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Abstract

Let H be a real Hilbert space. Consider on H a nonexpansive family
T = {T(t) : 0 ≤ t < ∞} with a common fixed point, a contraction f with the
coefficient 0 <a < 1, and a strongly positive linear bounded self-adjoint operator A
with the coefficient γ̄ > 0. Assume that 0 < γ < γ̄ /α and that
S = {S (t) : 0 ≤ t < ∞} is a family of nonexpansive self-mappings on H such that
F(T ) ⊆ F(S) and T has property (A) with respect to the family S. It is proved that
the following schemes (one implicit and one inexact explicit):

xt = btγ f (xt) + (I − btA) S (t) xt

and

x0 ∈ H, xn+1 = αnγ f (xn) + βnxn + ((1 − βn) I − αnA) S (tn) xn + en, n ≥ 0

converge strongly to a common fixed point x∗ ∈ F(T ), where F(T ) denotes the set
of common fixed point of the nonexpansive semigroup. The point x* solves the
variational in-equality 〈(gf −A)x*, x−x*〉 ≤ 0 for all x ∈ F(T ). Various applications to
zeros of monotone operators, solutions of equilibrium problems, common fixed
point problems of nonexpansive semigroup are also presented. The results presented
in this article mainly improve the corresponding ones announced by many others.
2010 Mathematics Subject Classification: 47H09; 47J25.
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1. Introduction
Let H be a real Hilbert space and T be a nonlinear mapping with the domain D(T). A

point x Î D(T) is a fixed point of T provided Tx = x. Denote by F (T) the set of fixed

points of T; that is, F(T) = {x Î D(T): Tx = x}. Recall that T is said to be nonexpansive

if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ D (T) .

Recall that a family T = {T(s) : s ≥ 0} of mappings from H into itself is called a one-

parameter nonexpansive semigroup if it satisfies the following conditions:

(i) T(0)x = x, ∀x Î H;

(ii) T(s + t)x = T(s)T(t)x, ∀s, t ≥ 0 and ∀x Î H;
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(iii) ||T(s)x − T(s)y|| ≤ ||x − y||, ∀s ≥ 0 and ∀x, y Î H;

(iv) for all x Î C, s ↦ T(s)x is continuous.

We denote by F(T ) the set of common fixed points of T , that is,

F (T ) = ∩0≤s≤∞ F (T (s)) . For each t > 0 and x Î C, st(x) is the average defined by

σt (x) = 1
t

∫ t
0 T (s) x ds. It is known that F(T ) is closed and convex; see [1]. Let C be a

nonempty closed and convex subset of H. One classical way to study nonexpansive

mappings is to use contractions to approximate a nonexpansive mapping; see [2,3].

More precisely, take t Î (0, 1) and define a contraction Tt : C ® C by

Ttx = tu + (1 − t) Tx, x ∈ C,

where u Î C is a fixed element. Banach’s contraction mapping principle guarantees

that Tt has a unique fixed point xt in C. It is unclear, in general, what the behavior of

{xt} is as t ® 0, even T has a fixed point. However, in the case of T having a fixed

point, Browder [2] proved the following well-known strong convergence theorem.

Theorem B. Let C be a closed convex bounded subset of a Hilbert space H and let T

be a nonexpansive mapping on C. Fix u Î C and define zt Î C as zt = tu + (1 - t)Tzt
for t Î (0, 1). Then as t ® 0, {zt} converges strongly to an element of F(T) nearest to u.

As motivated by Theorem B, Halpern [4] considered the following explicit iteration:

x0 ∈ C, xn+1 = αnu + (1 − αn)Txn, n ≥ 0, (1:1)

and proved the following theorem.

Theorem H. Let C be a closed convex bounded subset of a Hilbert space H and let T

be a nonexpansive mapping on C. Define a real sequence {an} in [0, 1] by an = n−θ ,

0 < θ <1. Define a sequence {xn} by (1.2). Then {xn} converges strongly to the element of

F(T) nearest to u.

In 1977, Lions [5] improved the result of Halpern, still in Hilbert spaces, by proving

the strong convergence of {xn} to a fixed point of T where the real sequence {an} satis-

fies the following conditions:

(C1) limn®∞ an = 0;

(C2)
∑∞

n=1
αn = ∞;

(C3) limn→∞ αn+1 −αn

α2
n+1

= 0.

It was observed that both Halpern’s and Lions’s conditions on the real sequence {an}

excluded the canonical choice αn = 1
n +1 . This was overcome in 1992 by Wittmann [6],

who proved, still in Hilbert spaces, the strong convergence of {xn} to a fixed point of T

if {an} satisfies the following conditions:

(C1) limn®∞ an = 0;

(C2)
∑∞

n=1 αn = ∞;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞.

Recall that a mapping f : H ® H is an a-contraction if there exists a constant a Î (0, 1)

such that

||f (x) − f
(
y
) || ≤ α||x − y||, ∀x, y ∈ H.

Recall that an operator A is strongly positive on H if there exists a constant γ̄ > 0

such that
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〈Ax, x〉 ≥ γ̄ ||x||2, ∀x ∈ H.

Iterative methods for nonexpansive mappings have recently been applied to solve

convex minimization problems; see, e.g., [7-13] and the references therein. A typical

problem is to minimize a quadratic function over the set of the fixed points of a non-

expansive mapping on a real Hilbert space H:

min
x∈D

1
2

〈Ax, x〉 − 〈x, b〉 , (1:2)

where A is a linear bounded operator, D is the fixed point set of a nonexpansive

mapping T and b is a given point in H. In [11], it is proved that the sequence {xn}

defined by the iterative method below, with the initial guess x0 Î H chosen arbitrarily,

xn+1 = (I − αnA) Txn + αnb, n ≥ 0,

strongly converges to the unique solution of the minimization problem (1.2) pro-

vided the sequence {an} satisfies certain conditions.

Marino and Xu [10] studied the following continuous scheme

xt = tγ f (xt) + (I − tA)Txt,

where f is an a-contraction on a real Hilbert space H, A is a bounded linear strongly

positive operator and g >0 is a constant. They showed that {xt} strongly converges to a

fixed point x̄ of T. Also in [10] they introduced a general explicit iterative scheme by

the viscosity approximation method:

xn ∈ H, xn+1 = αnγ f (xn) + (I − αnA) Txn, n ≥ 0 (1:3)

and proved that the sequence {xn} generated by (1.3) converges strongly to a unique

solution of the variational inequality:
〈(
A − γ f

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ F (T) ,

which is the optimality condition for the minimization problem:

min
x∈F(T)

1
2

〈Ax, x〉 − h (x) ,

where h is a potential function for gf (i.e., h’(x) = gf(x) for x Î H).

It is an interesting problem to study above (Browder’s, Halpern’s and so on) results

with respect to the nonexpansive semigroup case. So far, only partial answers have

been obtained. Recently, Plubtieng and Punpaeng [14] considered the iteration process

{xn} generated by

x0 ∈ H, xn+1 = αnf (xn) + βnxn + (1 − αn − βn)
1
sn

sn∫
0

T(s)xnds, n ≥ 0,

where {an}, {bn} ⊂ (0, 1) with an + bn <1 and {tn} is a positive real divergent

sequence. They proved, under certain appropriate conditions on {an}, that {xn} con-

verges strongly to a common fixed point of one-parameter nonexpansive semigroup

T = {T(s) : s ≥ 0}.
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In this article, motivated by Li et al. [8], Marino and Xu [10], Plubtieng and Pun-

paeng [14], Cianciaruso et al. [15], Shioji and Takahashi [16] and Shimizu and Takaha-

shi [17], we consider the following more general schemes (one implicit and one

inexact explicit):

xt = btγ f (xt) + (I − btA) S (t) xt

and

x0 ∈ H, xn+1 = αnγ f (xn) + βnxn + ((1 − βn) I − αnA) S (tn) xn + en, n ≥ 0

where T = {T(t) : 0 ≤ t < ∞} is a family of arbitrary nonexpansive self-mappings on

H with a common fixed point, S = {S (t) : 0 ≤ t < ∞} is a family of nonexpansive self-

mappings on H such that T has property (A) with respect to the family S and

F(T ) ⊆ F(S), g >0 is a constant, f : H ® H is an a-contraction, A is a bounded linear

strongly positive self-adjoint operator on H and {bt} is a net in (0, 1). Furthermore, by

applying these results, we obtain iterative algorithms for zeros of monotone operators,

equilibrium problems, and common fixed point problems of nonexpansive semigroups

in real Hilbert spaces.

The results presented in this article improve and extend the corresponding results

announced by Marino and Xu [10], Plubtieng and Punpaeng [14], Cianciaruso et al.

[15], Shioji and Takahashi [16], and Shimizu and Takahashi [17]. We remark that our

results are very similar to those of Li et al. [8]. However, it seems that can be a gap in

the proofs of Li et al. results. Indeed, their semigroups and the contraction are self-

mappings defined on a closed convex subset C of the Hilbert space H, while the

strongly positive linear bounded operator is defined on H. So both the schemes involve

not a convex combination, that this they are of interest only in the case C = H.

2. Preliminaries
This section collects some lemmas which will be used in the proofs for the main

results in the following section. Some of them are known; others are not hard to

derive.

Lemma 2.1. (Shimizu and Takahashi [[17], Lemma 2]). Let C be a nonempty closed

convex bounded subset of a Hilbert space H, and T = {T(t) : t ∈ R+}a strongly continu-

ous semigroup of nonexpansive mappings from C into itself. Let σt (x) := 1
t

∫ t
0 T (s)xds.

Then

lim
t→∞ sup

x∈D
||σt (x) − T (h) σt (x) || = 0 for all h > 0.

Lemma 2.2. ([[18], Corollary 5.6.4], [19]) (Demiclosedness principle) Let H be a Hil-

bert space, C is a closed convex subset of H, and T : C ® C a nonexpansive mapping.

Then I − T is demiclosed, i.e., if {xn} is a sequence in C weakly converging to x and if

{(I − T)xn} strongly converges to y, then (I − T)x = y.

Lemma 2.3. ([[18], Corollary 5.2.29]) Let C be a nonempty closed convex subset of a

strictly convex Banach space X and T : C ® C a nonexpansive mapping. Then F(T) is

closed and convex.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H and

let PC be the metric projection from H onto C (i.e., for x Î H, PCx is the only point in C
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such that ||x − PCx|| = inf{||x − z||: z Î C}). Given x Î H and z Î C. Then z = PCx if

and only if there holds the relations:
〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C. (2:1)

Lemma 2.5. Let H be a real Hilbert space, f : H ® H an a-contraction, and A is a

strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Then, for 0 < γ < γ̄ /α,

〈
x − y,

(
A − γ f

)
x − (

A − γ f
)
y
〉 ≥ (γ̄ − γ α)

∥∥x − y
∥∥2, x, y ∈ H. (2:2)

That is, A − gf is strongly monotone with coefficient γ̄ − αγ .

Remark 2.6. Taking g = 1 and A = I, the identity mapping, we have the following

inequality:
〈
x − y,

(
I − f

)
x − (

I − f
)
y
〉 ≥ (1 − α) ||x − y||2, x, y ∈ H. (2:3)

Furthermore, if f is a nonexpansive mapping in Remark 2.6, we have
〈
x − y,

(
I − f

)
x − (

I − f
)
y
〉 ≥ 0, x, y ∈ H. (2:4)

Lemma 2.7.[10]. Assume A is a strongly positive linear bounded self-adjoint operator

on a real Hilbert space H with coefficient γ̄ > 0 and 0 <r ≤ ||A||−1. Then

‖I − ρA‖ ≤ 1 − ργ̄.

Lemma 2.8. [12]. Let {an} be a sequence of nonnegative real numbers satisfying the

following condition:

αn+1 ≤ (1 − γn) αn + γnσn, ∀n ≥ 0,

where {gn} is a sequence in (0, 1) and {sn} is a sequence of real numbers such that

(i) limn®∞ gn = 0 and
∑∞

n=0 γn = ∞,

(ii) either lim supn®∞ sn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {αn}∞n=0 converges to zero.

Let C be a nonempty subset of a Banach space X. Throughout this article, G denotes

an unbounded set of R+ := [0,∞) such that s + t Î G for all s, t Î G (often

G = Nor R+) and B(C) denotes collection of all bounded subsets of C. Let

T = {Ts : s ∈ G} be a family of mappings from C into itself. Then:

(i) a sequence {xn} in C is said to be an approximate fixed point sequence of T if

limn→∞ ‖xn − TT xn‖ = 0 for all τ Î G,

(ii) T = {Ts : s ∈ G} is said to uniformly asymptotically regular on C (for short, u.a.r.

on C) (see, [20]) if

lim
t∈G,t→∞

(sup
x∈C̃

||Ttx − TsTtx||) = 0 for all s ∈ G and C̃ ∈ B (C) .

A family T = {Ts : s ∈ G} satisfies property (A) if the following holds:

each {xs}s∈G ∈ B(C) with xs − Tsxs ® 0 as s ® ∞ ⇒ xs − Ttxs ® ∞ for all t Î G.

Remark 2.9. If T be a singleton, i.e., T = {T}, or Ts = T for all s in G, then {T} always

has property (A).

We further remark that the notion of uniform asymptotic regularity introduced by

Edelstein and O’Brien [21] plays an important role for studying property (A) of
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nonlinear Lipschitzian-type operators. Indeed, if T = {Ts : s ∈ G} is a nonexpansive

semigroup and u.a.r., then T has property (A). Indeed, for {ys} ∈ B(C) and t Î G,
∥∥ys − Ttys

∥∥ ≤ ∥∥ys − Tsys
∥∥ +

∥∥Tsys − TtTsys
∥∥ +

∥∥TtTsys − Ttys
∥∥

≤ 2
∥∥ys − Tsys

∥∥ + sup
y∈{yγ :γ∈G}

∥∥Tsy − TtTsy
∥∥ → 0 as s → ∞.

We now introduce property (A) of T with respect to the family G.
Let C be a nonempty subset of a Banach space X and T = {T(t) : t ∈ R+} be a family

of mappings from C into itself with ∩t>0 F(T(t)) ≠ ∅. Let G = {Gt : t ∈ R+} be a family

of mappings from C into itself such that ∩t>0 F(T(t)) ≠ ∩t>0 F(Gt). We say the family

T = {T(s) : s ∈ G} has property (A) with respect to the family G = {Gt : t ∈ R+} if the
following holds:

each {xs}s∈G ∈ B(C) with xs − Gsxs ® 0 as s ® ∞ ⇒ xs − T(t)xs ® 0 as s ® ∞ for all

t > 0.

Remark 2.10. If a family T = {T(s) : s ∈ G}has property (A), then T has property

(A)with respect to itself.

We now give some examples.

Example 2.11. Let C be a nonempty closed convex subset of a Banach space X and T

be a nonexpansive mapping from C into itself with F(T) ≠∅. For each t Î G, and

bt ∈ Rwith 0 <a ≤ bt ≤ b < 1, define Gt : C ® C by

Gtx = (1 − bt) x + btTx for all x ∈ C.

Then T has property (A)with respect to family {Gt : t Î G}.

Proof. Let {xt}t∈G ∈ B(C) such that || xt − Gt(xt)|| ® 0 as t ® ∞. Note that

‖xt − Txt‖ = bt ‖xt − Gt (xt)‖

and 0 <a ≤ bt ≤ b < 1 for all t Î G. Therefore, ||xt − Txt|| ® 0 as t ® ∞. □
The following proposition shows that in a uniformly convex Banach space, nonex-

pansive semigroup T = {T(t) : t ∈ R+} has property (A) with respect to a nonexpansive

semigroup {σt : t ∈ R
+} = { 1t

∫ t

0
T (s) xds : t ∈ R

+}.
Example 2.12. Let D be a nonempty closed convex bounded subset of a Hilbert space

H, and T = {T(t) : t ∈ R+}be a strongly continuous semigroup of nonexpansive mappings

from D into itself. For each t > 0, let xt Î D such that ||xt − st(xt)|| ® 0 as t ® ∞.

Then ‖xt − T(T )xt → 0‖as t ® ∞ for each τ > 0.

Proof. Let τ > 0. Observe that

‖T (τ ) xt − xt‖ ≤ ‖T (τ ) xt − T (τ ) σt (xt)‖ + ‖T (τ ) σt (xt) − σt (xt)‖ + ‖σt (xt) − xt‖
≤ 2 ‖xt − σt (xt)‖ + ‖T (τ ) σt (xt) − σt (xt)‖
≤ 2 ‖xt − σt (xt)‖ + sup

x∈D
‖T (τ ) σt (x) − σt (x)‖ .

By Lemma 2.1, we obtain that ||xt − T(τ)xt|| ® 0 as t ® ∞ for each τ >0. □

3. Main results
Let H be a real Hilbert space and S = {S (t) : 0 ≤ t < ∞} a family of nonexpansive self-

mappings on H with F(S) �= ∅. By Lemma 2.3, F(S) is closed and convex. Let A be a

strongly positive linear bounded self-adjoint operator of H into itself with coefficient

γ̄ > 0 and f : H ® H an a-contraction. Assume that 0 < γ < γ̄ /α and {bt : t > 0} is
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a net in (0, ||A||−1) such that limt®∞ bt = 0. For each t > 0, the mapping Gt : H ® H

defined by

Gtx : = btγ f (x) + (I − btA) S (t) x, x ∈ H

is a contraction with Lipschitz constant 1 − bt (γ̄ − αγ ). Indeed, for all x, y Î H, we

have ∥∥Gtx − Gty
∥∥ ≤ ∥∥(1 − btA)

(
S (t) x − S (t) y

)∥∥ + γ bt
∥∥fx − fy

∥∥
≤ (1 − bt γ̄ )

∥∥x − y
∥∥ + γ btα

∥∥x − y
∥∥

=
[
1 − bt (γ̄ − αγ )

] ∥∥x − y
∥∥ .

By the Banach contraction principle, Gt has a unique fixed point, denoted by, xt in H,

which uniquely solves the fixed point equation

xt = btγ f (xt) + (I − btA) S (t) xt. (3:1)

Lemma 3.1. Let H be a real Hilbert space and S = {S (t) : 0 ≤ t < ∞}be a family of

nonexpansive self-mappings on H such that F(S) �= ∅. Let f : H ® H be an a-contrac-
tion, A is a strongly positive linear bounded self-adjoint operator of H into itself with

coefficient γ̄ > 0. Let {bt : t >0} be a net in (0, ||A||−1) such that limt®∞ bt = 0. Assume

that 0 < γ < γ̄ /α and xt is defined by (3.1). Then we have the following:

(a) There is a nonempty closed convex bounded subset D of H such that D is S(t)-

invariant for each t >0 and {xt} is in D.

(b) ||xt - S(t)xt|| ® 0 as t ® ∞.

Proof. (a) Taking p ∈ F(S), we have∥∥xt − p
∥∥ =

∥∥btγ f (xt) + (I − btA) S (t) xt − p
∥∥

≤ bt
∥∥γ f (xt) − Ap

∥∥ + (1 − btγ̄ )
∥∥S (t) xt − p

∥∥
≤ bt

∥∥γ f (xt) − Ap
∥∥ + (1 − bt γ̄ )

∥∥xt − p
∥∥

≤ btγ
∥∥ f (xt) − f

(
p
)∥∥ + bt

∥∥γ f
(
p
) − Ap

∥∥ + (1 − btγ̄ )
∥∥xt − p

∥∥
≤ [

1 − bt (γ̄ − γ α)
] ∥∥xt − p

∥∥ + bt
∥∥γ f

(
p
) − Ap

∥∥ .
It follows that

∥∥xt − p
∥∥ ≤ 1

γ̄ − αγ

∥∥γ f
(
p
) − Ap

∥∥ .
This implies that {xt} is bounded. Let D be the ball B(p, r), centered in p and with radius

r = 1
γ̄ −αγ

∥∥γ f
(
p
) − Ap

∥∥, i.e., D =
{
w ∈ H :

∥∥w − p
∥∥ ≤ 1

γ̄ −αγ

∥∥γ f
(
p
) − Ap

∥∥}
.

Then {xt} is contained in set D. Moreover,∥∥S (t) xt − p
∥∥ =

∥∥S (t) xt − S (t) p
∥∥

≤ ∥∥xt − p
∥∥

≤ 1
γ̄ − γ α

∥∥γ f
(
p
) − Ap

∥∥ .
Thus, D is a nonempty closed convex bounded subset of H and S(t)-invariant.

(b) The boundedness of {xt} implies that {fxt} and {AS(t)xt} are bounded. Thus,

‖xt − S (t) xt‖ = bt
∥∥γ f (xt) − AS (t) xt

∥∥ → 0 as t → ∞. □
We now establish our strong convergence theorems.

Theorem 3.2. (Implicit scheme) Let H be a real Hilbert space H and

T = {T(t) : 0 ≤ t < ∞}be a family of nonexpansive self-mappings on H such that
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F(T ) �= ∅. Let f : H ® H be an a-contraction and A be a strongly positive linear

bounded self-adjoint operator on H with the coefficient γ̄ > 0. Let

S = {S (t) : 0 ≤ t < ∞}be a family of nonexpansive self-mappings on H such that T has

property (A)with respect to the family Sand F(T ) ⊆ F(S). Assume that

0 < γ < γ̄ /α and that {bt : t > 0} is a net in (0, ||A||−1) such that limt®∞ bt = 0.

Then {xt} defined by (3.1) strongly converges as t ® ∞ to x∗ ∈ F(T ), where

x∗ = PF(T )(I − A + γ f )is a solution of the following variational inequality
〈(

γ f − A
)
x∗, p − x∗〉 ≤ 0, ∀p ∈ F (T ) . (3:2)

Proof. The uniqueness of the solution of the variational inequality (3.2) is a conse-

quence of the strong monotonicity of A−gf (Lemma 2.5). Next, we shall use x∗ ∈ F(T )

to denote the unique solution of (3.2). To prove that xt ® x* (t ® ∞), we write, for a

given p ∈ F(T ),

xt − p = bt
(
γ f (xt) − Ap

)
+ (I − btA)

(
S (t) xt − p

)
.

Using xt − p to make inner product, we obtain that

∥∥xt − p
∥∥2 =

〈
(I − btA)

(
S (t) xt − p

)
, xt − p

〉
+ bt

〈
γ f (xt) − Ap, xt − p

〉
≤ (1 − btγ̄ )

∥∥xt − p
∥∥2 + bt

〈
γ f (xt) − Ap, xt − p

〉
.

It follows that

∥∥xt − p
∥∥2 ≤ 1

γ̄

(
γ

〈
f (xt) − f

(
p
)
, xt − p

〉
+

〈
γ f

(
p
) − Ap, xt − p

〉)

≤ γ α

γ̄

∥∥xt − p
∥∥2 +

1
γ̄

〈
γ f

(
p
) − Ap, xt − p

〉
,

which yields that

∥∥xt − p
∥∥2 ≤ 1

γ̄ − αγ

〈
γ f

(
p
) − Ap, xt − p

〉
. (3:3)

Since H is a Hilbert space and {xt} is bounded as t ® ∞, there exists a sequence {tn}

in (0, ∞) such that tn ® ∞ and xtn ⇀ x̄ ∈ H. By Lemma 3.1(b), we have ||xt − S(t)xt||

® 0 as t ® ∞. Since T has property (A) with respect to the family S, it follows that
xt − T(T )xt → 0 as t ® ∞ for all τ >0. Hence, by Lemma 2.2, x̄ ∈ F (T ) ⊆ F (S). By

(3.3), we see xtn → x̄. We next prove that x̄ solves the variational inequality (3.2).

From (3.1), we arrive at

(
A − γ f

)
xt = − 1

t
(I − tA) [xt − S (t) xt] .

For p ∈ F(T ), it follows from (2.4) that

〈(
A − γ f

)
xt, xt − p

〉
= − 1

t

〈
(I − tA) [xt − S (t) xt] , xt − p

〉

= − 1
t

〈[
(I − S (t)) xt − (I − S (t)) p

]
, xt − p

〉
+

〈
A(I − S(t))xt , xt − p

〉
≤ 〈

A (I − S (t)) xt, xt − p
〉
.
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Since xtn ⇀ x̄, we obtain〈(
A − γ f

)
x̄, x̄ − p

〉 ≤ 0,

i.e., x̄ satisfies the variational inequality (3.2). By the uniqueness, it follows x̄ = x∗.
In a summary, we have shown that each cluster point of {xt} (as t ® ∞) equals x*.

Therefore, xt ® x* as t ® ∞. The variational inequality (3.2) can be rewritten as〈[(
I − A + γ f

)
x∗] − x∗, x∗ − p

〉 ≥ 0, p ∈ F (T ) .

This, by Lemma 2.4, is equivalent to

PF(T )
(
I − A + γ f

)
x∗ = x∗.

This completes the proof. □
Theorem 3.3. (Inexact explicit scheme) Let H be a real Hilbert space H and

T = {T(t) : 0 ≤ t < ∞}be a family of nonexpansive self-mappings on H such that

F(T ) �= ∅, f : H ® H be an a-contraction and A be a strongly positive linear bounded

self-adjoint operator on H with the coefficient γ̄ > 0. Let {tn} be a positive real divergent

sequence and let 	 =
{
Stn : n ∈ N

}
be a sequence nonexpansive self-mappings on H

such that F (T ) ⊆ ∩n∈N F
(
Stn

)
. For x0 Î H, let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn) I − αnA) Stn (xn) + en, n ≥ 0 (3:4)

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1], and {en} is an error sequence in H satisfying the fol-

lowing conditions:

(R1) limn®∞ an = limn®∞ bn = 0 and
∑∞

n=0
αn = ∞,

(R2) lim
n→∞

‖en‖
αn

= 0.

Assume that 0 < γ < γ̄ /α and that
{
Stn (xn)

}
is an approximating fixed point

sequence of family T . Assume that x∗ ∈ F(T ), which solves the variational inequality

(3.2). Then {xn} strongly converges to x*.

Proof. Set yn = Stn(xn) . We divide the proof into three parts.

Step 1. Show the sequences {xn} and {yn} are bounded.

Noticing that limn®∞ an = limn®∞ bn = 0, we may assume, with no loss of generality,

that αn
1−βn

< ‖A‖−1 for all n ≥ 0. From Lemma 2.7, we know that

|| (1 − βn) I − αnA|| ≤ (1 − βn − αnγ̄ ). Noticing that x∗ ∈ F(T ), which solves the

variational inequality (3.2). By assumption (R2), we have that { ||en||
αn

} is bounded. Then,
there exists a nonnegative real number K such that

∥∥γ f
(
x∗) − Ax∗∥∥ +

‖en‖
αn

≤ K for all n ≥ 0.

From (3.4), we have

||xn+1 − x∗||
= ||αn

(
γ f (xn) − Ap

)
+ βn

(
xn − x∗) + ((1 − βn) I − αnA)

(
Stn (xn) − x∗) + en||

≤ αn||γ f (xn) − Ax∗|| + βn||xn − x∗|| + (1 − βn − αnγ̄ ) ||Stn (xn) − x∗|| + ||en||
≤ αnγ ||f (xn) − f

(
x∗) || + αn||γ f

(
p
) − Ap|| + βn||xn − x∗||

+ (1 − βn − αnγ̄ ) ||xn − x∗|| + ||en||

≤ [1 − αn (γ̄ − γ α)] ||xn − x∗|| + αn

(
||γ f (

p
) − Ap|| + ||en||

αn

)

≤ [1 − αn (γ̄ − γ α)] ||xn − x∗|| + αnK.
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By simple inductions, we see that

∥∥xn − x∗∥∥ ≤ max
{∥∥x0 − x∗∥∥ , K

γ̄ − γ α

}
= : R, (3:5)

which yields that the sequence {xn} is bounded. Note that

∥∥yn − x∗∥∥ ≤ ∥∥xn − x∗∥∥ ,
and hence the sequence {yn} is bounded.

Step 2. Show that

lim sup
n→∞

〈(
γ f − A

)
x∗, yn − x∗〉 ≤ 0,

where x* is the solution of the variational inequality (3.2).

Let D be the ball centered in x* and with radius R, i.e.,

D : =
{
w ∈ H :

∥∥w − x∗∥∥ ≤ max
{∥∥x0 − x∗∥∥ , K

γ̄ − γ α

}}
. (3:6)

From (3.5) we see that D is a nonempty closed convex bounded subset of H which is

T(t)-invariant for each t Î [0, ∞) and contain {xn}. Therefore, we assume, without loss

of generality, T = {T(t) : 0 ≤ t < ∞} is a family nonexpansive self-mappings on D.

Taking a suitable subsequence
{
yni

}
of {yn}, we see that

lim sup
n→∞

〈(
γ f − A

)
x∗, yn − x∗〉 = lim

i→∞
〈(

γ f − A
)
x∗, yni − x∗〉 .

Since the sequence {yn} is also bounded, we may assume that yni ⇀ x̄. Note that {yn}

is an approximating fixed point sequence of family T , i.e.,

lim
n→∞

∥∥yn − T (h) yn
∥∥ = 0 for all 0 ≤ h < ∞. (3:7)

Using (3.7) we obtain, from the demiclosedness principle, that x̄ ∈ F (T ). Therefore,

we have

lim sup
n→∞

〈(
γ f − A

)
x∗, yn − x∗〉 = 〈(

γ f − A
)
x∗, x̄ − x∗〉 ≤ 0. (3:8)

On the other hand, we have
∥∥xn+1 − yn

∥∥ ≤ αn
∥∥γ f (xn) − Axn

∥∥ + βn
∥∥xn − yn

∥∥ .
From the assumption limn®∞ an = limn®∞ bn = 0 that lim

n→∞
∥∥xn+1 − yn

∥∥ = 0, which

combines with (3.8) gives that

lim sup
n→∞

〈(
γ f − A

)
x∗, xn+1 − x∗〉 ≤ 0.

Step 3. Show xn ® x* as n ® ∞.

Since the sequence {xn} is bounded, we may assume a nonnegative real number L

such that ||xn − x*|| ≤ L for all n ≥ 0. Note that
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∥∥xn+1 − x∗∥∥2
= 〈αn(γ f (xn) − Ax∗) + βn(xn − x∗) + ((1 − βn) I − αnA)(yn − x∗) + en, xn+1 − x∗〉
= αn〈γ f (xn) − Ax∗, xn+1 − x∗〉 + βn〈xn − x∗, xn+1 − x∗〉
+ 〈((1 − βn)I − αnA)(yn − x∗) + en, xn+1 − x∗〉

≤ αn
(
γ 〈f (xn) − f (x∗), xn+1 − x∗〉 + 〈γ f (x∗) − Ax∗, xn+1 − x∗〉)

+ βn||xn − x∗|| ||xn+1 − x∗|| + ||(1 − βn)I − αnA|| ||yn − x∗|| ||xn+1 − x∗|| + ||en||L
≤ αnαγ ||xn − x∗|| ||xn+1 − x∗|| + αn〈γ f (x∗) − Ax∗, xn+1 − x∗〉
+ βn||xn − x∗|| ||xn+1 − x∗|| + (1 − βn − αnγ̄ )||xn − x∗|| ||xn+1 − x∗|| + ||en||L

= [1 − αn(γ̄ − γ α)]||xn − x∗|| ||xn+1 − x∗|| + αn
〈
γ f (x∗) − Ax∗, xn+1 − x∗〉 + ||en||L

≤ 1 − αn(γ̄ − γ α)
2

(||xn − x∗||2 + ||xn+1 − x∗||2) + αn〈γ f (x∗) − Ax∗, xn+1 − x∗〉 + ||en||L

≤ 1 − αn(γ̄ − γ α)
2

||xn − x∗||2 + 1
2

||xn+1 − x∗||2 + αn〈γ f (x∗) − Ax∗, xn+1 − x∗〉 + ||en||L.

It follows that

||xn+1−x∗||2 ≤ [1−αn(γ̄−γ α)]||xn−x∗||2+αn

(
2〈γ f (x∗) − Ax∗, xn+1 − x∗〉 + 2||en||

αn
L
)
.

By using Lemma 2.8, we can obtain the desired conclusion easily. □

4. Applications
4.1. Applications to zeros of maximal monotone operators

Let H be a real Hilbert space. Let A ⊂ H × H be an operator on H. The set D(A)

defined by D(A) = {x ∈ H : Ax �= ∅} is called the domain of A, the set R(A) defined by

R(A) = ∪x∈XAx is called the range of A and the set G(A) defined by

G(A) = {(x, y) ∈ H × H : x ∈ D(A), y ∈ Ax} is called the graph of A. An operator

A ⊂ H × H with domain D(A) is said to be monotone if for each xi ∈ D(A) and

yi ∈ Axi(i = 1, 2), we have 〈x1 − x2, y1 − y2〉 ≥ 0. A monotone operator A is said to be

maximal monotone if the graph G(A) is not properly contained in the graph of any

other monotone operator on H. If A : H → 2H is maximal monotone, then we can

define, for each l >0, a nonexpansive single-valued mapping JAλ : H → H by

JAλ = (I + λA)−1. It is called the resolvent of A. Let

N (A) = A−10 = {x ∈ D(A) : 0 ∈ Ax}. It is known that N (A) is closed and convex.

Lemma 4.1. ([22]) Let A ⊂ H × Hbe a maximal monotone operator. Then

1
r
||Jtx − JAr J

A

t x|| ≤ 1
t
||x − JAt x|| for all x ∈ H and r, t > 0.

Proposition 4.2 shows that the family {JAt : t > 0} of resolvent operators of a maxi-

mal monotone operator A enjoys property (A).

Proposition 4.2. Let A ⊂ H × Hbe a maximal monotone operator. Let

{zt}t>0 ∈ B(H)such that
∥∥zt − JAt zt

∥∥ → 0 as t ® ∞. Then
∥∥zt − JAr zt

∥∥ → 0 as t ® ∞

for each r > 0.

Proof. Let r, t >0. By Lemma 4.1, we have

1
r
||JAt zt − JAr J

A

t zt|| ≤ 1
t
||zt − JAt zt||. (4:1)
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Using (4.1), we have

||zt − JAr zt|| ≤ ||zt − JAt zt|| + ||JAt zt − JAr J
A

t zt|| + ||JAr JAt zt − JAr zt||
≤

(
2 +

r
t

)
||zt − JAt zt|| → 0 as t → ∞.

□
Given a monotone operator A ⊂ H × H, we consider the following problem of find-

ing z Î H such that:

0 ∈ Az. (P)

The Problem (P) can be regarded as a unified formulation of several important pro-

blems. For an appropriate choice of the operator A, Problem (P) covers a wide range

of mathematical applications; for example, variational inequalities, complementarity

problems, and non-smooth convex optimization. Problem (P) has applications in phy-

sics, economics, and in several areas of engineering. Therefore, one of the most inter-

esting and important problems in the theory of maximal monotone operators is to find

an efficient iterative algorithm to compute approximately zeroes of maximal monotone

operators. One method for finding zeros of maximal monotone operators is the proxi-

mal point algorithm. Let A be a maximal monotone operator in a Hilbert space H.

The proximal point algorithm generates, for starting x1 Î H, a sequence {xn} in H by

xn+1 = JArn xn for all n ∈ N, (4:2)

where {rn} is a regularization sequence in (0, ∞). Note that (4.2) is equivalent to

0 ∈ 1
rn
(xn+1 − xn) + Axn+1 for all n ∈ N.

This was first introduced by Martinet [23]. If ψ : H → R ∪ {∞} is a proper lower

semicontinuous convex function, then the algorithm reduces to

xn+1 = arg min
y∈H

{
ψ(y) +

1
2rn

||xn − y||2
}
for all n ∈ N.

Rockafellar [24] studied the proximal point algorithm in the framework of Hilbert

space and he proved the following:

Theorem 4.3. Let H be a Hilbert space and A ⊂ H × Ha maximal monotone opera-

tor. Let {xn} be a sequence in H defined by (4.2), where {rn} is a sequence in (0, ∞) such

that lim infn®∞ rn > 0. If A−10 �= ∅, then the sequence {xn} converges weakly to an ele-

ment of A−10.

Rockafellar [24] has given a more practical method which is an inexact variant of the

method

en ∈ xn − xn−1 + rnAxn,

where {en} is regarded as an error sequence. The method is called inexact proximal

point algorithm. It was shown in Rockafellar [24] that if en ® 0 quickly enough such

that
∑∞

n=1
||en|| < ∞, then xn ⇀ z Î H with 0 Î A(z). In 2002, Xu [12] modified the

proximal point algorithm for solving Problem (P) and gave strong convergence of the

algorithm in a Hilbert space setting under the same assumption
∑∞

n=1
||en|| < ∞.
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The criteria
∑∞

n=1
||en|| < ∞ imposed for convergence of inexact proximal point

algorithms (see [12,24]) is somewhat undesirable, because it impose increasing preci-

sion along the iterative process. This brings us to the following natural question:

Question 4.4. Is it possible to further modify inexact proximal point algorithm with-

out the assumption
∑∞

n=1
||en|| < ∞, so that it can generate a strongly convergent

sequence?

Recently, Sahu and Yao [25] introduced and studied the prox-Tikhonov method for

solving Problem (P) in the Banach space setting and they partially answered Question

4.4. We now establish more general results in the Hilbert space setting:

Theorem 4.5. Let H be a real Hilbert space H. Let A ⊂ H × Hbe a maximal mono-

tone operator with N (A) �= ∅, f : H ® H an a-contraction and A a strongly positive

linear bounded self-adjoint operator on H with the coefficient γ̄ > 0. Assume that

0 < γ < γ̄ /α and that {bt : t > 0} is a net in (0, ||A||−1) such that limt®∞ bt = 0.

Then {xt} defined by

xt = btγ f (xt) + (I − btA)JAt xt.

strongly converges as t ® ∞ to x∗ ∈ N (A), where x∗ ∈ PN (A)(I − A + γ f )x∗is a solu-

tion of the following variational inequality:

〈(γ f − A)x∗, p − x∗〉 ≤ 0, ∀p ∈ N (A). (4:3)

Proof. Set T (t) : = JAt for t >0. Then {T(t): t >0} is a family of nonexpansive mappings

with F(T(t)) = N (A) for each t > 0. Proposition 4.2 shows that the family{
JAt : t > 0

}
of resolvent operators enjoys property (A). Therefore, Theorem 4.5 fol-

lows from Theorem 3.2. □
Theorem 4.6. Let H be a real Hilbert space H. Let A ⊂ H × Hbe a maximal mono-

tone operator with N (A) �= ∅, f : H ® H an a-contraction and A a strongly positive

linear bounded self-adjoint operator on H with the coefficient γ̄ > 0. Assume that

0 < γ < γ̄ /α and {tn} is a positive real divergent sequence. For x0 Î H, let {xn} be a

sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnA)JAtn(xn) + en, n ≥ 0

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1] and {en} is an error sequence in H satisfying condi-

tions (R1) and (R2). Then {xn} strongly converges to x*, where

x∗ = PN (A)(I − A + γ f )x∗is a solution of the variational inequality (4.3).

Proof. Set Stn := JAtnand yn := Ssn (xn). Then it remains to show that {yn} is an approxi-

mating fixed point sequence of the family
{
JAt : t > 0

}
of resolvent operators of A. As

in the proof of Theorem 3.3, one can show that {xn} and {yn} are bounded. Then, there

positive real number M such that
∥∥xn − JAtn xn

∥∥ ≤ M for all n ≥ 0. For any fixed r > 0,

by Lemma 4.1, we have

||JAtn xn − JAr J
A

tn xn|| ≤ r
tn

||xn − JAtn xn||

≤ r
tn
M.
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Thus, in particular, we derive

||yn − JAr yn|| → 0 as n → ∞.

for all r >0. Therefore, Theorem 4.6 follows from Theorem 3.3. □
Theorem 4.6 is more general than results of Kamimura and Takahashi [26] and Xu

[12]. In particular, Theorem 4.6 provides an affirmative answer of Question 4.4 in the

context of finding solution of variational inequality (4.3).

4.2. Applications to equilibrium problems

Let H be a Hilbert space and G : H × H → R be an equilibrium function, that is

G (u, u) = 0 for every u ∈ H.

The equilibrium problem is defined as follows,

Find x̃ ∈ H such thatG
(
x, y

) ≥ 0 for all y ∈ H.

A solution x̃ of the equilibrium problem is called an equilibrium point and the set of

all equilibrium points will be denoted by EP(G). The topic has been considered by sev-

eral authors (see [27,28]). We shall assume some mild conditions over G in such a way

that results can be applied in several cases including optimization problems, fixed

point problems, variational problems, variational inequality problems, and convex vec-

tor minimization problems [29,30].

Lemma 4.7. ([29]) Let C be a nonempty closed convex subset of H and

G : C × C → Rsatisfy,

(A1) for all x Î C, G(x, x) = 0;

(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for all x, y Î C;

(A3) for all x, y, z Î C,

lim sup G
(
tz + (1 − t) x, y

) ≤ G
(
x, y

)
as t → 0;

(A4) for all x Î C, y a G(x, y) is convex and lower semicontinuous.

For × Î C and r >0, set Sr : H ® C to be the resolvent for G,

Sr(x) :=
{
z ∈ C : G(z, y) +

1
r

〈y − z, z − x〉 ≥ 0, ∀y ∈ C
}
,

then Sr is well defined and the following hold:

(1) Sr is single-valued;

(2) Sr is firmly nonexpansive, i.e.,

||Srx − Sry||2 ≤ 〈Srx − Sry, x − y〉,

for all x, y Î H;

(3) F(Sr) = EP(G);

(4) EP(G) is closed and convex.

In order to show that the family {St : t > 0} of resolvent operators of G enjoys prop-

erty (A), we need the following technical lemma.

Lemma 4.8. Let G be an equilibrium function satisfying the assumptions of Lemma

4.7. Then
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||St(x) − SrSt(x)|| ≤ r
t
||x − St(x)||

for all × Î H and r, t >0.

Proof. Let x, y Î H and r, t > 0. By the definition of St, we have

G(St(x), z) +
1
t
〈z − St(x), St(x) − x〉 ≥ 0,∀z ∈ H (4:4)

and

G(Sr(y), z) +
1
r
〈z − Sr(y), Sr(y) − y〉 ≥ 0,∀z ∈ H. (4:5)

Put z = Sr(y) in (4.4) and z = St(x) in (4.5), we obtain

G(St(x), Sr(y)) +
1
t
〈Sr(y) − St(x), St(x) − x〉 ≥ 0 (4:6)

and

G(Sr(y), St(x)) +
1
r
〈St(x) − Sr(y), Sr(y) − y〉 ≥ 0, (4:7)

respectively. Since G is monotone, from (4.6) and (4.7), we have
〈
St(x) − Sr(y),

Sr(y) − y
r

− St(x) − x
t

〉
≥ 0. (4:8)

Set y = St(x) in (4.8), we get
〈
St(x) − SrSt(x),

SrSt(x) − St(x)
r

− St(x) − x
t

〉
≥ 0

and hence

1
r
||St(x)−SrSt(x)||2 ≤

〈
St(x) − SrSt(x),

x − St(x)
t

〉
≤ 1

t
||St(x)−SrSt(x)|| ||x−St(x)||.

Therefore,

||St(x) − SrSt(x)|| ≤ r
t
||x − St(x)||.

□
From this, we deduce the property (A) for the family {St : t > 0} of resolvent opera-

tors of G.

Lemma 4.9. Let G be an equilibrium function satisfying the assumptions of Lemma

4.7. Then the family {St : t > 0} enjoys property (A).

Proof. Let {zt} ∈ B(H) such that zt − Stzt ® 0. Then, for any fixed r >0,

||zt − Srzt|| ≤ ||zt − Stzt|| + ||Stzt − SrStzt|| + ||SrStzt − Srzt||
≤

(
2 +

r
t

)
||zt − Stzt||

by nonexpansivity and Lemma 4.8. In particular, we derive that zt −Srzt ® 0 as t ®
∞. □
From this last and from Theorem 3.2, we have
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Theorem 4.10. Let H be a real Hilbert space H. Let G : H × H → Rbe an equili-

brium function satisfying the assumptions of Lemma 4.7 and let {St : t > 0} be the

family of resolvent operators for G. Let f : H ® H be an a-contraction and A be a

strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Assume that EP(G) ≠∅ and 0 < γ < γ̄ /α. Let {bt : t >0} be a net in (0, ||A||−1) such

that limt®∞ bt = 0. Then {xt} defined by

xt = btγ f (xt) + (I − btA)Stxt. (4:9)

strongly converges as t ® ∞ to x* Î EP(G), where x* = PEP(G))(I −A + gf)x* is a solu-

tion of the following variational inequality:

〈(γ f − A)x∗, p − x∗〉 ≤ 0, ∀p ∈ EP(G). (4:10)

Proof. Note that {St : t > 0} is a family of resolvent operators for G such that F (St) =

EP(G) for each t > 0. Lemma 4.9 shows that the family {St : t > 0} of resolvent opera-

tors of G enjoys property (A). Therefore, Theorem 4.10 follows from Theorem 3.2. □
Theorem 4.11. Let H be a real Hilbert space H. Let G : H × H → Rbe an equili-

brium function satisfying the assumptions of Lemma 4.7 and let {St : t >0} be the family

of resolvent operators for G such that EP(G) ≠∅. Let f : H ® H be an a-contraction
and A be a strongly positive linear bounded self-adjoint operator on H with the coeffi-

cient γ̄ > 0. Assume that 0 < γ < γ̄ /α and {tn} is a positive real divergent sequence.

For x0 Î H, let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnA)Stn(xn) + en, n ≥ 0 (4:11)

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1] and {en} is an error sequence in H satisfying condi-

tions (R1) and (R2). Then {xn} strongly converges to x* Î EP(G), where x* = PEP(G))(I −

A + gf)x* is a solution of the variational inequality (4.10).

Proof. Set yn : = Stn (xn). Then it remains to show that {yn} is an approximating fixed

point sequence of the family {St : t > 0} of resolvent operators of G. As in the proof of

Theorem 3.3, one can show that {zn} and
{
Stn (xn)

}
are bounded. Then, there positive

real number M such that ||xn − Stnxn|| ≤ M for all n ≥ 0. For any fixed r > 0, by

Lemma 4.8, we have

||Stnxn − SrStnxn|| ≤ r
tn
M.

In particular, we derive ||yn − Sryn|| ® 0 as n ® ∞. for all r >0. Therefore, Theorem

4.11 follows from Theorem 3.3. □
Theorem 4.11 extends the corresponding result of Song et al. [31] in the context of

the variational inequality (4.10).

4.3. Applications to common fixed point problems

In this section, we deduce some results by using Theorems 3.2 and 3.3. As a direct

consequence of Theorem 4.12, we first have the following result.

Theorem 4.12. Let H be a real Hilbert space H and T = {T(t) : 0 ≤ t < ∞}be a non-

expansive semigroup on H such that F(T ) �= ∅. Let f : H ® H be an a-contraction and

A be a strongly positive linear bounded self-adjoint operator on H with the coefficient

γ̄ > 0. Assume that 0 < γ < γ̄ /α and that {bt : t > 0} is a net in (0, ||A||-1) such

that limt®∞ bt = 0. Then {xt} define by
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xt = btγ f (xt) + (I − btA)
1
t

t∫
0

T(s) xtds.

strongly converges as t ® ∞ to x∗ ∈ F(T ), where x∗ = PF(T )(I − A + γ f )x∗is a solution

of the variational inequality (3.2).

Proof. Example 2.12 implies that nonexpansive semigroupT = {T(t) : t ∈ R+} has
property (A) with respect to a nonexpansive semigroup {σt : t ∈ R+}. Therefore, Theo-
rem 4.12 follows from Theorem 3.2. □
Remark 4.13. Theorem 4.12 which include the corresponding results of Shioji and

Takahashi [16]as a special case is reduced to Plubtieng and Punpaeng [14]when A = I,

the identity mapping and g = 1.

Theorem 4.14. Let H be a real Hilbert space H and T = {T(t) : 0 ≤ t < ∞}a nonex-

pansive semigroup such that F(T ) �= ∅. Let f : H ® H be an a-contraction and A a

strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Assume that 0 < γ < γ̄ /α and {tn} is a positive real divergent sequence. For x0 Î H,

let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnA)
1
tn

tn∫
0

T(s)xnds + en, n ≥ 0

where {an} ⊂ (0, 1], {bn} ⊂ [0, 1] and {en} is an error sequence in H satisfying condi-

tions (R1) and (R2). Then {xn} strongly converges to x∗ ∈ F(T ), where

x∗ = PF(T )(I − A + γ f )x∗is a solution of the variational inequality (3.2).

Proof. For eachn ∈ N, defineyn = Stn (xn). Note that {yn} is in a bounded set D defined

by (3.6). As in the the proof of Theorem 3.3, T = {T(t) : 0 ≤ t < ∞} is a semigroup of

nonexpansive self-mappings on D. It follows from Lemma 2.1 that {yn} is an approxi-

mating fixed point sequence of semigroup T . □
Remark 4.15. If g = 1 and A = I, the identity mapping, then Corollary 2.4 is reduced

to Theorem 3.3 of Plubtieng and Punpaeng [14].

If the sequence {bn} ≡ 0, then Theorem 4.14 reduces to the following:

Corollary 4.16. Let H be a real Hilbert space H and T = {T(t) : 0 ≤ t < ∞}be a non-

expansive semigroup such that F(T ) �= ∅. Let f : H ® H be an a-contraction and A be

a strongly positive linear bounded self-adjoint operator on H with the coefficient γ̄ > 0.

Assume that 0 < γ < γ̄ /α and {tn} is a positive real divergent sequence. For x0 Î H,

let {xn} be a sequence in H generated by

xn+1 = αnγ f (xn) + (I − αnA)
1
tn

tn∫
0

T(s)xnds + en, n ≥ 0

where {an} ⊂ (0, 1] and {en} is an error sequence in H satisfying the following

conditions:

(R3) limn®∞ an = 0 and
∑∞

n=0
αn = ∞,

(R4). lim
n→∞

‖en‖
αn

= 0

Then {xn} strongly converges to x∗ ∈ F(T ), where x∗ = PF(T )(I − A + γ f )x∗is a solution

of the variational inequality (3.2).
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Remark 4.17. Corollary 4.16 includes Theorem 2 of Shimizu and Takahashi [17]as a

special case.

Remark 4.18. Theorem 2.2 and Corollary 4.16 improve Theorems 3.2 and 3.4 of

Marino and Xu [10]from a single nonexpansive mapping to a nonexpansive semigroup,

respectively.

Using [[17], Lemma 1], we derive the following result, which generalizes Theorem 1

of Shimizu and Takahashi [17].

Corollary 4.19. Let H be a real Hilbert space H and let S, T : H ® H be two com-

muting nonexpansive mappings such that F(S) ∩ F(T ) ≠∅. Let f : H ® H be an a-con-
traction and A be a strongly positive linear bounded self-adjoint operator on H with the

coefficient γ̄ > 0 Assume that 0 < γ < γ̄ /α. For x0 Î H, let {xn} be a sequence in H

generated by

xn+1 = αnγ f (xn) + (I − αnA)
2

(n + 1)(n + 2)

n∑
k=0

∑
i+j=k

SiTjxn + en, n ≥ 0

where {an} ⊂ (0, 1] and {en} is an error sequence in H satisfying conditions (R3) and

(R4). Then {xn} strongly converges to x*Î F(S) ∩ F (T), where x* = PF(S)∩F(T)(I − A + gf)x*

is a solution of the following variational inequality:

〈(γ f − A)x∗, p − x∗〉 ≤ 0, ∀p ∈ F(S) ∩ F(T).
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