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glia cells
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Abstract

Lithium is the gold-standard treatment for bipolar disorder, a severe mental illness. A large body of evidence suggests that
inflammation plays a role in the pathogenesis of bipolar disorder and that mood stabilizers exhibit anti-inflammatory
properties. However, contradicting findings have also been reported. In this study, we examined the effects of lithium
on LPS-induced inflammation in rat primary glia cells. Cells were pre-treated with lithium (I or 10 mM) for 6 or 24 h, after
which, inflammation was induced by the addition of LPS (for another 18 h) to the culture medium. Thereafter, medium was
collected and cells were harvested for further analyses. Levels of TNF-a, IL1-f3 and PGE, were determined by ELISA and
NO levels by the Griess reaction assay. Expression levels of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS)
were examined by Western blot analysis. We found that pre-treatment with lithium 10mM (but not | mM) significantly
reduced LPS-induced secretion of TNF-g,, IL1-B, PGE, and NO. In addition, lithium significantly reduced the expression of
COX-2 and iNOS. These findings indicate that lithium exhibits a potent anti-inflammatory effect. However, it’s important to

emphasize that this effect was obtained mainly under treatment with an extra-therapeutic concentration of the drug.
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Introduction

Lithium is the classic pharmacotherapy for bipolar
affective disorder."? Bipolar disorder (manic-depressive
illness) is a severe and chronic mental illness, affecting
approximately 1%—1.5% of the general population.'*
It is characterized by alternating shifts of mania and
depression, both of which severely affect the mental,
physical, social and functional status of affected
patients.*> Lithium is the most useful mood stabilizer
for maintenance treatment of bipolar disorder.!*%’
The use of lithium is expected to further increase in
coming years as it has recently been suggested as a
treatment for other illnesses, including schizoaffective
disorder,? neurodegenerative  diseases, such as
Alzheimer’s disease’ ' and amyotrophic lateral sclero-
sis.'> Nevertheless, lithium therapy is complicated by
two significant factors: firstly, it has a narrow thera-
peutic index, necessitating close monitoring of drug
plasma concentration; and, secondly, it has several
side effects, some of which are severe and occasionally
irreversible.''?71?

The mechanism of action of lithium in the treatment
of bipolar disorder is not fully understood. Several
hypotheses have been suggested to explain its therapeu-
tic mechanisms;'®'® however, a conclusive mechanism
is still lacking.

Accumulating evidence suggests that lithium, and
other mood stabilizers, exhibit anti-inflammatory prop-
erties'” 2! and that inflammation contributes to the path-
ological processes underlying bipolar disorder.'® %
Moreover, inflammation has been extensively linked
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to the pathophysiology of depression.
neurological disorders, including schizophrenia,
Alzheimer’s disease,”>*>*® Parkinson’s disease*’ and
epilepsy*® have also been associated with inflammation.
The mechanism of the inflammatory responses involved
in these illnesses is poorly understood. It is suggested that
pro-inflammatory mediators, including prostaglandins
(PGs), cytokines (e.g. IL1-p and TNF-a) and C-reactive
protein play an important role. For example, bipolar
patients had increased levels of pro-inflammatory medi-
ators such as IL-6,2%%%% TNF-0>>?%?° and C-reactive
protein.?***232% n addition, monocytes of bipolar
patients were found to have a gene expression signature
characterized by overexpression of multiple inflamma-
tory genes.?’ Bipolar disorder has also been associated
with altered regulation and synthesis of PGs.'%-2!:26:27
The results regarding anti-inflammatory cytokines,
such as IL-4 and IL-10 have been less consistent.?**’
The connection between mood disorders and inflamma-
tion is further strengthened by a large body of evidence
suggesting that patients with depression have increased
levels of pro-inflammatory mediators,>>303333.36:41
while levels of anti-inflammatory cytokines are
unchanged,?®**** or either reduced.*' Similarly, depres-
sion is characterized by alterations in the production and
regulation of PGs.'”?!% Taken together, these, and
other observations, laid the foundation for the rapidly
developing ‘inflammation hypothesis’ of mood
disorders, 20:21:31.33.49

One of the cellular pathways that has been extensively
linked with brain inflammation and the pathophysiol-
ogy of mood disorders is that of the enzyme cyclooxy-
genase (COX),'”! which produces PGs. PGs (such as
PGE,) are pivotal mediators of tissue homeostasis and
their aberrant regulation is known to cause deleterious
pathophysiological effects.”®>! The biosynthesis of PGs
involves phospholipase A,-mediated release of arachi-
donic acid (AA) from membrane phospholipids and its
conversion to PGs by COX.>*! There are three COX
enzymes, referred to as COX-1, COX-2 and COX-3.
COX-1 produces PGs that are important for homeostasis
and physiological functions and is expressed constitutively
in most tissues.” COX-2 is an inducible enzyme, whose
induction is believed to be a response to inflammatory or
mitogenic stimuli.>> Nevertheless, it’s known that COX-1
and COX-2 have some over-lapping functions and that, in
certain conditions, COX-1 can be up-regulated and con-
tribute to inflammatory responses,”>* while COX-2 is
constitutively expressed in some tissues (e.g. endothelium,
brain and kidney) where it accounts for important physi-
ological functions.”*> The regulation and function of
COX-3 are still unknown.

Another pathway that is associated with brain
inflammation is that of NO.%*>® In the brain, NO is syn-
thesized constitutively in post-synaptic neurons by the
enzyme neuronal NO synthase (nNOS).>” Alternatively,
after inflammatory stimuli, NO is produced in glia cells

by the enzyme inducible NOS (iNOS).° NO is a very
active signalling molecule of the brain, associated with
multiple cellular processes and signal transduction path-
ways.>® Although it has been suggested that NO plays a
role in the pathophysiology and treatment of bipolar
disorder,””*% the results show an inconsistent pattern.

In line with the ‘inflammation hypothesis’ of mood
disorders, mood-stabilizing drugs were found to exhibit
potent anti-inflammatory properties.'” ' Rapoport
et al. have shown that mood stabilizers decrease
brain concentration of PGE, and attenuate the turn-
over of AA."?' For example, chronic lithium admin-
istration decreased AA turnover, COX-2 activity
and PGE, concentration in the rat brain.®!
Similarly, chronic treatment with valproate®® and
Carbamazepine®® reduced AA turnover, COX-2 activ-
ity and PGE, levels in rat brain, and chronic
Lamotrigine administration decreased COX-2 expres-
sion in rat frontal cortex.®* Consistent with a role for
AA metabolites in the pathogenesis of bipolar disorder
and the therapeutic mechanisms of mood-stabilizing
drugs, treatment with celecoxib, a selective COX-2
inhibitor was found to be beneficial in a double-blind,
placebo-controlled  trial of bipolar patients.*’
Similarly, in double-blind trials of patients with
major depression®? and schizophrenia,*** treatment
with selective COX-2 inhibitors led to favourable
effects. Furthermore, it was shown that chronic treat-
ment with celecoxib alleviated depressive-like symp-
toms in rats and reversed the elevation in COX-2
expression and PGE, levels in the brain.®® It has
also been suggested that antipsychotic*® and antide-
pressant drugs®®®’” confer anti-inflammatory proper-
ties. Alternatively, other studies, mostly conducted in
non-brain cells, have given inconsistent results with
regard to the effect of mood stabilizers on components
of the inflammatory response. For example, in contrast
to previous reports®’*®* that found lithium and valpro-
ate to decrease COX-2 protein levels in rat brain, lith-
ium was found to enhance expression of COX-2 in
renal and mammary cells.®*%® Another study showed
that the effect of lithium on COX-2 expression is tissue-
specific, as it reduced expression in kidney inner
medulla but increased expression in the renal
cortex.”® Thus, although many reports demonstrated
that lithium attenuates the inflammatory response, con-
tradictory findings have also been reported.

The present study was undertaken to test the effects of
lithium on LPS-induced inflammation in rat primary
glia cells. Glia cells (microglia, astrocytes and oligoden-
drocytes) play a pivotal role in immune and inflamma-
tory processes of the brain.”"-”* Microglia are the CNS
equivalent of macrophages. They inspect the brain for
tissue damage and infection and help in maintaining
brain homeostasis by removing toxic debris and dead
cells. In response to an inflammatory stimulus such as
LPS, microglia release multiple inflammatory mediators
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(such as NO, TNF-a and PGE,).”"7* Astrocytes are
supportive to neurons and allow them to function prop-
erly.”"""? Moreover, by producing growth factors and
removing toxic cell debris, astrocytes enhance the
viability and survival of neurons. Similarly to microglia,
the induction of astrocytes by inflammatory stimuli
induces morphological changes, followed by secretion
of inflammatory mediators. Oligodendrocytes are
pivotal for normal electrical communication between
neurons.””> They produce myelin which covers axons
and facilitate the conduction of electrical impulses.’?
Therefore, primary glia cells are a model system that is
highly relevant to the study of neurological disorders,
including manic-depressive illness.

Materials and methods
Primary rat glia culture

Primary cultures of mixed glia cells were extracted from
Wistar newborn (0-24h) rat brains. The procedures
were used in accordance with the Guidelines of the
Faculty of Health Sciences Committee on the Use and
Care of Laboratory Animals (Authorization # IL-04-01-
2009). Glia cells extraction was performed as previously
described.” Briefly, brains were removed under sterile
conditions and washed four times with sterile 0.9%
NaCl solution. Then, meninges and blood vessels were
removed and the brains were minced, passed through a
steel mesh (with 280 pm diameter clefts) and then
through nylon sieves (120 um pore size) to obtain
single cells. The dissociated cells were pelleted twice by
centrifugation at a low speed (1200 g) and washed with
saline. The final cell suspension was in a high glucose
(4.5%) DMEM containing 10% inactivated FCS, anti-
biotics (penicillin 100 unit/ml and streptomycin 100 pg/
ml), 2mM L-glutamine and 0.2 unit/ml insulin (regular).
After cell count with a coulter, 10° cells/ml were seeded
in 24-well plates that were coated with 0.01 mg/ml poly-
L-lysine. The plates were incubated at 37°C in an atmo-
sphere of 5% CO; in air. The medium was replaced after
1-3d and once a wk thereafter. After 2-3 wk, when the
cultures were almost free of neurons and contained
mainly glia cells, experiments were conducted. For
instance, at this stage, cultures contain >95% glia cells
(~80% astrocytes, ~15% microglia) and less than 5%
neurons, as described previously.’”

Experimental procedure

Escherichia coli LPS (Sigma) was used to induce
inflammation in glia cultures. Lithium was used at the
following concentrations: 1 mM and 10 mM. We exam-
ined the effects of lithium on LPS-induced secretion of
inflammatory mediators (including TNF-o, IL-1,
PGE, and NO) to the culture medium. Moreover, we
determined the effect of lithium on expression level of

COX-2 and iNOS—enzymes that are induced during
inflammatory processes in the brain. Cells were treated
with lithium for 6 h or 24 h before the addition of LPS to
the culture medium, after which, LPS was added for
another 18 h. Subsequently, samples were collected and
stored at —20°C for further determination.

Determination of TNF-, IL-1 8 and PGE, levels

Samples were assayed for TNF-o, IL-18 and PGE,
protein content using ELISA kits, according to the
manufacturer’s protocols (R&D Systems). The optical
density of standard and unknown samples was deter-
mined by using a spectrophotometer set to 450 nm.
The detection limit of TNF-a and IL-1p assays was
62.5 pg/ml. The detection limit of the PGE, assay was
39 pg/ml. In the samples where the level of the examined
inflammatory mediator was below the detection limit,
results were expressed as “‘undetectable’.

Determination of NO levels

Levels of NO in culture medium were determined by
measuring the concentrations of nitrite (NO, ), a
stable metabolite of NO, using the Griess reaction
assay.’® One hundred pl of samples and standard solu-
tion of known concentrations of NaNO, (0.39—12.5 uM)
were transferred into a 96-well plate. These were mixed
with an equal volume of Griess reagent (Sigma, St Louis,
MO, USA), which contains 1% sulfanilamide and 0.1%
N-1-naphthylethylendiamine  dihydrochloride. The
plate was incubated in the dark at 20-24°C for 15 min.
The absorbance of the reaction products was measured
at 540 nm using a spectrophotometer.

Western blot analysis

Glia cells were grown in small, poly-L-lysine-coated
flasks, with 6x10° cells seeded on each flask. Cells
were harvested and lysed in 200 pl ice-cold lysis buffer
[50 mM Tris HCI pH 7.5, ImM EDTA, 1 mM EGTA,
Triton X-100 (0.1% w/v), S0mM NaF, I mM sodium
vanadate, 1 mM PMSF, 1 uM leupeptin, 20 u/ml apro-
tinin]. Lysates were transferred to Eppendorf tubes and
incubated for 8 min on ice. Extracts were then centri-
fuged at 12,000 g, for 15min at 4°C. Protein concentra-
tion in samples (supernatants) was determined by the
method of Bradford.”” Aliquots of samples, reconsti-
tuted with appropriate amounts of Laemmli’s loading
buffer and boiled for 5min, were resolved (40 pug pro-
tein/well) on 10% SDS-polyacrylamide gels and trans-
ferred onto nitrocellulose membranes (BioRad,
Hercules, CA). Membranes were briefly exposed to
Ponceau buffer to verify the transfer of protein to the
membranes. Membranes were incubated 18-20h (at
4°C) with primary antibodies against COX-2 and
iNOS (Cayman, Ann Arbor, MI), followed by
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incubation for 1 h with a HRP-conjugated secondary
Ab  (Jackson  Immuno-Research  Laboratories,
Baltimore, PA). Actin was used as an internal control
to normalize for loading variations and was detected
using an anti-actin Ab (MP Biomedicals, Solon, OH).
Immunocomplexes were visualized by enhanced chemi-
luminescence, using exposure to Fuji medical x-ray film
for 5sec. Bands were quantified by densitometric scan-
ning using a 202D Bio Imaging System (Pharmacia,
Bridgewater, NJ) with a Fuji-Film Thermal Imaging
System FTI-500 (Fuji, Tokyo, Japan) and TINA soft-
ware (Raytest, Straubenhardt, Germany).

Presentation of the data and statistical analysis

Each figure represents one out of several independent
experiments (numbers are indicated in legends) in
which similar results were obtained. In TNF-a, IL-1p,
PGE, and NO experiments, each treatment group (e.g.
Control, LPS) included 6-12 samples (wells). In each
blot of a COX-2 or iNOS experiment, each treatment
group represents one sample (flask). Figures of iNOS
and COX-2 expression represent six independent exper-
iments (blots). Results are expressed as mean + SEM.
Statistical evaluation of the results was carried out using
a two-tailed student’s z-test. Values of P <0.05 were
considered statistically significant.

Results

Dose-dependent effect of LPS on secretion of NO,
TNF-o, IL-1 8 and PGE, levels

Increasing concentrations of LPS (5-10,000 ng/ml) were
added to the culture medium, which was collected 18 h
after LPS administration. As seen in Figure 1, at a con-
centration of 100 ng/ml, LPS caused a prominent increase
in NO (A), TNF-a (B) and IL-1p (C) secretion, which was
similar to that reached under treatment with higher con-
centrations. Therefore, we decided to use 100 ng/ml LPS
as the working concentration for NO, TNF-o and IL-1f
experiments. On the other hand, LPS at 10-1000 ng/ml
did not lead to prominent PGE, secretion (Figure 1D), as
PGE, levels were low and significantly lower than those
obtained under treatment with 5000 ng/ml LPS. Hence,
we decided to use 5000 ng/ml LPS as the working concen-
tration for PGE, induction.

Time-dependent effect of LPS on secretion of NO,
TNF-oc and PGE; levels

These experiments aimed to determine the time-response
curves of inflammatory mediator secretion after induc-
tion with LPS. As seen in Figure 2, NO (A) levels
peaked at 18h, while TNF-a (B) levels peaked at 12h
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Figure |. Dose-dependent effects of LPS on NO, TNF-a, IL-13 and PGE, secretion. Primary rat glia cells were treated with 10—

10,000 ng/ml LPS for 18 h. NO (A) levels were determined by the Griess reaction assay and TNF-a (B), IL-13 (C) and PGE; (D) levels by
ELISA. The data express the results of one out of three independent experiments with similar results. Values are mean £ SEM of 6—12

samples. UD, undetectable.
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after LPS 100 ng/ml exposure. Moreover, PGE, secre-
tion (Figure 2C) gradually increased reaching its peak at
30 h of LPS exposure. Based on these results, we decided
to examine the effects of lithium on secretion of inflam-
matory mediators at 18 h post LPS induction. This is
because at 18 h post-LPS induction, the levels of all the
examined inflammatory mediators were prominently
elevated.

Effects of lithium on LPS-induced secretion of NO,
TNF-a, IL-18 and PGE,

To test the effect of lithium on LPS (100 ng/ml)-induced
secretion of NO, TNF-o and IL-1B, cells were
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Figure 2. Time-dependent effects of LPS on NO, TNF-o and
PGE, secretion. Primary rat glia cells were treated with 100 ng/ml
LPS (A, B) or 5 pg/ml LPS (C) for the indicated times, at which
media was collected for NO (A), TNF-a (B) and PGE, (C) deter-
mination. The NO levels were determined by the Griess reaction
assay and TNF-ao and PGE, levels by ELISA. The data express
the results of one out of three independent experiments with
similar results. Values are mean £ SEM of 6—12 samples. UD,
undetectable.

treated with lithium for 6 h or 24 h before the addition
of LPS to the culture medium. The rationale behind the
use of this experimental protocol was to resemble an
acute (6h) and ‘chronic’ (24h) lithium treatment. As
seen in Figure 3, pretreatment with 1 mM lithium for
6h (A) and 24h (B) before LPS did not significantly
alter LPS-induced secretion of NO. On the other hand,
pretreatment with 10 mM lithium for 6 h (C) and 24 h
(D) significantly reduced LPS-induced secretion of NO.
Similarly, as seen in Figure 4, pretreatment with 1 mM
lithium for 6h (A) and 24h (B) did not reduce LPS-
induced secretion of TNF-a. On the other hand, pre-
treatment with 10 mM lithium for 6 h (C) and 24h (D)
significantly reduced LPS-induced secretion of TNF-a.
Moreover, as seen in Figure 5, pretreatment with 1 mM
lithium for 6h (A) significantly reduced LPS-induced
secretion of IL-1pB. Likewise, pretreatment with 10 mM
lithium for 6 h (C) and 24 h (D) also significantly reduced
LPS-induced secretion of IL-1f. Contrastingly, | mM
lithium did not alter IL-1f levels when the drug was
given 24 h before LPS (B). Furthermore, similar results
were obtained in regard to the effect of lithium on
LPS (5000 ng/ml)-induced secretion of PGE,. In these
experiments, we used ibuprofen (a non-selective COX
inhibitor) as a positive control. As seen in Figure 6,
pretreatment with 1 mM lithium for 6h (A) and 24h
(B) did not significantly alter LPS-induced secretion
of PGE,. Alternatively, pretreatment with 10mM
lithium for 6h (C) and 24 h (D) significantly reduced
LPS-induced secretion of PGE,. In all PGE,
experiments, ibuprofen totally abolished LPS-induced
secretion of PGE,.

Taken together, these results generally indicate that,
while a therapeutically relevant concentration of lithium
(1mM) did not reduce LPS-induced secretion of the
tested inflammatory mediators, a higher concentration
(10 mM) significantly reduced the levels of all of them
(NO, TNF-q, IL-1P and PGE.,).

Effects of lithium on LPS-induced expression
of INOS and COX-2

These experiments were conducted in order to examine
whether the effects of lithium on LPS-induced secretion
of NO and PGE, are caused by the suppression of iNOS
and COX-2 expression. Lithium was added to the
culture medium at 6h before treatment with LPS
(5000 ng/ml), and LPS was added for another 18h.
As seen in Figure 7, lithium alone did not alter iNOS
expression and was similar to control. Pretreatment with
lithium (1 or 10 mM) significantly reduced LPS-induced
expression of iNOS. Moreover, the effects of lithium on
COX-2 expression were similar to its effect on iNOS. As
seen in Figure 8, lithium alone did not significantly alter
COX-2 expression and was similar to control.
Pretreatment with lithium 10 mM (but not | mM) signif-
icantly reduced LPS-induced expression of COX-2.
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Figure 3. Effect of lithium on LPS-induced secretion of NO. Primary rat glia cells were pretreated with lithium | mM (A, B) or 10 mM
(C, D) for 6 h (A, C) or 24 h (B, D) before the addition of LPS (100 ng/ml) for another 18 h. The NO levels were determined by the

Griess reaction assay. The data express the results of one out of five independent experiments with similar results. Values are mean +
SEM of 6—12 samples. UD, undetectable. #P < 0.05 vs. Control, *P < 0.05 vs. LPS.
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Figure 4. Effect of lithium on LPS-induced secretion of TNF-o. Primary rat glia cells were pretreated with lithium | mM (A, B) or
10mM (C, D) for 6 h (A, C) or 24 h (B, D) before the addition of LPS (100 ng/ml) for another 18 h. The TNF-a. levels were determined by
ELISA. The data express the results of one out of three independent experiments with similar results. Values are mean + SEM of 6—12
samples. UD, undetectable. #P < 0.05 vs. Control, *P < 0.05 vs. LPS.
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Figure 5. Effect of lithium on LPS-induced secretion of IL-1 3. Primary rat glia cells were pretreated with lithium | mM (A, B) or |0 mM
(C,D) for 6h (A, C) or 24 h (B, D) before the addition of LPS (100 ng/ml) for another 18 h. The IL-1f levels were determined by ELISA.
The data express the results of one out of three independent experiments with similar results. Values are mean £ SEM of 6—12 samples.
UD, undetectable. #P < 0.05 vs. Control, *P < 0.05 vs. LPS.
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Figure 6. Effect of lithium on LPS-induced secretion of PGE,. Primary rat glia cells were pretreated with lithium | mM (A, B) or |0 mM
(C,D) for 6h (A, C) or 24 h (B, D) before the addition of LPS (5 pig/ml) for another 18 h. Ibuprofen (Ibu.) 100 tM was administered at the
same time as lithium and served as a positive control. PGE, levels were determined by ELISA. The data express the results of one out of
three independent experiments with similar results. Values are mean + SEM of 6—12 samples. #P < 0.05 vs. Control, *P < 0.05 vs. LPS.
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Figure 7. Effect of lithium on iNOS expression. Primary rat glia cells were treated with lithium | or 10 mM at 6 h before LPS (5 pig/ml)
induction for 18 h. Thereafter, cells were lysed as described in ‘Materials and methods’ and aliquots of total cell protein (40 pig per lane)
were separated on 10% SDS/polyacrylamide gel. The iNOS protein was identified with a specific anti-INOS Ab. Actin was used as an
internal control to normalize for loading variations. (A) An immunoblot of iINOS expression representing one experiment. (B)
Quantitative analysis of six immunoblots showing that pretreatment with lithium (I or 10 mM) significantly reduced LPS-induced
expression of iINOS. Bars represent mean + SEM of relative iNOS expression, quantified densitometrically from 6 independent
experiments. Owing to variations in LPS-induced expression of iNOS in different experiments, the level of expression induced by LPS in
each experiment was arbitrarily expressed as |. UD, undetectable. #P < 0.05 vs. Control, "P < 0.05 vs. LPS.

Discussion

The major finding of our study is that lithium reduced
LPS-induced inflammation in rat primary glia cells. This
confirms previous reports in which lithium reduced LPS-
induced inflammation in mouse glia cells.”®”® Lithium
reduced production of the pro-inflammatory mediators
NO, TNF-a, IL-1B and PGE, after stimulation with
bacterial endotoxin. Moreover, lithium attenuated
LPS-induced expression of iNOS and COX-2, which
generate NO and PGE,, respectively.

The accepted therapeutic level of lithium in bipolar
patients is 0.6-1.2mM. It is important to emphasize
that, in the current study, the anti-inflammatory effects
of lithium were obtained at a concentration of 10 mM,
which is extra-therapeutic but widely used in lithium’s
pharmacology research. At a therapeutically-relevant
concentration (I mM), lithium did not significantly
reduce LPS-induced inflammation. It is worth noting
that other studies that reported a significant anti-inflam-
matory effect for lithium after LPS induction also used
extra-therapeutic concentrations (10-20mM) of the
drug.”® 8" Moreover, the therapeutic efficacy of lithium
is observed mainly when it is given as a prophylactic
treatment against recurrent manic, or depressive,

episodes."* The acute clinical effect of lithium alone on
mania or depression is low. Thus, if (brain) inflamma-
tion is indeed associated with clinical exacerbations, a
therapeutic effect of lithium may necessitate much
higher doses than those given for prophylactic treat-
ment. This may explain why high doses of lithium are
necessary in order to observe a potent anti-inflammatory
effect.

Interestingly, Bosetti et al. have shown that chronic
treatment with lithium, which led to a therapeutically-
relevant plasma concentration (0.74 + 0.03 mM), signif-
icantly reduced COX-2 activity and PGE, levels in rat
brain.! The discrepancy between the results of our
study and those of the previous report®’ may stem
from methodological differences. Importantly, Bosetti
et al. did not examine the effects of lithium on LPS (or
other inflammatory stimuli)-induced inflammation, but
rather determined its effects on basal COX-2 activity and
PGE, levels.®! In addition, in their study, lithium was
administered for a total duration of 6 wk. Therefore,
although in our study lithium 1mM did not cause
a significant reduction in secretion of inflammatory
mediators and  expression of inflammatory-
associated enzymes (except for iNOS), a long-term
exposure to lithium (as in bipolar patients) may still
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Figure 8. Effect of lithium on COX-2 expression. Primary rat glia cells were treated with lithium | or I0 mM at 6 h before LPS (5 pg/ml)
induction for 18 h. Thereafter, cells were lysed as described in ‘Materials and Methods’ and aliquots of total cell protein (40 g per lane)
were separated on 10% SDS/polyacrylamide gel. COX-2 protein was identified with a specific anti-COX-2 Ab. Actin was used as an
internal control to normalize for loading variations. (A) An immunoblot of COX-2 expression representing one experiment. (B)
Quantitative analysis of six immunoblots showing that pretreatment with lithium 10 mM significantly reduced LPS-induced expression of
COX-2. Bars represent mean + SEM of relative COX-2 expression, quantified densitometrically from six independent experiments.
Owing to variations in LPS-induced expression of COX-2 in different experiments, the level of expression induced by LPS in each
experiment was arbitrarily expressed as |. P < 0.05 vs. Control, *P < 0.05 vs. LPS.

lead to significant anti-inflammatory effects. This may
also be true as in our experimental protocol, LPS was
used to induce an acute inflammatory response. The
magnitude of a possible (chronic) inflammatory process
in bipolar patients is not necessarily as high as the one
induced by an acute LPS stimulation in vitro. A lower
magnitude inflammatory response may be well ‘con-
tained” by chronic treatment with 1 mM lithium. In
our study, lithium was administered at 6h and 24h
before exposure to LPS. The rationale for using
these two times was to mimic a short-term (acute) and
a long-term (chronic) treatment protocols. We are aware
that treatment with lithium for a total of 42h is not a
typical ‘chronic’ treatment protocol; however, we aimed
to prolong, as much as possible, the exposure time to
lithium in order to examine whether a time-dependent
effect exists. Although the results indicate that there is no
significant difference between the two treatment courses
(pretreatment with lithium for 6 h versus 24 h), it cannot
be ruled out that a long-term (4-6 wk) treatment proto-
col will lead to different results. On the other hand, it is
possible that even a long-term treatment with lithium
1 mM will not lead to potent (significant) anti-inflamma-
tory effects. We could not conduct a long-term treatment
protocol because of a technical limitation—when we

begin experiments with the primary glia cultures, cells
are already 2—-3 wk old (after extraction) and they remain
viable for another 1-2 wk. This does not allow conduc-
tion of a long-term (4-6 wk) treatment protocol with
lithium.

Nevertheless, the results of our study support the
accumulating evidence indicating that lithium and
other mood-stabilizing drugs®' ***"* exert anti-inflam-
matory properties and that inflammation may contrib-
ute to the pathophysiological mechanisms underlying
bipolar disorder.*

The precise mechanism by which lithium inhibits
inflammation is not known. Several pharmacological
properties of lithium may account for its anti-inflamma-
tory effect. For example, lithium inhibits the multi-func-
tional enzyme glycogen synthase kinase-3 (GSK-
3).178586 Inhibition of GSK-3 has been associated with
attenuation of inflammatory responses in different
experimental models.”* **%7°0  Consistently, lithium
inhibition of GSK-3 led to a significant reduction in
the secretion of inflammatory mediators and expression
of inflammatory enzymes.”® %% Relevant to the present
study, Jope and co-workers have shown that lithium
(20mM) significantly reduced LPS-induced secretion
of IL-6 in mouse primary astrocytes’® and decreased
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the levels of IL-6, NO, iNOS and COX-2 in mouse
microglia BV-2 cells.”” Moreover, inhibition of GSK-3
by lithium was found to decrease the transcriptional
activity of NFx-B,5*%7 which may explain the anti-
inflammatory effect of lithium. Other pharmacologi-
cal effects of lithium may also contribute to its anti-
inflammatory activity.

Cytokines such as IL-1 and TNF-a affect cognition,
learning and memory. Furthermore, considerable data
associated cytokines to CNS neurotransmission and
behavior. For example, TNF-a has been reported to
reduce serotonin availability in the synaptic cleft by
increasing the activity of serotonin transporter.”!
Contrastingly, IL-1 was shown to stimulate the release
of serotonin, norepinephrine and dopamine in rat hypo-
thalamus.”” These findings suggest that cytokines play a
role in brain function and affect behavior. We examined
the effects of lithium on LPS-induced secretion of IL-13
and TNF-a. Lithium 1 and 10 mM significantly reduced
IL-1p levels. This result was consistent in multiple exper-
iments, irrespective of the pretreatment time with lith-
ium (6h or 24h). Therefore, the inhibitory effect of
lithium on IL-1P secretion may exert a therapeutic
effect. On the other hand, only at a concentration of
10mM did lithium significantly reduce TNF-a levels;
at a concentration of 1mM, lithium significantly
increased TNF-a levels. The mechanism underlying the
difference in the effect of lithium on IL-1p and TNF-a is
not understood. However, the increase in TNF-a levels
under treatment with 1 mM lithium is consistent with
previous reports in which therapeutic concentrations
of lithium significantly increased plasma TNF-a levels
in bipolar patients.”*** Furthermore, the mood stabi-
lizer valproate has been shown to reduce the release of
TNF-a, interferon-y, NO and reactive oxygen species in
primary rat neuron-glia cultures.®® Another study
showed that valproate reduces TNF-o and IL-6 produc-
tion.®! In our study, lithium 1 and 10mM led to a sig-
nificant reduction in LPS-induced iNOS expression.
However, only lithium 10mM significantly decreased
LPS-induced secretion of NO. In this regard, it is
worth noting that the effect of lithium 1 mM on expres-
sion of iINOS (and COX-2) was not consistent in all
experiments that we conducted. In most of the experi-
ments, lithium 1mM did not reduce LPS-induced
expression of iINOS and COX-2. However, in some
experiments it did reduce the enzyme expression. This
discrepancy in lithium’s effect explains the relatively
large standard errors seen in Figures 7 and 8 (iNOS
and COX-2, respectively). We do not know the exact
reason for this inconsistency, however, a different mag-
nitude response-to-LPS may be a partial explanation.
Namely, that the same LPS concentration led to a dif-
ferent extent expression of iNOS and COX-2 in various
experiments.

In summary, the present study demonstrates that lith-
ium (10mM) reduced LPS-induced inflammation in

primary rat glia cells. More research is needed to eluci-
date the exact association between brain inflammation
and the pathogenesis of bipolar disorder and the mech-
anisms by which mood stabilizers inhibit inflammation.
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