corporating a prey refuge become one of the most important research topic, see [–]
and the references cited therein. In [], Yue proposed and studied the following modified
Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge:

ẋ(t) = x
(

r – bx –
a( – m)y

( – m)x + k

)
,

ẏ(t) = y
(

r –
ay

( – m)x + k

)
,

(.)

where x(t) and y(t) denote the densities of the predator and prey species at time t, respec-
tively, and all the coefficients are all positive constants,  ≤ m < . Such a topic as the global
stability property of the positive equilibrium was investigated.

Many authors [, , , , ] argued that with the biological and environmental change of
the circumstance, it is reasonable to propose and study the nonautonomous system, the
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success of [, , , , ] motivates us to propose the corresponding nonautonomous case
of system (.), i.e., the following system:

ẋ(t) = x
(

r(t) – b(t)x –
a(t)( – m(t))y

( – m(t))x + k(t)

)
,

ẏ(t) = y
(

r(t) –
a(t)y

( – m(t))x + k(t)

)
,

(.)

where x(t) and y(t) denote the densities of the predator and prey species at time t, respec-
tively; One could refer to [] for the biological meaning of the coefficients. Throughout
this paper, we assume that

(H) ri(t), ki(t), ai(t), i = , , m(t), b(t) are continuous and strictly positive functions,
which satisfy

min
{

rL
i , kL

i , aL
i , mL, bL


}

> ,

max
{

rM
i , kM

i , aM
i , mM, bM


}

< +∞.

We consider (.) together with the following initial conditions:

x() > , y() > . (.)

It is not difficult to see that solutions of (.)-(.) are well defined for all t ≥  and satisfy

x(t) > , y(t) >  for all t ≥ . (.)

The paper is arranged as follows: In Section , we obtain sufficient conditions which
guarantee the permanence of the system (.). In Section , we obtain sufficient conditions
which ensure the global attractivity of the system (.). In Section , an example together
with its numeric simulations illustrates the feasibility of the main results. We end this
paper by a brief discussion.

2 Permanence
Lemma . Let (x(t), y(t))T be any solution of system (.) with the initial conditions (.),
then

lim sup
t→+∞

x(t) ≤ rM


bL


def= M,

lim sup
t→+∞

y(t) ≤ rM
 (( – mL)M + kM

 )
aL



def= M.
(.)

Proof Let (x(t), y(t))T be any solution of system (.) with the initial conditions (.). From
the first equation of system (.), it follows that

ẋ(t) = x
(

r(t) – b(t)x –
a(t)( – m(t))y

( – m(t))x + k(t)

)

≤ x
(
rM

 – bL
 x

)
. (.)



Xie et al. Advances in Difference Equations  (2016) 2016:184 Page 3 of 11

Applying Lemma . in [] to (.), it immediately follows that

lim sup
t→+∞

x(t) ≤ rM


bL


def= M. (.)

For any positive constant ε >  small enough, it follows from (.) that there exists a T > 
such that

x(t) < M + ε for all t ≥ T. (.)

For t > T, (.) together with the second equation of system (.) leads to

ẏ(t) = y
(

r(t) –
a(t)y

( – m(t))x + k(t)

)

≤ y
(

rM
 –

aL


( – mL)(M + ε) + kM


y
)

. (.)

Applying Lemma . in [] to (.), it immediately follows that

lim sup
t→+∞

y(t) ≤ rM
 (( – mL)(M + ε) + kM

 )
aL


. (.)

Setting ε → , then

lim sup
t→+∞

y(t) ≤ rM
 (( – mL)M + kM

 )
aL



def= M. (.)
�

Lemma . Let (x(t), y(t))T be any solution of system (.) with the initial conditions (.),
assume that

rL
 >

aM
 ( – mL)M

kL


(.)

holds, then

lim inf
t→+∞ x(t) ≥ rL

 kL
 – aM

 ( – mL)M

kL
 bM



def= m, (.)

lim inf
t→+∞ y(t) ≥ rL

 (( – mM)m + kL
 )

aM


def= m. (.)

Proof Condition (.) implies that one could choose ε >  small enough such that

rL
 >

aM
 ( – mL)(M + ε)

kL


(.)

holds. For this ε, it follows from (.) that there exists a T > T such that

y(t) < M + ε for all t ≥ T. (.)
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Let (x(t), y(t))T be any solution of system (.) with the initial conditions (.). For t > T,
(.) together with the first equation of system (.) leads to

ẋ(t) = x
(

r(t) – b(t)x –
a(t)( – m(t))y

( – m(t))x + k(t)

)

≥ x
(

rL
 –

aM
 ( – mL)(M – ε)

kL


– bM
 x

)
. (.)

Applying Lemma . in [] to (.), it immediately follows that

lim inf
t→+∞ x(t) ≥

rL
 – aM

 (–mL)(M–ε)
kL



bM


. (.)

Setting ε → , then

lim inf
t→+∞ x(t) ≥ rL

 kL
 – aM

 ( – mL)M

kL
 bM



def= m. (.)

Let ε >  be any positive constant small enough such that ε < 
 m. It then follows from

(.) that there exists a T > T, such that

x(t) > m – ε for all t ≥ T. (.)

From the second equation of system (.), it follows that

ẏ(t) = y
(

r(t) –
a(t)y

( – m(t))x + k(t)

)

≥ y(t)
[

rL
 –

aM
 y(t)

( – mM)(m – ε) + kL


]
. (.)

Applying Lemma . in [] to (.), it immediately follows that

lim inf
t→+∞ y(t) ≥ rL

 (( – mM)(m – ε) + kL
 )

aM


. (.)

Setting ε → , then

lim inf
t→+∞ y(t) ≥ rL

 (( – mM)m + kL
 )

aM


def= m. (.)
�

As a direct corollary of Lemma . and ., we have the following.

Theorem . Assume that (.) holds, then system (.)-(.) is permanent.
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3 Global attractivity
Before we state the main result of this section, we introduce some notations. Set

�(m) def=
((

 – m(t)
)
m + k(t)

),

�(m) def=
((

 – m(t)
)
m + k(t)

), (.)

�(M) def=
((

 – m(t)
)
M + k(t)

),

and

�(t) def= b(t) –
a(t)( – m(t))M

�(m)
–

a(t)( – m(t))M

�(m)
,

�(t) def=
a(t)k(t)
�(M)

+
a(t)( – m(t))m

�(M)
(.)

–
a(t)( – m(t))k(t)

�(m)
–

a(t)( – m(t))M

�(m)
.

Theorem . Assume that all the conditions of Theorem . hold, assume further that

lim inf
t→+∞

{
�(t),�(t)

}
> , (.)

then for any positive solutions (x(t), y(t))T and (x(t), y(t))T of system (.), one has

lim
t→+∞

(∣∣x(t) – x(t)
∣∣ +

∣∣y(t) – y(t)
∣∣) = .

Proof Condition (.) implies that there exists a small enough positive constant ε (without
loss of generality, we may assume that ε < 

 {m, m}) such that

�(ε, t) = b(t) –
a(t)( – m(t))(M + ε)

�(mε
)

–
a(t)( – m(t))(M + ε)

�(mε
)

≥ ε,

(.)

�(ε, t) =
a(t)k(t)
�(Mε

 )
+

a(t)( – m(t))(m – ε)
�(Mε

 )

–
a(t)( – m(t))k(t)

�(mε
)

–
a(t)( – m(t))(M + ε)

�(mε
)

≥ ε,

where

�
(
mε


)

=
((

 – m(t)
)
(m – ε) + k(t)

),

�
(
mε


)

=
((

 – m(t)
)
(m – ε) + k(t)

), (.)

�
(
Mε


)

=
((

 – m(t)
)
(M + ε) + k(t)

).

For two arbitrary positive solutions (x(t), y(t))T and (x(t), y(t))T of system (.), for the
above ε > , it then follows from (.), (.), and (.) that there exists a T > T, such
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that for all t ≥ T ,

x(t), x(t) < M + ε, y(t), y(t) < M + ε,

x(t), x(t) > m – ε, y(t), y(t) > m – ε.
(.)

Set

�
(
x(t), x(t)

)
=

((
 – m(t)

)
x(t) + k(t)

)((
 – m(t)

)
x(t) + k(t)

)
,

�
(
x(t), x(t)

)
=

((
 – m(t)

)
x(t) + k(t)

)((
 – m(t)

)
x(t) + k(t)

)
.

(.)

Now we let

V(t) =
∣∣ln x(t) – ln x(t)

∣∣, (.)

V(t) =
∣∣ln y(t) – ln y(t)

∣∣. (.)

Then for t > T , we have

D+V(t)

≤ sgn
(
x(t) – x(t)

)(
–b(t)x(t) –

a(t)( – m(t))y(t)
( – m(t))x(t) + k(t)

+ b(t)x(t) +
a(t)( – m(t))y(t)

( – m(t))x(t) + k(t)

)

≤ –b(t)
∣∣x(t) – x(t)

∣∣
+ a(t)

(
 – m(t)

)∣∣∣∣ y(t)
( – m(t))x(t) + k(t)

–
y(t)

( – m(t))x(t) + k(t)

∣∣∣∣
= –b(t)

∣∣x(t) – x(t)
∣∣ +

a(t)( – m(t))
�(x(t), x(t))

× ∣∣y(t)
((

 – m(t)
)
x(t) + k(t)

)
– y(t)

((
 – m(t)

)
x(t) + k(t)

)∣∣
= –b(t)

∣∣x(t) – x(t)
∣∣ +

a(t)( – m(t))k(t)
�(x(t), x(t))

∣∣y(t) – y(t)
∣∣

+
a(t)( – m(t))

�(x(t), x(t))
∣∣y(t)x(t) – y(t)x(t)

∣∣

= –b(t)
∣∣x(t) – x(t)

∣∣ +
a(t)( – m(t))k(t)

�(x(t), x(t))
∣∣y(t) – y(t)

∣∣

+
a(t)( – m(t))

�(x(t), x(t))
∣∣y(t)x(t) – y(t)x(t) + y(t)x(t) – y(t)x(t)

∣∣

= –b(t)
∣∣x(t) – x(t)

∣∣ +
a(t)( – m(t))k(t)

�(x(t), x(t))
∣∣y(t) – y(t)

∣∣

+
a(t)( – m(t))y(t)

�(x(t), x(t))
∣∣x(t) – x(t)

∣∣

+
a(t)( – m(t))x(t)

�(x(t), x(t))
∣∣y(t) – y(t)

∣∣

≤ –b(t)
∣∣x(t) – x(t)

∣∣ +
a(t)( – m(t))k(t)

�(mε
)

∣∣y(t) – y(t)
∣∣
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+
a(t)( – m(t))(M + ε)

�(mε
)

∣∣x(t) – x(t)
∣∣

+
a(t)( – m(t))(M + ε)

�(mε
)

∣∣y(t) – y(t)
∣∣

and

D+V(t)

= sgn
(
y(t) – y(t)

)(
–

a(t)y(t)
( – m(t))x(t) + k(t)

+
a(t)y(t)

( – m(t))x(t) + k(t)

)

=
sgn(y(t) – y(t))
�(x(t), x(t))

(
–a(t)y(t)

((
 – m(t)

)
x(t) + k(t)

)

+ a(t)y(t)
((

 – m(t)
)
x(t) + k(t)

))

=
sgn(y(t) – y(t))
�(x(t), x(t))

(
–a(t)k(t)

(
y(t) – y(t)

))

+
sgn(y(t) – y(t))
�(x(t), x(t))

(
–a(t)

(
 – m(t)

)(
y(t)x(t) – y(t)x(t)

))

≤ –a(t)k(t)
�(Mε

 )
∣∣y(t) – y(t)

∣∣ +
sgn(y(t) – y(t))
�(x(t), x(t))

× (
–a(t)

(
 – m(t)

)(
y(t)x(t) – y(t)x(t) + y(t)x(t) – y(t)x(t)

))

≤ –
a(t)k(t)
�(Mε

 )
∣∣y(t) – y(t)

∣∣ –
a(t)( – m(t))(m – ε)

�(Mε
 )

∣∣y(t) – y(t)
∣∣

+
a(t)( – m(t))(M + ε)

�(mε
)

∣∣x(t) – x(t)
∣∣.

Now let us set

V (t) = V(t) + V(t).

Then

D+V (t) ≤ –�(ε, t)
∣∣x(t) – x(t)

∣∣ – �(ε, t)
∣∣y(t) – y(t)

∣∣. (.)

Integrating both sides of (.) on the interval [T , t),

V (t) – V (T) ≤
∫ t

T

[
–�(ε, s)

∣∣x(s) – x(s)
∣∣ – �(ε, s)

∣∣y(s) – y(s)
∣∣]ds for t ≥ T . (.)

It follows from (.) that

V (t) + ε

∫ t

T

[∣∣x(s) – x(s)
∣∣ +

∣∣y(s) – y(s)
∣∣]ds ≤ V (T) for t ≥ T . (.)

Therefore, V (t) is bounded on [T , +∞) and also

∫ t

T

[∣∣x(s) – x(s)
∣∣ +

∣∣y(s) – y(s)
∣∣]ds < +∞. (.)
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By Lemma ., ., and Theorem ., |x(t) – x(t)|, |y(t) – y(t)| are bounded on [T , +∞).
On the other hand, it is easy to see that ẋ(t), ẏ(t), ẋ(t), and ẏ(t) are bounded for t ≥ T .
Therefore, |x(t) – x(t)|, |y(t) – y(t)| are uniformly continuous on [T , +∞). By the Barbălat
lemma [], one can conclude that

lim
t→+∞

[∣∣x(t) – x(t)
∣∣ +

∣∣y(t) – y(t)
∣∣] = .

This ends the proof of Theorem .. �

4 Numeric example
Now let us consider the following example.

Example .

ẋ(t) = x
(

 + cos t – x –
(. + . sin t)( – .)y

( – .)x + 

)
,

ẏ(t) = y
(

 –
y

( – .)x + 

)
.

(.)

Corresponding to system (.), one has

r(t) =  + cos t, b(t) = , a(t) = . + . sin t, m(t) = .,

k(t) = , r(t) = , a(t) = , k(t) = .

And so,

M =
rM



bL


= , M =
rM

 (( – mL)M + kM
 )

aL


=
(. ×  + )


= .. (.)

Consequently

rL
 –

aM
 ( – mL)M

kL


=  –
 × . × .


= . > . (.)

Equation (.) shows that (.) holds, thus, it follows from Theorem . that system (.)
is permanent, and numeric simulations (Figures , ) also support these findings.

Figure 1 Dynamic behavior of the first
component x(t) of the solution (x(t), y(t))
of system (4.1) with the initial condition (x(0),
y(0)) = (0.2, 5), (0.4, 1), (0.6, 3), and (4, 2),
respectively.
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Figure 2 Dynamic behavior of the second
component y(t) of the solution (x(t), y(t))
of system (4.1) with the initial condition (x(0),
y(0)) = (0.2, 5), (0.4, 1), (0.6, 3), and (4, 2),
respectively.

5 Discussion
In this paper, we propose and study a nonautonomous modified Leslie-Gower predator-
prey model with Holling-type II schemes and a prey refuge. We first obtain a set of suffi-
cient conditions which ensure the permanence of the system, after that, by constructing a
suitable Lyapunov function, we also investigate the stability property of the system.

Condition (.) implies that the prey refuge has a positive effect on the persistence prop-
erty of the system, indeed, with the increasing of prey refuge, the predators have difficulty
in catching the prey species, this directly increasing the survival possibility of the prey
species.

We mention here that in condition (H) we make the assumption that the intrinsic
growth rate of the prey species is a positive function, however, in some cases, the growth
rate may be negative (see [–]) and the references therein), we leave this for future
investigation.
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