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Abstract 

In Monte Carlo experiment with simulated data, we show that as a point forecast 
criterion, the Clark and West's (2006) unconditional test of mean squared 
prediction errors does not reflect the relative performance of a superior model 
over a relatively weaker one.  The simulation results show that even though the 
mean squared prediction errors of a constructed superior model is far below a 
weaker alternative, the Clark- West test does not reflect this in their test statistics. 
Therefore, studies that use this statistic in testing the predictive accuracy of 
alternative exchange rate models, stock return predictability, inflation forecasting, 
and unemployment forecasting should not weight too much on the magnitude of 
the statistically significant Clark-West tests statistics. 
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1. Introduction 

In economics and finance, one commonly used approach for model selection 
and model comparison is called point-forecast criterion where out-of-sample 
forecasts computed from ex-post data are utilized to compare the mean squared 
prediction errors (MSPEs) across competing models. For that purpose, Diebold 
and Mariano (1995) and West (1996) proposed a test of equal predictability of 
two non-nested models. Moreover, Clark and West (2006) introduced the test of 
equal predictability for nested models. In this approach, a quadratic loss function 
is defined as the square of the prediction error. Then, a loss-differential function is 
calculated as the difference between the loss function of the null model and the 
structural model.  The literature uses the point forecast criterion in testing the 
predictive accuracy of alternative exchange rate models 1 , stock return 
predictability2, inflation forecasting3, and unemployment forecasting4. 

The way the literature compares different models is through comparison of 
the out-of-sample forecasting power of each contestant model against a null that 
is whether a driftless random walk or random walk with a drift. This practice 
comes with a drawback: with this testing procedure, the relative performance of 
each theory-driven contestant model against a second alternative cannot be 
evaluated. Instead, one can only measure the predictive accuracy against the null.  
How about the relative magnitude of the estimated test statistics? How much 
information we can capture about relative model performance from having a 
statistically significant test statistics for Model A that is, say, two times bigger than 
a statistically significant test statistic for Model B? In this paper, we answer these 
questions by generating two series that have nonlinear relations by construction 
and compare the in-sample fits and out-of-sample forecasts of linear and non-
parametric models in light of the point forecast criterion. Then, we conduct 
Monte Carlo simulation to look at the finite sample properties of the Clark & West 
(CW test, henceforth) test statistics.  

Our findings show that the CW test fails to reflect the relative performance of 
the non-parametric estimations over the OLS model. Even though the non-
parametric model has the lowest MSPE, since we divide the mean loss differential 
function by sample estimate of the standard deviation of the loss-differential 

                                                           
1 Some recent examples are Engel et.al (2015), Nikolsko-Rzhevskyy and Prodan (2012), 
Wang and Wu (2012), Ferraro et.al (2015) amongst many others.  
2 Some recent applications are Dimpfl and Jank (2015), Wu and Lee (2015), Löffler (2013) 
and Sousa et.al (2016). 
3 Faust and Wright (2013) and Arai (2014) are some examples in this area.  
4 Gregory and Zhu (2014) and Hutter and Weber (2015) are some recent examples.  
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function, the CW test produces lower values for the NP model relative to that of 
OLS model. Hence, comparing each model against the null does not give an 
accurate picture of the relative performance of one alternative to another one. 

Section 2 summarizes the Diebold and Mariano (1995) and West (1996) and 
Clark and West (2006) approach to predictive accuracy testing. Section 3 
introduces simulation practice where two series that have a non-linear relation by 
construction are created to look at the in-sample and out-of-sample performance 
of OLS and non-parametric model. Section 4 looks at the limiting distribution of 
the CW test using a Monte-Carlo experiment and Section 5 concludes. 

2. Point Forecast Criterion 

In the point forecast criterion, the out-of-sample forecast performance of 
contestant models is evaluated by comparing MSPEs.  After defining a quadratic 
loss function 𝐿𝐿(. ) as the square of the forecast error, a loss differential function is 
defined as the difference between the loss function of the benchmark model  and 
the structural model. We can define the loss function for the benchmark model 𝑏𝑏, 
𝐿𝐿�𝑦𝑦𝑡𝑡𝑏𝑏�, and the structural model 𝑠𝑠𝑠𝑠, 𝐿𝐿(𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠 ), as in (1):   

𝐿𝐿(𝑦𝑦𝑡𝑡𝑏𝑏) = (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑏𝑏)2           

𝐿𝐿(𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠 ) = (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠 )2  

where 𝑦𝑦𝑡𝑡  is the actual series, 𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠  and 𝑦𝑦�𝑡𝑡𝑏𝑏  are the forecasts obtained from the 
structural model 𝑠𝑠𝑠𝑠 and the benchmark model 𝑏𝑏, respectively.  Then, the forecast 
accuracy testing is based on whether the population mean of the loss differential 
series 𝑑𝑑𝑡𝑡  is zero where:  

𝑑𝑑𝑡𝑡 = 𝐿𝐿(𝑦𝑦𝑡𝑡𝑏𝑏) − 𝐿𝐿(𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠 ) = (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑏𝑏)2 − (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠 )2  

In Diebold & Mariono (1995) and West (1996) (DMW test), under the null, 
the distribution of the sample mean of loss-differential E[dt] is asymptotically 
standard normal. However, Clark and West (2006) show that in cases where the 
alternative model nests the null model, DMW test is not suitable because for 
nested models since the alternative model has a large number of predictors than 
the null, it will produce a noise. Therefore, the sample MSPE difference is positive 
and an adjustment term is needed to center the DMW test statistics around zero. 
As for the adjustment, Clark and West (2006) suggest an adjusted MSPE for the 
alternative model that is adjusted downwards to have equal MSPEs under the 
null. Accordingly they propose the following adjusted loss-differential function: 

 

(1) 

(2) 
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𝑑𝑑𝑡𝑡 − 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡 = 𝐿𝐿�𝑦𝑦𝑡𝑡𝑏𝑏� − {𝐿𝐿(𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠 ) − 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡} 

= (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑏𝑏)2 − (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠 )2 + (𝑦𝑦�𝑡𝑡𝑏𝑏 − 𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠 )2 

If  𝑑̃𝑑 indicates the mean of the adjusted-loss differential function in (3),  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��𝑑̃𝑑�  is the variance of 𝑑̃𝑑, then the CW test takes the following form: 

𝐶𝐶𝐶𝐶 = 𝑑𝑑�

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� (𝑑𝑑�))1/2 

In testing the predictive accuracy of alternative exchange rate models and 
stock return predictability, the literature uses driftless random walk or random 
walk with drift as the benchmark (null) model. In the case when the null model is 
driftless random walk, out-of-sample forecast for the null takes the value of zero 
(𝑦𝑦�𝑡𝑡𝑏𝑏 = 0) and the mean of the adjusted loss differential function 𝑑̃𝑑  in Clark and 
West (2006) in (4) takes the following form: 

𝑑̃𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅 − [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 − 𝑃𝑃−1 ∑ (𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠 )2]𝑇𝑇
𝑡𝑡=𝑅𝑅+1   

where P is the number of out-of-sample forecasts, R refers to rolling regression 
window size, the  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅  is the mean squared prediction error for the null, and 
the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠  is the mean squared prediction error for the structural model.  On 
the other hand, when the null is random walk with drift, 𝑑̃𝑑  in Clark and West 
(2006) in (4) takes the following form: 

𝑑̃𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅 − [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 − 𝑃𝑃−1 ∑ (𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡𝑠𝑠𝑠𝑠 )2]𝑇𝑇
𝑡𝑡=𝑅𝑅+1    

where 𝑦𝑦�𝑡𝑡  is the estimate of draft at time t and in our paper, it is calculated as the 
average of y for observations 1 through t. 

3. Simulation Practice 

To better gauge the performance of the CW test statistics in (4), we 
implement simulation practice by artificially generating two series that have 
nonlinear relations by construction. For that purpose, we take the monthly actual 
real exchange rate5 data for Australia and call it 𝑥𝑥. The variable 𝑥𝑥  has a mean of 
27.5 and standard deviation of 16.2 with a sample size of 399.  Then, we generate 
time series data of y from x by using the following equation and call it the true 
model: 

𝑦𝑦 = 4 + 0.5𝑥𝑥 + 0.10𝑥𝑥2 + 𝑒𝑒 

 

                                                           
5 There is no specific reason to choose real exchange rate data; it could be any macro data.  

(3) 

(4) 

(5) 

(6) 

(7) 
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where e is a random draw from a normal distribution with a mean of zero and 
standard deviation of ten. Given that the true model in (7) is a non-linear one, we 
fit the data to a linear model and a nonparametric model to see which one does a 
better job both in-sample and out-of-sample. Hence, we have the following two 
competing models where the latter one is the correct model: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1: (𝑂𝑂𝑂𝑂𝑂𝑂)    𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝜀𝜀   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2: (𝑁𝑁𝑁𝑁)    𝑦𝑦 = 𝑔𝑔(𝑥𝑥) + 𝜀𝜀  

3.1. In-sample Comparison 

First, we estimate the fitted values based on Model 1 and Model 2. In Model 
1, we simply use the OLS method to get the predicted values. For Model 2, since 
the actual model is a non-linear one, we use the local linear kernel estimation as it 
has less bias compared to the local constant kernel estimation and show the 
results in Figure 1. 

 
Figure 1. In-sample Actual vs. Fitted Lines 

Figure 1 shows the (in-sample) real and fitted values for Model 1 (in black) 
and Model 2 (in blue). As expected, Model 2 outperforms Model 1 in in-sample fit. 
Accordingly, in-sample mean squared prediction errors (MSPEs) reflect the 
performance of each model. As expected, since Model 2 (NP Model) is correct, it 

(8) 
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has low MSPE than the OLS model. The results show that OLS model has an in-
sample MSPE of 946 while NP Model has 102. 

3.2. Out-of-sample Comparison 

We use the rolling regression method to get the one-month ahead out-of-
sample forecasts. There are 399 observations in the sample. We choose R=200 as 
the window size and generate out-of-sample forecasts from these models. In out-
of-sample forecasting, the OLS model (Model 1) produces MSPE of 560 while this 
number is just 117 for the NP model (Model 2). Hence, the results show that 
Model 2 does an excellent job in out-of-sample forecasting as well. Do these two 
models produce statistically significant different MSPEs at the population? Each 
model is tested against a benchmark model to answer this question. The 
benchmark model is whether driftless random walk or a random walk with a drift.  

It is worth mentioning that the point forecast approach is heavily used in the 
literature on exchange rate and stock return predictability. However, the 
benchmark models (driftless random walk or random walk with drift) are for the 
log of exchange rate series and the log of stock market prices in levels.  On the 
other hand, the literature mostly explains the exchange rate and stock price data 
in log-difference form (return series) due to stationarity of the data in levels.  If 𝑝𝑝𝑡𝑡  
is the price index in logged (whether exchange rate or stock price), a driftless 
random walk model for the price series would be:   𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡−1 + 𝜀𝜀𝑡𝑡   and random 
walk with a drift for the price series would be: 𝑝𝑝𝑡𝑡 = 𝛼𝛼 +  𝑝𝑝𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 .  Hence, if we 
define series in difference form, as shown below, the driftless random walk will be 
𝑦𝑦 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 = 𝜀𝜀𝑡𝑡 .   For the random walk with a drift null, the model will be  
𝑦𝑦 = 𝑝𝑝𝑡𝑡 −  𝑝𝑝𝑡𝑡−1 = 𝛼𝛼 + 𝜀𝜀𝑡𝑡 .   

Therefore, to compare models, we use the driftless random walk (Model 3) 
and random walk with a drift (Model 4) as two benchmarks (the null) and by using 
the CW test; we look at the out-of-sample forecast performances of Model 1 and 
Model 2.  

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝟏𝟏: (𝑂𝑂𝑂𝑂𝑂𝑂)    𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝜀𝜀 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝟐𝟐: (𝑁𝑁𝑁𝑁)    𝑦𝑦 = 𝑔𝑔(𝑥𝑥) + 𝜀𝜀 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝟑𝟑: (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅)    𝑦𝑦𝑡𝑡 = 𝜀𝜀 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝟒𝟒: (𝑅𝑅𝑅𝑅 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)    𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝜀𝜀 

 
Out-of-sample predictions for the driftless random walk (Model 3) for 

observations R+1, …… 399 are:     0,0,0 … … … … … … … … ,0.      Out-of-sample 
predictions for the random walk with a drift (Model 4) for observations R+1, 
……,399 are:    𝑦𝑦�𝑅𝑅 ,𝑦𝑦�𝑅𝑅+1, … … … … … … … … ,𝑦𝑦�399,    where 𝑦𝑦�𝑅𝑅  is the sample average 
for observations 1,…R.  Figure 2 below shows the plots of out-of-sample forecast 
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errors for Models 1 and 2.  As expected, the prediction errors for the NP model 
fluctuate around zero, while, for the OLS model, there are too many deviations.  

 

 
Figure 2. Out-of-sample Prediction Errors 

Also, we look at the plot of NP forecast errors against the x variables and 
show it in Figure 3.  The average out-of-sample forecast errors fluctuate around 
zero regardless of the level of x (except for a few observations). Therefore, the fit 
does not over smooth the data.  
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Figure 2. Residual Plots for NP Model 

As for out-of-sample forecast performance of each model, we need to 
compare the sample MSPE of each contestant model against the null.  Therefore, 
we use the CW test statistics for the predictive accuracy testing.  We show the 
test results in Table 1. The null models produce huge MSPEs (MSPE for the 
dritfless random walk is 42,827 and is 14,065 for the random walk with a drift 
null). Therefore, we expect the CW test statistics to produce statistically 
significant positive values. 

The results in Table 1 indicate that while MSPE for the NP estimation is far 
below the OLS, the magnitude of the CW test statistics fails to show the relative 
performance of Model 2 against Model 1. However, the nature of the test is such 
that we do not compare one alternative model with another one per se, but we 
compare each model with the null. Therefore, we need to examine how each 
model does a good job compared to the null (driftless random walk or the random 
walk with drift model). To better clarify this outcome, we look at the sample 
estimate of the variance of the loss-differential function 𝑑̃𝑑 in Table 2 below. 
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Table 1. Out-of-sample Forecast Comparisons with the Clark and West Test 

Null: Driftless RW   Null: RW with drift 

Model 1 11.0900 
(0.0000) Model 1 10.8200 

(0.0000) 

Model 2 10.3000 
(0.0000) Model 2 9.6900 

(0.0000) 

Notes: The table shows the Clark and West (CW) test results for Model 1 (OLS) and Model 
2 (NP). We use rolling regression method with a window of 200 observations. In the NP 
forecasts, we compute the least-squares cross-validated bandwidths for the local linear 
estimators. P-values are in the parantheses. The limiting distribution of the CW test under 
the null is standard normal. The statistically significant CW test indicate that the structural 
model outperforms the null.     

Table 2 shows that, against the null of the driftless random walk, the variance 
of the adjusted loss-differential function for Model 2 is 28% higher than for Model 
1. This difference reaches to 44% when the null is a random walk with drift. Even 
though NP has a far lower MSPE, since we divide the mean loss differential 
function by a larger number, the CW test produces lower values for the NP model 
relative to that of OLS model.  Our findings suggest that comparing each model in 
reference to the null does not give an accurate picture of the relative 
performance of one alternative to another in reference to the correct data.   

Table 2. Variance of the Adjusted Loss-differential Function 

Null: Driftless RW   Null: RW with drift 

Model 1  10690.31 Model 1  4683.809 

Model 2  13656.02 Model 2  6778.881 

Notes: The table shows the variance of the adjusted loss differential function 𝑑̃𝑑  in Clark 
and West (CW) test under alternative null models. 

We also look at the Theil’s (1966) U value to check if we can find similar 
results. Theil’s U value looks at the square root of the MSPE of the structural 
model over the square root of the MSPE of the random walk model as shown in 
(9): 
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(9) 

A TU value lower than one implies that the alternative model outperforms 
the null model6. In contrast to Clark and West test statistics, Theil’s U test 
provides, shown in Table 3, consistent results regarding predictive accuracy. 
Model 2, which has a lower MSPE, has a smaller TU value than Model 1, indicating 
that it has a better out-of-sample forecast.    

Table 3. The Theil’s U-Statistics 

Null: Driftless RW   Null: RW with drift 

Model 1  0.1100 Model 1  0.2000 

Model 2  0.0500 Model 2  0.0900 

Notes: The table shows the calculated Theil’s U-statistics for Model 1 (OLS) and Model 2 
(NP) under the null of driftless random walk and random walk with a drift.  The higher the 
Theil’s U-statistics, the lower the predictive performance. 

4. Monte Carlo Experiment 

We also perform Monte Carlo experiment to track the population 
distribution of MSPEs of structural models as well as the Clark and West test 
statistics. In fact, checking the performance of the Clark and West test in this 
analysis is trivial because of the nature of the simulation. Our null models, Model 
3 and Model 4, perform poorly in out-of-sample. Therefore, CW test will always 
reject the null of equal MSPEs.  

In examining how each model performs in repeated samples with Monte 
Carlo experiment, we take x series as given and use the same true parameters of 
the model in equation (7). Then, we generate new y series for a different e series 
drawn from the same distribution and repeat this exercise 500 times. Then, for 
each draw, we compute new out-of-sample forecasts, calculate the corresponding 
MSPEs and the CW test statistics, and present the results in Table 4.  

                                                           
6 The Theil (1966)'s U statistic falls between zero and one. When the Theil’s U-statistics 
takes the value of zero, it means that the predictive performance of the model is excellant 
and when it is one, and then it means that the forecasting performance is no better than 
just using the last actual observation as a forecast. 
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Table 4. Monte Carlo Experiment: Mean-squared Prediction Errors 

 Model 1 Model 2 Model 3 Model 4 
Mean 571.60 110.78 43238 14434 
Min  469.20 81.93 42507 13958   
Max 662.70 181.87 44042 14913 
St. Dev. 31.14 13.07 271.91 162.31 

Notes: The table shows the summary statistics of MSPEs of various models in 
Monte Carlo experiment with 500 simulations. 

According to Table 4, in repeated samples, Model 2 outperforms Model 1 by 
a significant margin. The average MSPE for the non-parametric model is 110.78 
while this number is 571.6 for the OLS model. We also check the performance of 
the CW test statistics at the population and show the results in Table 5.  The 
findings confirm our earlier demonstration that, on average, CW test produces a 
higher statistics for the OLS model while it has worse out-of-sample forecasts than 
the non-parametric model, and the findings are consistent at each percentile 
regardless of the selection of the null model. In light of the simulation results, one 
can conclude that having a statistically significant higher CW test statistics for one 
model than a second one does not guarantee that the former has better out-of-
sample forecasts than the latter. 

 Table 5. Monte Carlo Experiment: The Clark and West Test Statistics 

CW test statistics when the null is driftless random walk  

Percentile 0.10% 0.50% 1% 2% 5% 10% 50% 75% 90% 95% 99% 

Model 1 10.87 10.88 10.89 10.91 10.93 10.95 11.01 11.04 11.07 11.09 11.12 

Model 2 9.99 10.02 10.05 10.07 10.10 10.13 10.22 10.25 10.30 10.33 10.38 

CW test statistics when the null is random walk with a drift  

Percentile 0.10% 0.50% 1% 2% 5% 10% 50% 75% 90% 95% 99% 

Model 1 10.63 10.65 10.66 10.67 10.70 10.71 10.78 10.81 10.84 10.86 10.90 

Model 2 9.38 9.39 9.42 9.45 9.50 9.52 9.64 9.69 9.73 9.76 9.82 

Notes: The table shows the Clark and West (CW) test results for Model 1 (OLS) and Model 2 (NP) in a 
Monte Carlo experiement with 500 replications. The numbers show the test statistics at the 0.1 
percentile through 99 percentile.  We use rolling regression method with a window of 200 
observations. In the NP forecasts, we compute the least-squares cross-validated bandwidths with 
local linear estimators.  The limiting distribution of the CW test under the null is standard normal.    
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5. Conclusion 

The Clark and West test is commonly used in testing the predictive accuracy 
of alternative exchange rate models, stock return predictability, inflation 
forecasting and unemployment forecasting. The findings in this paper help better 
interpreting the Clark and West test statistics and prevent making the wrong 
conclusion derived from the magnitude of the test statistics.  Our results show 
that the Clark and West test fails to reflect the relative performance of a superior 
model over a relatively weaker model.  Even though the MSPE of a superior model 
is far below a weaker alternative, the test does not reflect this in their test 
statistics. Hence, as noted in Diebold (2015), one can conclude that the Clark and 
West test statistics is suitable only to compare a structural model against a 
random walk null but not suitable for comparison across alternative structural 
models. The Monte Carlo experiment also confirms this finding.  Therefore, 
practitioners should not put too much emphasis on the magnitude of the 
statistically significant Clark and West tests statistics. 
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