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Abstract

This paper is concerned with a modified Leslie-Gower predator-prey model with
general functional response under homogeneous Robin boundary conditions. We
establish the existence of coexistence states by the fixed index theory on positive
cones. As an example, we apply the obtained results to this model with Holling-type I
functional response. Our results show that the intrinsic growth rates and the principle
eigenvalues of the corresponding elliptic problems with respect to the Robin
boundary conditions play more important roles than other parameters for the
existence of positive solutions.
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1 Introduction

Population ecology is dominated by a focus on interspecific interaction such as compe-
tition, cooperation and predation in recent research papers. In particular, predator-prey
systems are very important to describe the interactions in the multi-species population dy-
namics. Because of the differences in capturing food and consuming energy, a major trend
in theoretical work on predator-prey dynamics has been launched so as to derive more
realistic models and functional responses and understand the interactions among the
predators and the preys such as Lotka-Volterra type [1, 2], Holling type [3], Beddington-
DeAngelis type [4, 5] and so on. In order to model the predator-prey mite outbreak in-
teractions on fruit trees, Wollkind et al. [6] adapted the following ordinary differential
equations based on the model due to May [7]:

U = ru(l - )~ pluy,

dv _ h
g =vIs-"1]

(1.1)

where u and v represent the densities of the prey and predator respectively. In system
(1.1), it is assumed that the prey grows logistically with carrying capacity K and intrinsic
growth rate r in the absence of predators. The predator consumes the prey according to the
functional response p(u) and grows logistically with intrinsic growth rate s and carrying
capacity proportional to the population size of prey. The parameter / is the numbers of
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prey required to support one predator at equilibrium when v equals u/A. In recent years,
the Leslie-Gower type predator-prey model (1.1) has been widely studied by many authors;
see [8-11]. If p(u) is of Holling-type II functional response in (1.1), then it is the so-called
Holling-Tanner predator-prey system as follows:
% = I"I/t(l - %) - rluru’

% = vls= )],

(1.2)

As pointed out in [12,13], in the case of severe scarcity, the predator v can switch to other
populations, but its growth will be limited by the fact that its most favorite food, the prey u,
is not available in abundance. To model the phenomena in population dynamics, a positive
constant is added to the denominator of the predator equation. Based on such a reason,
(1.2) becomes the following system with modified Leslie-Gower functional response [12]:

du _ cuy

E—M(%—blu)—,lm, (13)
dv _ ev :
dt ~ vaz - r2+u)’

where a;, a3, by, 11, 12, ¢, e are positive constants in a biological viewpoint. More precisely,
in [12], Aziz-Alaoui et al. investigated the boundedness of solutions, the existence of pos-
itive invariance attracting set and global stability of the coexisting interior equilibrium.
Later, Nindjin et al. [13] gave the qualitative analysis of the corresponding delayed system.

In the evolutionary process of the species, the individuals do not remain fixed in space,
and their spatial distribution changes continuously due to the impact of many reasons
(the environment factors, food supplies, etc.). Therefore, spatial effects such as diffusion
and dispersal should be introduced into population models. In particular, introducing the
spatial effects is not trivial in many works. For example, the famous Turing instability was
observed in many nature processes, and it was also proved in some mathematical models
with diffusion. Clearly, such a Turing instability cannot be formulated by the ordinary
differential equations.

Particularly, the spatial diffusion in predator-prey models was also considered by many
authors. For example, Chen and Wang [14] studied system (1.3) with diffusion under ho-
mogeneous Neumann boundary conditions, while Peng and Wang [15] focused on system
(1.3) with diffusion under homogeneous Dirichlet boundary conditions. Ryu and Ahn [16]
and Ko and Ryu [17], respectively, investigated diffusive Gause-type predator-prey systems
with ratio-dependent Holling-type II functional response and nonmonotonic functional
response under Robin boundary conditions. The authors of these works mentioned above
mainly discussed the existence and nonexistence of positive solutions of the stationary
problem. For more works on diffusive predator-prey systems, one can see [18—26] and the
references cited therein. Motivated by the previous works, in this paper, we introduce dif-
fusion into system (1.3) and consider the following partial differential equations equipped
with homogeneous Robin boundary conditions:

u; — d1Au = ug(u) — p(u)v,

ve—dy Av =v(ay - 20), (x,t) e Dy =Q x (0,T], 14)

K12+ u=0, K3 +v=0, (x,8) €S =0Q x (0,T], T €(0,00),

u(x,0) = ug(x) > 0, v(x,0) =vo(x) >0, xeQ.
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In the above, 1 and v, respectively, stand for the population densities of prey and predator;
Q C RN is a bounded domain with smooth boundary 3<2; v denotes the outward unit nor-
mal vector of the boundary d2; k1, k, are nonnegative constants. g(u) is the birth function
of the prey u. It should be pointed out that system (1.4) has the function response with a
general formation p(u), which is different from the models in the related papers.

For evolutionary systems, steady state solutions play an important role in understanding
the long-time behavior of the corresponding Cauchy-type problem. For example, from the
viewpoint of monotone dynamical systems, the steady state solutions of an evolutionary
system can often determine the eventual state of the system. Some problems concerned
with the steady states of evolutionary systems such as the traveling wave solutions and
the positive solutions of elliptic equations have been widely studied. To understand the
dynamics of system (1.4), we first consider its stationary problem in this paper. More pre-
cisely, we shall establish the existence of positive solutions to the following elliptic system:

—Au = ug(u) — p(u)v, x €,
—Av=via - 70), xeQ, (1.5)
Klg—ﬁ+u=0, K2%+V=0, x € 0Q2.

The rest of this paper is arranged as follows. In Section 2, we collect some known results
including the eigenvalue problem and the fixed point index on positive cones. In Section 3,
we establish the existence of positive solutions for system (1.5). In Section 4, as an example,
we apply the obtained results to system (1.5) with Holling-type II functional response.

2 Preliminaries
In this section, we give some preliminaries, which will serve as the basic tools in the sequel.
First, we introduce the fixed point index of compact maps on positive cones; see [27-29].
Let E be a real Banach space and W C E be a closed convex set. Then W is called a
wedge if BW C W for all 8 > 0, and a wedge W is said to be a cone if W N (-W) = {0}.
For y € W, define W, = {x € E:y + yx € W for some y > 0} andSyz{ery:—ery}.
It is evident that W, is a wedge containing W/, y, —y, while S, is a closed subspace of E
containing y. In what follows, we always assume that E= W - W.Let 7 : W, - W, be a
compact linear operator on E. We say that 7 has property « on W, if there exist ¢ € (0,1)
and w € W,\S, such that w— tTw € S,. Suppose that 7 : W — W is a compact operator
with a fixed point y € W. If F is Fréchet differential at y, then the derivative F'(y) has
the property that F'(y) : W, — W,,. For an open subset U C W, define indexy (F,U) =
index(F, U, W) = degy, (I — F,U,0), where I is the identity map. If y is an isolated fixed
point of F, then the fixed point index of F at y related to W is defined by indexw (F,y) =
index(F,y, W) = indexw (F, U(y), W), herein U(y) is a small open neighborhood of y in W.
The following results of fixed point index can be obtained from [16, 27-29].

Lemma 2.1 Assume that I — F'(y) is invertible on W,.
(i) If F'(y) has property o, then indexy (F,y) = 0.
(ii) If F'(y) does not have property a, then indexy (F,y) = (—1)°, where o is the sum of
multiplicities of all eigenvalues of F'(y) which are greater than one.

Now, we introduce some known results about the eigenvalue problem equipped with
Robin boundary conditions. For g(x) € C*(R2) and x > 0, let A1, (g(x)) be the principle
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eigenvalue of the following problem:

—Au+qx)u=ru, x€8,
. (2.1)

Kg—': +u=0, x € 0.
In particular, we denote 1;,(0) by Ay, for the sake of convenience. It is well known
that A1, (g(x)) is strictly increasing with respect to g(x), namely, A1, (q1(x)) < A1c(g2(x))
if g1(x) < g2(x) and q1(x) = g2(x). Furthermore, the eigenfunction ¢, of (2.1) correspond-
ing to the eigenvalue A, . (g(x)) is unique and positive. In [30, 31], the authors discussed the
eigenvalue problem (2.1) in detail and established the existence and comparison results for
(2.1). Furthermore, we cite the following lemma on the eigenvalue of (2.1), which can be
found in [16, 32].

Lemma 2.2 Let g(x) € C*(Q) and u >0, u £ 0 in Q.

(al) If0 £ —Au+gx)u <0, then r1,(q(x)) <O0.

(bl) If0 #£ —Au + q(x)u > 0, then 11, (q(x)) > 0.

(cl) If —Au + q(x)u =0, then A, (q(x)) = 0.
In addition, if M is a positive constant such that —q(x) + M > 0 on Q, then we have the
following conclusions:

(22) Aie(q(x)) < 0 = rl(=A + M) (~q(x) + M)] > 1.

(b2) A1,(g(®) > 0 = r{(=A + M) (~q(x) + M)] < 1.

(€2) Ae(gx) = 0= r[(=A + M) (—gq(x) + M)] = 1, where r(-) is the spectral radius of

an operator.

Consider the following scalar equation:

—Au=uf(x,u), x€,

K 1u=0, x€dQ,

(2.2)

where f(x,u) : Q x [0,00) — R is C* in x for 0 < @ <1 and C! in u. The following lemma
can be obtained from[16, 30].

Lemma 2.3 Assume that f,(x,u) < 0 for all (x,u) € Q x [0,00) and f(x,u) < 0 on (x,u) €
Q x [C, 00) for some positive constant C.
(@) Ifre(—f(x,0)) > 0, then (2.2) has no positive solutions. Moreover, the trivial solution
is globally asymptotically stable.
(b) If 1 (—f(x,0)) <0, then (2.2) has a unique positive solution u(x) which is globally
asymptotically stable and satisfies u(x) < C for all x € Q.

3 Existence of positive solutions for system (1.5)
In order to establish the existence of positive solutions of system (1.5), we give the following
hypotheses.
(H1) ge CY[0,00)),g(0) >0, g(K) =0, - < g,(u) <0, for any u > 0, where the
constants K >0 and 8 > 0.
(H2) p e C3([0,00)), p(0) =0 and 0 < p,(u) <y, for any u > 0, where the constant
y > 0.
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Firstly, we give a priori estimates of positive solutions of system (1.5). For the purpose,
consider the following equation:

—Au=ug(u), x€Q, (3.0)

Kg—”v‘+u=0, x € 0Q.

By Lemma 2.3, when g(0) > A1, (3.1) has a unique positive solution . When a3 > A,

—Av=v(a, - %), x€Q,
(@=5) (3.2)

K% +v=0, x€0Q

v

has a unique positive solution vy. Hence, when g(0) > A1, and as > A;4,, system (L.5)
has two semi-trivial solutions (uo,0) and (0, o). By virtue of the maximum principle and
Hopf’s lemma, we obtain the following results on the boundedness of the nonnegative

solutions of (1.5), of which the proof is omitted here.

Proposition 3.1 Any nonnegative solution (u,v) of (1.5) satisfies

as(ry + K)
. .

u(x) < Ky V(x) < RO =

For the calculation of the fixed point index, we introduce the following notations:

_ _ _ _ 9
E=Cy(Q) x Co, (); C,q(Q):{WEC(Q):Kia—W+W:O,xGBQ};
v
W=K xKy; Ki={weCy(Q):0=<wx),xeQ;
D={(u,v)€E:u<K+1Lv<Ry+1}; D =(intD)N'W.

It is easy to verify that

W0 =Ki x K; S0 ={(0,0)};
W u0,0) = G (Q) x K3 Stue,0) = Cet (Q) x {0};

W o) = Ki x Ce, (Q); So) = {0} x Cy ().

From Proposition 3.1, we can see that the nonnegative solution of (1.5) must lie in D'.
Choosing

2€R0
M >max{g(0) + BK + yRg,a; + ,
r

then

cv ev
ul| a1 — biu — + Mu, vl ay — + My
rn+u ro+u

are nonnegative for all (#,v) € [0, K] x [0,Ro].
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Define an operator F : E — E by

Fu,v)=(-A +M)! (ug(u) - pu)v +Mu>T‘

v(ay — rzeru) + My

By the strong maximum principle, (-A + M)~ is a compact linear operator, and F is a
direct sum of compact positive operators. Clearly, system (1.5) is equivalent to F(u,v) =
(u,v) (it should be noted that this is independent of the choice of M as long as M is large
enough). Thus, finding a positive solution of system (1.5) is equivalent to proving that F
has a nontrivial fixed point in D’. Without loss of generality, we may assume that (0, 0),
(40,0), and (0, vp) are isolated fixed points of F if they exist, and so the corresponding
indices related to W are well defined. For ¢ € [0,1], define a homotopy

tv(a; — 2-) + My

ro+u

Filt,v) = (-4 + M) (t (ug (1) = p(w)v) + Mu) '

then F = F.
Lemma 3.2 For any open set D' in W, indexy (F,D’) = 1.

Proof Firstly, we can see that indexy (F, D’) is well defined since F has no fixed point on
dD'. For t € [0,1], a fixed point of F; is a solution of the following problem:

—Au = t{ug(u) — p(u)v), x€Q,
~Av=tv(ay - 5, xeQ, (3.3)
Klg—’ﬁ+u=0, Kgg—‘v’+v=0, x € 0Q2.

In view of Proposition 3.1, the fixed point of F; satisfies u(x) < K and v(x) < Ry on  for
all £ € [0,1], and so all the fixed points of F; must lie in D', and indexy (F;, D’) is indepen-
dent of t. Hence, by the homotopy invariance,

indexy (.F, D/) = indexy (}'1, D/) = indexy (fo, D’) .
Since problem (3.3) with ¢ = 0 has only the trivial solution (0, 0), we have
indexy (Fo, D) = indexy (Fo, (0,0)).

Denote

M 0
Lo := F5(0,0) = (A + M)~ (0 M) .

Thus, it follows from Lemma 2.2 that r(Ly) < 1, which indicates that I — £ is invert-
ible on W90y and Ly does not have property a on W o). So, we may conclude that
indexyw (Fo,(0,0)) =1 by Lemma 2.1. The proof is completed. O

Lemma 3.3 Assume that g(0) > A1, and ay # M ,. Then indexw (F,(0,0)) = 0.
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Proof Note that F(0,0) = (0,0) and F is compact. By calculating, we get

. / _(_ -1 g(0)+M 0
L1:=F(0,0)=(-A+M) < 0 a2+M>'

Suppose that £;(£,7) = (&,1) € W (0,0). Then

_AE :g(o)ér X € Q;
KE+E=0, x€dQ.

If £ > 0, then g(0) = A1, by the lemma, which is a contradiction to the assumption. Thus,
& = 0. Similarly, since a3 # A1,,, then n = 0. Therefore, I — £; is invertible on W(o,o).
Since g(0) > A1, we have r; := r[(-A + M)7(g(0) + M)] > 1 by Lemma 2.2. From the
Krein-Rutman theorem, ry is the principle eigenvalue of the operator (- A + M)~1(g(0) + M)
with a corresponding eigenfunction ¢ € K;\{0}. Set £, = 1/r;. Then we have 0 < £y <1 and

(I - toL1)(¢,0) = (0,0) € S0,0)-

This implies that £; has property «. It follows from Lemma 2.1 that indexy (F, (0, 0)) = 0.
The proof is completed. d

Lemma 3.4 Assume that g(0) > Ay, and as > Ai,. Then
indexy (F, (4o,0)) = 0.
Proof By a direct computation, we have

Lo = F'(ug,0) = (-A + M)} (g(”") * g (o) + M- (”O)) .

0 a, + M

Suppose that £, (£, 1) = (€, 1) for some (&,1) € W ,,0). Then

—A& —(g(uo) + uog'(u0))é = —p(uo)n, x€,
—An =ayn, xeQ, (3.4)

K1%+‘§=0, K23—Z+17=0, x € 0Q2.

For n € K3, in the second equation of (3.4), a3 = A1, if 7 5% 0, by Lemma 2.2. Since a; >
A, we have n = 0. If £ #£ 0, then 0 is an eigenvalue of the following problem:

A& —(g(uo) + uog'(uo))é =28, x€Q,
K+ £ =0, x€dQ.

Thus, Ay, (—g(u0) —uog’ (40)) < 0, A1, (=g(u0)) = 0. Since (1o, 0) is the semi-trivial solution
of system (1.5), using the comparison property of the eigenvalue, we have

My (—=g(10) — og (40)) > A (—g(u0)) = 0.
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This yields a contradiction. Hence, (§,7) = (0,0). This indicates that I — £, is invertible
on W(uo,o).

Now, we shall prove that £, has property & on W, ). In fact, since a > A14,, then
1y := r((=A + M) (ay + M)) > 1 by Lemma 2.2. From the Krein-Rutman theorem, r; is the
principle eigenvalue of the operator (—A + M)™}(a, + M) with a corresponding eigenfunc-
tion ¢ € K»\{0}. Set to = 1/ry. Then O < £y < 1. For (0, ¢) € W(uo,o)\s(uo,o), it is easy to verify
that

(I = t.L2)(0,9) € Stug,0)-

This implies that £, has property «. By Lemma 2.1, we know indexw (F, (¢,0)) = 0. The
proof is completed. d

Similarly, we have the following lemma, the proof of which is a slight modification of the

above.

Lemma 3.5 Assume that as > A, and g(0) > Ay, (p'(0)vo). Then
indexw(}", (0, Vo)) =0.

Now, we establish the existence of positive solutions of the system based on the above
results about the fixed index.

Theorem 3.6 Assume that a; > Aiy,, g(0) > A, (p'(0)vo). Then system (1.5) has a positive

solution.

Proof By Lemmas 3.2-3.5, we have
indexw(}', (0, 0)) + indexw(}', (uO,O)) + indexw(]:, (O,VO)) =0

and indexy (F,D’) = 1. Therefore, system (1.5) has a positive solution in D'. The proof is
completed. O

4 Applications
In this section, as an example, we apply the above results to system (1.5) with Holling II
type functional response and establish the existence of positive solutions for the following

predator-prey system:

—Au =u(a, — byu) — rcl’f;, x €,
—-Av=v(ay - rzeru), x €, (4.1)
/qg—':+u:0, K2%+V:0, x € 0.

Consider the following equation:

-A®=0(p-0), xcQ,

, (4.2)
K2 +0=0, x €0Q.
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By virtue of Lemma 2.3, we see that (4.2) has a unique positive solution ®,; with @, < p
when p > A1, where p is a positive constant. Hence, system (4.1) admits two semi-trivial
solutions (©[,,3,0) and (0, ©4,)) if a1 > A1, and ag > Ay,

By virtue of the maximum principle and Hopf’s lemma, we can give a priori estimates
of positive solutions of (4.1), the proof of which is omitted here.

Proposition 4.1 Any nonnegative solution (u,v) of (4.1) satisfies

as(birs + a1)
=—, <Ri=—-—"-" "
b1 V(x) - €b1

In order to calculate the fixed point index, we introduce the following notations:
— — — — ow
E=Cq(RQ) x C,(R2), where C,(R) = {w e C(Q) :/cia— +w=0,x¢€ BQ};
v

W =K xK,, whereK;= {w € C,(l.(ﬁ) 10 <wx),x € 5};

D={(uv)€eE:u<Q+Lv<R+1}, D =(intD)N'W.
It is easy to verify that

Wo,0) = Ki x K; S0 ={(0,0)};
W(@[al],o) = Clq (§) X I<2’ S(@[al],o) = CK] (5) X {0}1

W(O'®[a2]) = I<1 X CK‘2 (§)! S(O'@[ﬂzl) = {0} X CIQ (5)

From Proposition 4.1, we can see that the nonnegative solution of (4.1) must lie in D'.

Choosing
c 2e
M > max{ —a; + (2191 + —)Q ,|—ay + —RH,
r r
then
ev
u(al—blu— )+Mu and V(ﬂz— )+Mv
r+u ry+u

are nonnegative for all (4, v) € [0, Q] x [0, R]. Define an operator F : E — E by

]-"(u,v):(—A+M)_1<u<a1—b1u— v >+Mu,v(a2— v )+Mv>.

n+u o+ u

By the strong maximum principle, (A + M)~ is a compact linear operator, and F is a
direct sum of compact positive operators. Clearly, system (4.1) is equivalent to F(u,v) =
(#,v) (it should be noted that this is independent of the choice of M as long as M is large
enough). Thus, finding a positive solution of system (4.1) is equivalent to proving that F
has a nontrivial fixed point in I’. Without loss of generality, we may assume that (0, 0),
(®141,0) and (0, ®y,,)) are isolated fixed points of F if they exist, and so the corresponding
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indices related to W are well defined. For ¢ € [0, 1], define a homotopy

Fiu,v) = (A +M)? (tu(al —biu— d ) + Mu, tv<a2 _¥ > +Mv>,
n+u r+u

then F = Fj.
Similar to the discussion in Section 3, we have the following lemmas.

Lemma 4.2 Assume that a; > \y,. Then
(i) indexw (F,D’) =1, for an open set D' in W'.
(ii) indexw (F,(0,0)) =0, if as # A, -
(iii) indexw (F,(®[4],0)) =0, if ag > Ay, .
(iv) indexw (F,(O(41,0)) =1, if g < A1, .
Lemma 4.3 Assume that a; > Ay, holds. Tft)en the following items hold:
Y [“2

(i) indexw (F,(0,O14y))) = 0, if a1 > Ay (—; D).
(11) indexW(]-', (O, (“)[az])) - 1, ifal < )\1,K1(C®[a2] )

rn

Theorem 4.4 For system (4.1), the following results hold:
(i) If a1 < My, then (4.1) has no positive solution and, in addition, if ay < A, then
(4.1) has no nonnegative nonzero solution.
(i) Ifaz > My, and a; > )»1,,(1(6@[“2]

), then (4.1) admits a positive solution.

)< 0.

n
C®[a2]

(iii) If az > Ak, and (4.1) has a positive solution, then Ay, (—ay + oL
a1

Proof Firstly, suppose on the contrary that (i, V) is a positive solution of (4.1), then (i, V)
satisfies the equation

—An=i(a -bi- ), x€Q,
K 3%+ =0, x€0Q,

cv
r1+i£
eigenvalue, it follows that a; > A, which is a contradiction. Next, assume that (i, V) is a

and so Ay, (-a1 + b + ) = 0 by Lemma 2.2. Using the comparison property of an
nonnegative nonzero solution of (4.1). If z # 0 and v = 0, then a; > Ay ,. Similarly, if z =0
and v £ 0, then ay > Ay, . A contradiction occurs. This completes the proof of (i).

For (ii), by Lemmas 4.2 and 4.3, we obtain

indexy (F, (0,0)) + indexy (F, (O4,3,0)) + indexy (F, (0, O4,))) = 0

and indexy (F,D’) = 1. So, (4.1) has a positive solution in D', which shows that the second
statement is true.

Finally, we prove (iii). Let (#,v) be a positive solution of (4.1). Then a; > A, holds so
that (4.1) has a semi-trivial solution (®,,},0). Because of a3 > A, , (4.1) has a semi-trivial
solution (0, ®(,,}) such that & < O[] and B,,; < ¥ by the uniqueness of O,;; and O[4,].
Applying the comparison property of the eigenvalue, it is evident that

c® cv
)\,1,,(1 (—a1 + ¢> < )\1,,(1 (—a1 + blljl + _> =0.
1+ Oy o+

The proof is complete. d
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