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Abstract

The global asymptotical synchronization problem is discussed for a general class of
uncertain stochastic discrete-time neural networks with time delay in this paper. Time
delays include time-varying delay and distributed delay. Based on the drive-response
concept and the Lyapunov stability theorem, a linear matrix inequality (LMI) approach
is given to establish sufficient conditions under which the considered neural
networks are globally asymptotically synchronized in the mean square. Therefore, the
global asymptotical synchronization of the stochastic discrete-time neural networks
can easily be checked by utilizing the numerically efficient Matlab LMI toolbox.
Moreover, the obtained results are dependent not only on the lower bound but also
on the upper bound of the time-varying delays, that is, they are delay-dependent.
And finally, a simulation example is given to illustrate the effectiveness of the
proposed synchronization scheme.

Keywords: synchronization; discrete-time neural networks; time-varying delays;
distributed delays; Lyapunov functional method; stochastic delayed dynamical system

1 Introduction

Since Chua and Yang in [1, 2] proposed the theory and applications of cellular neural net-
works, the dynamical behaviors of neural networks have attracted a great deal of research
interest in the past two decades. Those attentions have mainly concentrated on the sta-
bility and the synchronization problems of neural networks (see [3—28]). Especially after
synchronization problems of chaotic systems had been studied by Pecora and Carroll in
[29, 30], in which they proposed the drive-response concept, the control and synchroniza-
tion problems of chaotic systems have been thoroughly investigated [5-8, 14—18, 31-35].
And many applications of such systems have been found in different areas, particularly in
engineering fields such as creating secure communication systems (see [33—35]). As long
as we can reasonably design the receiver so that the state evolution of the response sys-
tem synchronize to that of the driven system, the message obtained by the receiver can be
hidden in a chaotic signal, hence, secure communication can be implemented.

It is well known that neural networks, including Hopfield neural networks (HNNs) and
cellular neural networks (CNNs), are large-scale and complex nonlinear high-dimensional
systems composed of a large number of interconnected neurons. And they have also been
found effective applications in many areas such as image processing, optimization prob-
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lems, pattern recognition, and so on. Therefore, it is not easy to achieve the control and
synchronization of these systems. In [8, 16, 19, 22], by drive-response method, some re-
sults are given for different type neural networks to guarantee the synchronization of drive
system and response system in the models discussed. It is easy to apply those results to real
neural networks. And in [5-7, 18], synchronization in an array of linearly or nonlinearly
coupled networks has been analyzed in details. The authors studied the global asymp-
totic or exponential synchronization of a complex dynamical neural networks through
constructing a synchronous manifold and showed that it is globally asymptotically or ex-
ponentially stable. To the best of our knowledge, up till now, most of the synchronization
methods of chaotic systems (especially neural networks) are of drive-response type (which
is also called a master-slave system).

At the same time, most of the papers mentioned above are concerned with continuous-
time neural networks. When implementing these networks for practical use, discrete-time
types of models should be formulated. The readers may refer to [3, 23] for more details as
regards the significance of investigating discrete-time neural networks. Therefore, it is im-
portant to study the dynamical behaviors of discrete-time neural networks. On the other
hand, because the synaptic transmission is probably a noisy process brought about by ran-
dom fluctuations from the release of neurotransmitters, and a stochastic disturbance must
be considered when formulating real artificial neural networks. Recently, the stability and
synchronization analysis problems for stochastic or discrete-time neural networks have
been investigated; see e.g. [3, 10—13, 19-21, 23], and references therein. So, in this paper,
based on drive-response concept and Lyapunov functional method, some different de-
centralized control laws will be given for global asymptotical synchronization of a general
class of discrete-time delayed chaotic neural networks with stochastic disturbance. In the
neural network model, the parameter uncertainties are norm-bounded, the neural net-
works are subjected to stochastic disturbances described in terms of a Brownian motion,
and the delay includes time-varying delay and distributed delay. Up to now, to the best of
our knowledge, there are few works about the synchronization problem of discrete-time
neural networks with distributed delay. And the master-slave system’s synchronization
problem for the uncertain stochastic discrete-time neural networks with distributed de-
lay is little investigated.

This paper is organized as follows. In Section 2, model formulation and some preliminar-
ies are presented for our main results. In Section 3, based on the drive-response concept
and the Lyapunov functional method, we discuss global asymptotical synchronization in
mean square for uncertain stochastic discrete-time delayed neural networks with mixed
delays. A numerical example is given to illustrate the effectiveness and feasibility of our
results in Section 4. And finally, in Section 5, we give the conclusions.

Notations Throughout this paper, R, R”, and R"*" are used to denote, respectively, the
real number field, the real vector space of dimension #, and the set of all # x m real matri-
ces. And E, denotes a n-dimensional identity matrix. The set of all integers on the closed
interval [a, b] is denoted as Nla, b], where a, b are integers and a < b. We use N to de-
note the set of all positive integers. Also, we assume that C(N[a, b], R) represents the set
of all functions ¢ : N[a, b] — R. The superscript ‘T’ represents the transpose of a matrix
or a vector, and the notation X > Y (respectively, X > Y) means that X — Y is a positive
semi-definite matrix (respectively, a positive definite matrix) where X and Y are symmet-
ric matrices. The notation | - | denotes the Euclidian norm of a vector and E,, refers to
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an m-dimensional identity matrix. Let (€2,.%#, &) be a complete probability space with
a natural filtration {.%,},>( satisfying the usual conditions (i.e., the filtration contains all
Z-null sets and is right continuous) and generated by Brownian motion {w(s) : 0 <s < ¢}.
[E{-} stands for the mathematical expectation operator with respect to the given probabil-
ity measure . The asterisk * in a matrix is used to denote the term that is induced by
symmetry. Usually, if not explicitly specified, matrices are always assumed to have com-
patible dimensions.

2 Model formulation and preliminaries
It is well known that most of the synchronization methods of chaotic systems are of the
master-slave (drive-response) type. The system, which is called a slave system or a re-
sponse system, can be driven by another system, which is called a master system or drive
system, so that the behavior of the slave system can be influenced by the master system,
i.e., the master system is independent to the slave system but the slave system is driven by
the master system. In this paper, our aim is to design the controller reasonably such that
the behavior of the slave system synchronizes to that of the master system.

Now, let us consider a general class of n-neuron discrete-time neural networks with
time-varying and distributed delays which is described by the following difference equa-
tions:

x(k+1) = (A + AA(k))x(k) + (71 + AZ(k))x(k ) + ( + AB(k) ) ( (k))
(k

+ (B+ ABR))Z(x(k - (k) + (C+ ACK)) Y " h(x(k —s)) + 1K), 6))

“
Il
(=

that is,

xi(k +1) = (a,' + Aai(k))xi(k) + (Zi,» + Aﬁi(k))xi(k - l'(k))

+ Z by + Aby(k))f (% (k) + Z(” i+ Ab(k))Z (x5 (k - T(K)))

j=1

+ Z Z cij + Acyi(k) (x,,(k )) +L(k), i=12,...,n,

s=1 j=1

where x(k) = (x1(k), %2(k), ..., x,(k))T € R" is the state vector associated with the # neurons.
The positive integer 7(k) corresponds to the time-varying delay satisfying

1<t,<tk)<tym, keN, 2)

where t,, and t,; are known positive integers. A = diag(ay, a, ...,a,) and A= diag(ay, s,

..,dy) are real diagonal constant matrices (corresponding to the state feedback and
the delayed state-feedback coefficient matrices, respectively) with |a;| <1, |4;| <1, i =
L,2,...,n, B = [bjjluxn, B= [Zi,]nxn, and C = [cj],xn are the connection weight matrix,
the discretely delayed connection weight matrix and the distributively delayed connec-
tion weight matrix, respectively. The functionsf‘(x(k)) = (71(361(/()),_72 (x2(K)), ... ,ﬁ, (%, (ONT,
2tk — 1(0) = @lalk ~ T(0), Bk — T, Zulsak — T®))T and Fx(k)) =
(h1 (%1 (K)), Bia (%2 (K)), . . ., 1y (0, (K)))T in R” denote the neuron activation functions. The real
vector I(k) = (I;(k), Iy(k), ..., 1,(k))T is the exogenous input.
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Remark 1 The term of the distributed time delays, Zsrill() Z(x(k —8)), in the discrete-time
form, is included in the model (1). It can be interpreted as the discrete analog of the follow-
ing well-discussed continuous-time complex network with time-varying and distributed
delays:

x=Ax(t) + Bf(x(t)) + Cg(x(t - r(t))) + D/t ( )h(x(s)) ds + I(¢).

Obviously, such a distributed delay term will bring about an additional difficulty in our
analysis.

For the activation functions in the model (1), we have the following assumptions:

Assumption1 The activation functions};(-), gi(-),and 7/11»(-) (i=1,2,...,n) in model (1) are
all continuous and bounded.

Assumption 2 [10, 21, 23, 26] The activation functions;’i(-), gi(+), and Zi(-) (i=1,2,...,n)
in model (1) satisfy

o ) ~f(52)

; < 9;, V51,52 € R, (3)
S1— 82
Lz’_ < w < t;f’ Vsi1,82 € R, (4)
S1— 382
Ti(s1) = hs
3: < M < 5;’ \7’51,32 IS R’ (5)
81— 82

where 67, 6,17, 1}, 67, 8] are some constants.

Remark 2 The constants 6, 6", (7, 1}, 87, 8] in Assumption 2 are allowed to be positive,

negative or zero. So, the activation functions in this paper are less conservative than the
usual sigmoid functions.

The time-varying matrices AA(k), AZ(k), AB(k), AE(k), and AC(k) in model (1) rep-
resent the parameter uncertainties, which are generated by the modeling errors and are
assumed satisfying the following admissible condition:

[AA(K) AA(K) ABK) AB(K) ACK)]

=MHE)(W, W, Wy W, Wsl, (6)

in which M and W; (i = 1,2,...,5) are known real constant matrices, and H(k) is the un-
known time-varying matrix-valued function subject to the following condition:

H"(k)H(k) <E,, VkeN. (7)
Also, the initial conditions of model (1) are given by

xi(s) = ¢i(s) € C(N[-ta, OLR)  (i=1,2,...,n). (8)
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In this paper, we consider model (1) as the master system. And the response system is

ylk +1) = (A + AAR)y(K) + (A + AAWK))y(k - T(K) + (B + AB(K))f (y(k))
(k

+ (B+ ABR))Z(y(k - (k) + (C + ACK)) Y h(ylk - ) + 1(K)

@
I
—

+ u(k) + o (k, e(k), e(k — (k) ) (k), )
namely,
yl(k + 1) Z(ﬂi + Aﬂi(k))yi(k) + (El + Aﬁi(k))yi(k— ‘L’(k))

+ Z by + Aby(K))f (7,(K)) + Z( i+ Aby()g (i (k - T(K)))

Jj=1 j=1

+ 32 (e+ Ay (k= 9)) + LK)

s=1 j=1

+u;(k) + Zaij(k, ei(k),ei(k - T(k)))w/(k), i=12,...,

Jj=1

where the related parameters and the activation functions are all same as model (1),
u(k) is the controller which is to be designed later, this is also our main aim. e(k) =
(e1(k),ex(k),...,e (k)T € R" is the error state, w(k) = (wy(k), wy(k),...,w,(k)) is a n-
dimensional Brownian motion defined on a complete probability space (€2, %, &) with

]E{a)(k)} =0, E{wz(k)} =1, E{w(i)w(j)} =0 (fori#)) (10)
and o : R” x R” x R — R is a continuous function with ¢ (-,0,0) = 0 and
o Lk, x,y)0 (k,x,9) < pixTax + poyLy, Vx,yeR", (11)

where p; > 0 and p, > 0 are known constant scalars.
The initial conditions of the slave system model (9) are given by

yi(s) = ¥i(s) € L%, (N[-7a1, 0], R); (12)
here L.27-"0([_TM’ 0],R) denotes the family of all Fy-measurable C([—17y, 0], R)-valued ran-
dom variables satisfying sup_, _ ., E{ l:(s)11%} < o0.

Now let us define the error state e(k) as e(k) = y(k) — x(k), subtracting (9) from (1), it
yields the error dynamical systems as follows:

e(k +1) = (A + AA(k))e(k) + (Z + AZ(k))e(k —1(k)) + (B+ AB(k))f (e(k))
(k)
+ (E + AE(k))g(e(k - r(k))) + (C + AC(k)) Zh(e(k —s))
s=1

+ u(k) + o (k, e(k), e(k — T (k)))w(k), (13)
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where f(e(k)) = f(e(k) + (k) —f(x(k)), gle(k - (k) = gle(k — (k) +x(k — T (k))) - g(x(k -
t(k))), h(e(k — T(k))) = h(e(k — T(k)) + x(k — T(k))) — h(x(k — t(k))). Denoted the error state
vector as e(k) = (e; (k), ex(k), ..., e,(k))T € R". Correspondingly, from (8) and (12), the initial
condition of error system (12) is ¢(s) = ¥ (s) — @ (s) = (Y1(s) = 1(5), ..., ¥(s) — P, (s))T. Here
it is necessary to assume that ¢(s) € L}O (N[=7a1, 0], R).

Now, we firstly give the definition of the globally robust asymptotical synchronization

in mean square of the master system (1) and the slave system (9) as follows.

Definition1 System (1) and system (9) are said to be globally asymptotically synchronized
in the mean square if all parameter uncertainties satisfying the admissible condition (6)

and (7), and the trajectories of system (1) and system (9) satisfy
Jim E{|y(k) - x(k)[} = 0.

That is, if the error system (13) is globally robustly asymptotically stable in the mean
square, then system (1) and system (9) are robustly globally asymptotically synchronized

in the mean square.

Remark 3 Assumption 1 and Assumption 2 can derive that the error system (13) has at
least an equilibrium point. Our main aim is to design the controller u#(k) reasonably such
that the equilibrium point of the error system (13) is robustly globally asymptotically stable

in the mean square.

In many real applications, we are interested in designing a memoryless state-feedback

controller as
u(k) = Ge(k), (14)

where G € R"*" is a constant gain matrix.

However, as a special case where the information on the size of time-varying delay t (k)
is available, we can also consider a discretely delayed-feedback controller of the following
form:

u(k) = Ge(k) + G,e(k - r(k)). (15)

Moreover, we can design a more general form of a delayed-feedback controller as

(k)
u(k) = Ge(k) + G,e(k - r(k)) + @G, Z e(k —s), (16)

s=1

Although a memoryless controller (14) has the advantage of easy implementation, its
performance cannot be better than a discretely delayed-feedback controller which uti-
lizes the available information of the size of time-varying delay. Therefore, in this respect,
the controller (16) could be considered as a compromise between the performance im-

provement and the implementation simplicity.
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Now, let u(k) = Ge(k) + Gre(k — (k) + G, "% e(k — 5), and substituting it into (13), and
denoting

A) =G+ A+ AAKK), Ak =G, + A+ AAK),

B(k)=B+AB(k),  B(k)=B+AB(k),  C(k)=C+AC(Kk), 1)
it follows that
e(k +1) = A(K)e(k) + A(k)e(k — T (k) + BK)f (e(k)) + B(k)g(e(k — 7 (k)))
+G, f e(k—s) + C(k) i(kih(e(k —5)) + 0 (kek), e(k - (k)))w(k).  (18)
s=1 s=1

To complete this particular issue, we still need several lemmas to be used later.

Lemmal Let &, 2, and H be real matrices of appropriate dimensions with H satisfying
HTH < E. Then the following inequality:

PHL +(PHT <227 + 1972
holds for any scalar 1 > 0.

Lemma 2 (Schur complement) Given constant matrices P, Q, R, where PT =P, QT = Q,
then

P R
|:RT —Qi| <0

is equivalent to the following conditions:
Q>0, P+RQ'RT<0.

Lemma 3 [27,28] Let M € R"" be a positive semi-definite matrix. If the series concerned
are convergent, we have the following inequality:

m T m m m
(Z oem) M (Z oelfxlf) < (Z oz,-) ZaixiTMxi
i=1 i=1 i=1 i=1

holds for any x; e R" and a; > 0 (i =1,2,...,m).

3 Main results and proofs
In this section, some sufficient criteria are presented for the globally asymptotically syn-
chronization in the mean square of the neural networks (1) and (9).

Before our main work, for presentation convenience, in the following, we denote

0, = diag (665 ,056%,...,0767),
o+ 07 65 +6; 9 +6; (19)
2 7 2 2 ’

ooy

®, = diag <—

Page 7 of 22
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q+y G+ oo+
Yy =diag(;¢, 6505, 0,00), T =diag(— L 5 L 5 2,...,—%), (20)
¥, = diag(878;,8583,...,5,8)),
- - - 21
£y —ding( OO 8e38ivaly (21)
2 2 2

Then, along the same line as with [21, 23], from Assumption 2, we can easily get, for
i=12,...,m,

(f(e®) - 9i_e(/<))T(f (e(k)) - 67 e(k)) <0,
(g( )) - LTe(k - t(k)))T(g(e(k - r(k))) - L;'e(k - r(k))) <0,
(h(e(k)) - 8; e(k)) (f(e(k)) - 38/e(k)) <0,

which are equivalent to

o) | [ ooreer el ([ e ] _, 02)
fewy| % ;9 A [P R

[ elk— (k) el —Sleel | [ etk-T(k) | _ (23)
glelk—7(0) | | -leel e,«eiT glek—t(k)) ]~

[ e(k) ! 8787 eie] " +5 Leel || e(k) <0, (24)
| iek)) || -l eer e,»e,,T h(e(k))

where i =1,2,...,n and e; represents the unit column vector having ‘1’ as the element on
its ith row and zeros elsewhere.

Multiplying both sides of (22), (23), and (24) by A;, y;, and v;, respectively, and summing
up from 1 to # with respect to i, it will follow that

[ et) 1 [a0, 20,][ e o 05)
flek) | [A®: A ||fletk)] ™

[ete—z() 17 [rry o[ eth— ) o 06)
| g(e(k — (k) 'y, T gletk—z(k)) |~

ey 1 Tas, &s,|[ et o o
newn| |E. B || mewn]| T

The main results are as follows.

Theorem 1 Under Assumptions 1 and 2, the discrete-time neural networks (1) and (9)
are globally robustly asymptotically synchronized in the mean square if there exist three
positive definite matrices P, Q, and R, three diagonal matrices A = diag{Ay,Ay,..., Ay} >0,
I =diag{y1, v2,..., ¥u} > 0,and E = diag{vy, vs,...,v,} > 0,and two scalars A* > 0 and . > 0
such that the following LMIs hold.:

P < A*E,, (28)
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and
. wwfw, o o} uWriw, -B%, uW[ws (G+A)TP 0
* m, 0 uwlws Q 0 uWIws (G,+ATP 0
* * 0 0 0 0 0 GIp 0
* * * I uWIw, 0 UWILWs BTP 0
b= % * * * I, 0 wwWlIwsg BTP 0 <0,
* * ko * 5 0 0 0
* * *ok * * I crp 0
* * * * * * * -P PM
| * * * * * * * * —MEn_
(29)
where
I =P+ (ty— T + DQ + A*pE, — AO; — EXy + u W Wy,
[y = —Q + A*poE, — DYy + u W, W,
T T
Hg =—-A+ [LW3 Wg, H4 =T+ MW4 W4, (30)

1

M5 = -8 + ty(tpr — T + DR, H6:——R+MW5TW5,
™

Q= —AOy + u W WsQy = —I' Yy + u Wy Wi

Proof To verify that the neural networks (1) and (9) are globally asymptotically synchro-

nized in the mean square, a Lyapunov-Krasovskii function V is defined as follows:

V (k) = Vi(k) + Va(k) + V3 (k) + Va(k) + V5(k), (31)
where
Vi(k) = e? (k)Pe(k), (32)
k-1
Valk)= ) €' ()Qeli), (33)
i=k-1(k)
™ k-1
Vstk) =Y Y e"()Qeli), (34)
J=tm+1li=k—j+1
(k) k-1
Va(k) =YY " h" (e(i)) Rh(e(i)), (35)
Jj=1 i=k—j

™ k-1 k-1

V)= Y 3 ST (eli) Qh(e(d)). (36)

s=tp+l j=k—t+1 i=j

Calculating the difference of V(k) along the trajectory of the model (18) and taking the
mathematical expectation, one obtains

E{AV(K)} =E{AVi(K)} + E{AVa(k)} + E{AV3(k)} + E{AV4(k)}, 37)
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where
E{Avi(k)}
=E{Vi(k +1) - Vi(k)}
= E{ |:A(k)e(k) + A(k)e(k — (k) + Bk)f (e(k))
~ (k) (k) T
+ B(k)g(e(k - r(k))) +G, Z e(k —s) + C(k) Z h(e(k - S)):|
s=1 s=1
x P|:A(k)e(k) + A(k)e(k — (k) + B)f (e(k))
N (k) (k)
+B(k)g(e(k - T(k)) + G, Z e(k —s) + C(k) Zh(e(k - S))i|
s=1 s=1
+ aT(k, e(k), e(k - t(k)))Po (k, e(k), e(k - r(k))) - eT(k)Pe(k)},
E{AV,(k)}

= E{ Volk +1) - Vz(k)}

k k-1
:E[ Z el (i) Qe(i) - Z eT(i)Qe(i)}

i=k+1-7(k+1) i=k—7 (k)
k-1
- E{eT(k)Qe(k) —e’ (k—t(k)Qe(k—t(k)+ > e ()Qeli)
i=k+1-7(k+1)
k-1
-y eT(i)Qe(i)}
i=k+1-7(k)

k-1
= E{eT(k)Qe(k) —e’ (k- 1(k))Qe(k - t(k)) + Z e (i) Qeli)

i=k+1-T;

k—tm k-1
+ Z eT (i) Qe(i) - Z eT(i)Qe(i)}

i=k+1-1(k+1) i=k+1-1 (k)

k=t
< E{eT(k)Qe(k) —e" (k—t(k)Qe(k— (k) + > eT(i)Qe(i)},

i=k—tpr+1
E{AV3(k)}
= E{ Vg(k + 1) - VS(k)}

™ k ™ k-1
:E[ oY MRy - Y. N eT(i)Qe(i)}

J=tm+1i=k—j+2 j=tm+1 i=k—j+1

E[ > [e"(k)Qe(k) - e” (k- j +1)Qe(k —j +1)] }

J=tm+1

(39)

Page 10 of 22
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= E[ (tar = Tw)e" (k)Qe(k) — Y~ e’ (k—i+1)Qe(k i+ 1)}

=T+l

k=t

=E{(rM—rm)eT<k>Qe<k>— 3 eT(i)Qe(i)}, (40)

i=k—-tpr+1
E{AVA(h)
—E{Va(k +1) - V4 (k)}

t(k+l)  k t(k) k-1
[Z > W (e(i))Rh(e(i) ZZhT (e(@))Rh( e(z)}

j=1 i=k—j+1 j=1 i=k-j
™ k (k) k-1
< {Z Z (e(i))Rh(e(i)) — Z ZhT (e(@))Rh(e(i)) }
j=1 i=k—j j=1 i=k-j
™ ™ k-1
515:{ T (e(k))Rh(e(k) + > >~ h"(eli))Rh(e(i)
j=1 J=tm+li=k—j+1
(k)
Z e(k —j))Rh(e(k - ;))}

™ k-1

EE{rMhT(e(k))Rh(e(k))+ Do H(eld)Rh(el)

J=tm+li=k—tpr+1
AL T /)
_ a(Zh(e(k_ ,'))) R(Zh(e(k— j))) ] (41)
j=1 =1

and

E{AV5(k)}
—E{Va(k +1) - Vs(k))
™ k k
:E[ DY D H(eld)Rh(e(i)
s=Tm+1l j=k—-tp+2 i=j
™ k-1 k—
55 S|
s=tm+lj=k-tpr+1 i=j

™ ™ k-1 k-
=E{ > Z ZhTe(l)Rhe(l) >y ZhT z)Rhe(t)}

s=Tm+1 j=k—tpr+1 i=j+1 s=tp+1 j=k-tpr+1 i=j

_E i Z [17 (e(k)) Rh(e(k)) - hT(e(i))Rh(e(i))]}

J=tm+li=k—-tpr+1

™ k-1
=E{ tu(tar — ta)h” (e(R))RA(elk) = >~ > hT(e(i))Rh(e(i))}. (42)

j=tm+li=k-tp+1

The above inequality (41) results by Lemma 3.
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On the other hand, from (11) and (28), we have

o’ (k,e(k),e(k — T(k)))Po (k, e(k), e(k — T(k)))
< kmax(P)aT(k, e(k), e(k — t(k)))a (k, e(k), e(k - r(k)))
<A* (pleT(k)e(k) + poel (k - r(k))e(k - r(k))). (43)

Substituting (38)-(43) into (37) yields
E{AV(k)} < E{n" () ®1n(k) + n" (k) €T ()PLE)n(k)}, (44)

where

(k)

T
n(k) = [eT(m,eT(k (k) (Ze(k —j)) ST (e0)),

j=1

g7 (e(k =t (k))), AT (e(k)), (%h(e(k—j))) } :

£(K) = [A(K), A(K), G., BUk), B(K), 0, C(0)],

0

—

[\

P, =

* % % ¥ % % =
w

* % % % x Do
¥ % ¥ ¥ © © ©
¥ ¥ ¥ © © © ©
f-o ©o o o o ©

*» No oo o o

* ¥ O O O© O

with ﬁl =P+ (ty -1 +1)Q+ A*0E,, ﬁz =-Q+ A*mE,, ﬁg = Tp(Tta — Ty + DR.
From (25), (26), and (27), it follows that

E{AV(K))

< lE{nT(k)q>1n(k) + 0" (k)" (k)PL(K)n (k)
T T
_ 6(/() A@l A@z e(k) _ e(k) EZl 22 e(k)
[f(e(k))] |:A®2 A Mf(e(k))} [h(e(k))] [822 © Mh(e(k))}

[etk-cwn ][ rn][ etk k)
gle(k — t(k))) rv, T gle(k — (k)

=E{n" (K)[®; + T ()PLK)]n(k)}, (45)

[x]
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where

(24 0 0 -A® 0 -EX, 0 |
* s O 0 'Y, 0 0
* % 0 0 0 0 0

Dy=| *  x  x* -A 0 0 0
* ok ok * - 0 0
* * % * * 3 0
| * x % * * * —%R_

with 26 = =P+ (ty — T + 1)Q+ A*0E, — A®1 — EXq, 360 = —Q + A*poE,, — 'Y, and »c3 =
B+t — T + DR,

Denote
@, (k) = Dy + LT(K)PL(K) = D3 + AD3(K), (46)
where
(5 0 0 -A®, 0 -E%, 0 (G+A)TP]
¥ 2% 0 0 -I'Y, O 0 (G, +A)TP
x x 0 0 0 0 0 GIp
x % ok —A 0 0 0 BTp
(D3= NT ’ (47)
* * ok * - 0 0 B'P
* * ok * * 3 0 0
* * ok * * * —%R cTp
| * * % * * * * -P |
[0 0 0 0 0 0 0 AATK)P]
¥ 00 00 0 0 AATKP
x %« 0 0 0 0 0 0
0 0 0 0 ABT(k)P
Ads(y=|F * NT()
* % % % 0 0 0 AB' (kP
* % % x *x 0 O 0
* % % % % *x 0 ACT())P
[* * % % x % % 0 |
Let

2=0 0 0 0 0 0 0 P,
LK) =[AAT(k) AAT(k) O ABT(k) ABT(k) 0 ACT(k) 0],

=W, Wo 0 W3 W, 0 W; 0]
It follows easily from (6) and Lemma 1 that

ADs (k)= 2L (k) + LT (k) PT
= PMHE)W + # THT ()M 2T

<u#TW + ur2MMT 2T, (48)
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Substituting (47) and (4:8) into (46), one obtains

O1(k) < Dy (k) + u ' 2MMT 2T, (49)
where
[, wwfw, o Q uWlw, -8% uwlws (G+A)TP]
- M, 0 uWfws @ 0 uWlWs (G, +A)TP
* * 0 0 0 0 0 GIp
&,00=| * * * I3 pWIw, 0 pwiws BTP
> * * * * I4 0 MW‘LTW5 BTp ’
* * * * * I15 0 0
* * * * * * e cTp
| * * * * * * * -P N

and ITy, Iy, I3, Iy, 15, [Ig, 21, 2 are defined in (30).
By Lemma 2, we have

O,(k) + pt2MMT 27 = @. (50)
Therefore, it is not difficult from (29), (45), (46), (49), and (50) to get
E{AV(K)} <E{n"(k)Pn(k)} < )»max(d>)]E{|e(/<)|2}, (51)

with Apax (®) < 0.
Let N be a positive integer. Summing up both sides of (51) from 1 to N with respect to k,
it easily follows that

N
E{V(N) - V(0)} < hnax(®) D E{[e(®)]},
k=1
which implies that
N
~hmax(®) Y E{[e(0)[*} < E{V(0)}.

k=1

By letting N — +00, it can be seen that the series ) ;] E{|e(k) |2} is convergent, and there-
fore we have

According to Definition 1, it can be deduced that the master system (1) and the slave system
(9) are globally robustly asymptotically synchronized in the mean square, and the proof is
then completed. 0

In the following, we will consider four special cases. Firstly, we can consider a state-
feedback controller u(k) = Ge(k) + G e(k — t(k)), and the slave system model (9) can then

Page 14 of 22


http://www.advancesindifferenceequations.com/content/2014/1/212

Chen et al. Advances in Difference Equations 2014, 2014:212
http://www.advancesindifferenceequations.com/content/2014/1/212

be rewritten to

ylk +1) = (A + AAR)y(K) + (A + AAK))y(k - T(K)) + (B + AB(K))f (y(k))

T(k
+ (INS’ + Ag(k))g(y(k -1(k))) + (C+ AC(k)) (y(k -5)) +1(k),

s=

1
+Gelk)+ G e(k ‘L'(k)) +a(k e(k), e(k ‘L’(k))) (52)

Corollary 1 Under Assumptions 1 and 2, the discrete-time neural networks (1) and (52)
are globally robustly asymptotically synchronized in the mean square if there exist three
positive definite matrices P, Q, and R, three diagonal matrices A = diag{A, Az, ...,A,} >0,
' =diag{y1, y2,...,Vu} > 0,and E = diag{vy, va,...,v,} > 0,and two scalars \.* > 0 and i > 0
such that the following LMIs hold:

P < A*E,, (53)
and
M wWl W, Q pWlw, —8% pwlws (G+A)TP 0 7
* I, Wl W3 Q 0 uWJWs (A+G)TP 0
* * I3 nWI W, 0 nWI Wy BTPp 0
* * * Iy 0 nwlws BTp 0 | o,
* * * * I15 0 0 0
* * * * I1g cTp 0
* * * * -P PM
L *x * * * * * * —uE, |
(54)

where T1y, Ty, I3, [y, Is, [g, 21, Qo are defined in (30).

This corollary is very easily accessible from Theorem 1.
Secondly, if the considered model is without stochastic disturbance, the response system
(9) will be specialized to

ylk +1) = (A + AARK)y(K) + (A + AAWK))y(k - T(K)) + (B + AB(K))f (y(k))
T(k

+ (B+ AB))Z(y(k - t(k)) + (C+ ACK)) Y h(ylk - ) + I(k)

@
I
—_

7(k)
+ Ge(k) + Gre(k—7(k)) + G, Y _ e(k—s). (55)

s=1

Corollary 2 Under Assumptions 1 and 2, the discrete-time neural networks (1) and (55) are
globally robustly asymptotically synchronized if there exist three positive definite matrices
P, Q, and R, three diagonal matrices A = diag{A,13,...,A,} >0, =diag{y1, y2,..., ¥u} > 0,
and & = diag{v, vy,...,v,} > 0, and two scalars A* > 0 and p > 0 such that the following
LMIs hold:

P < ME,, (56)
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and

'ﬁl MWITWZ 0 Q1 /LWITW4 -BX, /LWITW5 (G+A)TP 0 ]
* 0, 0 uWfws Q 0  uWSWs (G, +A)TP 0
* * 0 0 0 0 0 GIp 0
* * k 1'13 [,LW?)TW;; 0 [,LW?)TW5 BTP 0
* * * * I, 0 uWIWs BTp 0 <0,
* * * * * 5 0 0 0
* * * * * * Ig cTp 0
* * * * * * * -P PM

L * * * * * * * * —uE,_|

(57)

where T1, = —P + (=T +1DQ - A®, — EX; + uW W, m, = —Q-TYy +uWIW,, and
I3, Ty, [I5, g, 21, Q2 are defined in (30).

Thirdly, let us consider the uncertainty-free case, that is, there are no parameter un-
certainties in the models. Then the master system (1) and the response system (9) can be
reduced, respectively, to the following models:

x(k +1) = Ax(k) + Ax(k — T(k)) + Bf (x(k))

7(k)

+ BE(x(k - () + C Y (s —5)) + I(k) (58)
=
and
Yk +1) = Ay(k) + Ay(k — T (k) + Bf (y(k)) + BE(y(k - (K)))
+ C%Z(y(k —5)) +1(k) + Ge(k) + Gre(k - T(k))
S:(lk)
+G. Y _elk—s)+0(ke(k)e(k—(k))w(k). (59)
=

Corollary 3 Under Assumptions 1 and 2, the discrete-time neural network (58) and (59)
are globally robustly asymptotically synchronized in the mean square if there exist three
positive definite matrices P, Q, and R, three diagonal matrices A = diag{iy, Ay, ...,A,} >0,
[ = diag{y1, y2,..., yu} > 0, and & = diag{vy,vs,...,v,} > 0, and a scalar A* > 0 such that
the following LMIs hold:

P < \'E,, (60)
and
[ 0 0 -A® 0 -EX, 0 (G+A)TP
« M5 0 0 -TT, O 0 (G, +A)TP
x % 0 0 0 0 0 GIp
* % ok —A 0 0 0 BTp
* * % * -I 0 0 BTp <0, (61)
* * % * * I15 0 0
* % ok * * * —iR cTp
L * * %k * * * * -P |
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with I} = =P+ (tm — T + 1)Q + A 0E, — A®1 — EX, 1T = —Q + A* 02 E,, — 'Yy, and Ts is
defined as (30).

Moreover, in this case, if the stochastic disturbance in the response system (59) is
oi(k,e(k),e(k — t(k))) =0 (i =1,2,...,n), then we need only rewrite IT] and IT} as IT}* =
—P+(ty — Ty +1)Q - A®; — EX and IT* = —Q —T' Yy, and the corollary will still be true.

The proofs of Corollary 2 and Corollary 3 are similar to that of Theorem 1 and are there-
fore omitted.

Finally, we consider the systems without the distributed delay influence. The master
system (1) and the response system (9) will become, respectively, the following difference

equations:

~

x(k +1) = (A + AA®K))x(k) + (A + AAK))x(k — (k) + (B + AB(K))f ((K))
+ (B+ AB(K))Z(x(k — T (k) + (k) (62)

and

~

ylk +1) = (A + AARK)y(K) + (A + AAWK))y(k - T(K)) + (B + AB(K))f (y(k))
+ (E + Aé(k))g(y(k - r(k))) + Ge(k) + G,e(k - r(k))
+I(k) +o (k, e(k), e(k - r(k)))a)(k). (63)

Then the error system is

e(k+1) = (G + A+ AA(K))e(k) + (G, + A + AA(K))e(k - T (k)
+ (B + AB(K))f (e(k)) + (B + AB(K))g(e(k - t(k)))
+ Ge(k) + G,e(k - ‘L'(k)) +0 (k, e(k), e(k - r(k)))a)(k). (64)

In this case, we will show that the neural networks (62) and (63) are not only globally,
robustly, and asymptotically synchronized in the mean square, but also globally, robustly,
and exponentially synchronized in the mean square. The definition of the globally robustly

exponentially synchronization in the mean square is given firstly in the following.

Definition 2 Systems (62) and (63) are said to be globally exponentially synchronized in
the mean square if all parameter uncertainties satisfy the admissible condition (6) and (7),
and if there exist two constants 8 > 0 and 0 < ¢ < 1, and a big enough positive integer N,

such that the following inequality:

E{|y(k) - x(k)|*} < pe* max ]E{|w<s>—¢(s)|2}

seN[-751,0
holds for ¢(s) = ¥ (s) — ¢(s) € L%_-O (N[-7A1,0],R) and all k > N.

Then we have the following theorem.
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Theorem 2 Under Assumptions 1 and 2, the discrete-time neural networks (62) and (63)
are globally robustly exponentially synchronized in the mean square if there exist two pos-
itive definite matrices P and Q, two diagonal matrices A = diag{A1,Ao,..., Ay} > 0 and
I = diag{y1, y2,.--»Yu} > 0, and two scalars \* > 0 and p > 0 such that the following LMIs

hold:
P < A\*E,, (65)
and
[, puwilw, o uWiw, (G+A)TP 0
* I, uWI W Q G, +A)TP 0
I wIw, BTP 0
wee| ¥ * o R T 2 <0, (66)
* * * Iy, B'P 0
* * * * -P PM
* * * * * -nE,

where H7 =-P+ (‘L’M - Ty + l)Q + )»*,OIEH - A("Dl + /,LWITW1 and Hz, Hg, H4, Hs, H6, Ql,
Q, are defined in (30).

Proof A Lyapunov-Krasovskii function V/(k) is needed to guarantee that the neural net-
works (62) and (63) are globally exponentially synchronized in the mean square:

V(k) = Vi(k) + Va(k) + V3(k), (67)

where V1 (k), V,(k), and V3(k) are similar to (32), (33), and (34).
Then, along a similar line to the proof of Theorem 1, one can obtain

E{AV(K)} < E{¢T(WEL ()} < o (O)E[ |e(0)[*], (68)
where An. (W) <0, and

(k) = [e" (k) e" (k= T(K)).f" (ek)),g" (e(k - T(K)))] T

Now, we are in a position to establish the robust global exponential stability in the mean
square of the error system (64).

First, from the definition of function V'(k), it is easy to see that
k-1

E{VK)} <E{iple®]* +3qg Y le()]*}, (69)

i=k—tp1
E{V(K)} = Anin(PE{|e(®)[*}, (70)

where

)_LP = Amax(P), )_”Q = (T — T + DAmax(Q).
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For any ¢ > 1, inequalities (68) and (69) imply that

E{A(e"V(K)} = E{e*'V(k +1) - " V(K)} = B[ AV(K) + €5 (e — 1)V (K)}

k-1

< E{oi(e)ek|e(®)]” + wale) > ekle|*}, (71)

i=k—t)1

where

w1(€) = Amax(W)e + (8 — 1))_»13, wy(e) = (e - 1))‘@

Let N be a sufficient big positive integer satisfying N > 7a; + 1. Summing up both sides
of the inequality (71) from 0 to N — 1 with respect to k, one can obtain

N-1 N-1 k-1
]E{ENV(N)—V(O)}EIE{a)l(s)Z Het +n(e) Y 3 &k i)yz}, (72)
k=0 k=0 i=k—1p1

while for 7y > 1,

N-1 k-1 -1 i+tyr N-ty-litty N-1 N-1
Z ek }e(z (Z Z+ Z Z+ Z Z)skE ()|
k=0 i=k— i=—1)1 k=0 i=0  k=i+1 i=N-tp k=i+1
N-tp-1
< Ty Z S’HMIE e(z)| +1:M Z g ME {e(l)| }
i=—1p1 i=0

+ Ty Z MR |e(z)| }

i=N-1p-1
N-1 ,
< tAz/IsfM II;[lilfioEHe(l)} } + Tpre™ lzzojsllE{‘e(iﬂ } (73)

Then, it follows from (72) and (73) that

VE[VN)} = E{V(O)} + or(e)che™ max E{led)|’}
N-1
+ [a)l(s) + a)g(s)rMsfM] Z E’E{ ‘e(i)|2}. (74)

i=0

Considering @1 (1) = Apax (V) < 0, (1) = 0, and wy(g) > O for € > 1, it can be verified that
there exists a scalar gy > 1 such that w;(g9) + w2 (o) Tareg” = 0. So, it is not difficult to derive

YE{VV)} <E{V(O)} + eale)rires” max Ef[e(i)]"). (75)
-t <i<
On the other hand, it also follows easily from (69) that

E{V(0)} < ﬁ_rr;géola{|e(i)|2}, (76)
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where ¢ = max{ip,)_LQ}. Therefore, from (70), (75), and (76), one has

E{|e(N)|’} <

N
< [0+ wz(eo)rﬁIsSM] <$) max ]E{|e(i)|2}.

- <i<0
According to Definition 2, this completes the proof. d

Remark 4 Based on the drive-response concept, synchronization problems of discrete-
time neural networks are little investigated. To the best of our knowledge, for master-
slave systems, the synchronization analysis problem for stochastic neural networks with
parameter uncertainties, especially distributed delay, is for the first time discussed.

4 Numerical example
In this section, an example will be illustrated to show the feasibility of our results.

Example 1 Consider the drive system (1) and the response system (9) with the following

parameters:
[06 0 0 03 0 0 04 -03 0
A=|0 02 o, A=|l0 05 o0 |, B=|01 -02 -03],
0 0 04 0 0 -01 02 0 01
05 0 -02 -02 02 0 -0.1
B=|01 02 01|, <C=|01 02 -01|, M=|o01],
| -01 03 02 0 01 02 0.2

tanh(0.8x;(k))
f(x(k)) :g(x(k)) = h(x(k)) = | tanh(=0.4x,(k)) |,
tanh(0.6x; (k))

Wi=W;=Ws=W;5=[-02 01 0.1], Wr=[0 0 O],
k) =4+ ()5 =25 p=py=01,  I(k)=0.

Therefore, it can be derived that d* = 1, 7, = 3, Tys = 5, and the activation functions satisfy

Assumption 2 with
©, = 17 = ¥; =diag{0,0,0}, By =T, = ¥, =diag{0.4,-0.2,0.3}.

We design a delayed-feedback controller as u(k) = Ge(k) + G,e(k — t(k)), that is, the dis-
tributed delayed controller is omitted. By using the Matlab LMI Toolbox, LMI (28) and
(29) can be solved and the feasible solutions are obtained as follows:

[10.7271  0.4759  0.2023 | 2.2544  0.0658 -0.0473
P= * 7.3604 -0.6581 |, Q= * 1.4303 -0.1111 |,
* * 10.0764_ * * 2.1584

23904 -0.5966 0.5486 |
R= * 3.3556  0.4730 |, A = diag{9.4695,18.7205,10.4127},
* * 3.0583_
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I' = diag{6.3622,3.0023,9.8068}, E = diag{4.9624,8.1531,7.3455},

A% =10.9097, u=6.4636,

and
—-4.8030 -0.2974 0.5754 -1.0885 -0.4761 -0.2475
G=|-1.0704 -1.2260 0.2636 |, G, =| 0.0031 -39716 0.5437
0.1993 0.4936 —3.8391 -0.9665 0.1146 1.5992

Then Corollary 1 proves that the response system (9) and the drive system (1) with the
given parameters can achieve globally robustly asymptotically synchronization in the

mean square.

5 Conclusions

In this paper, based on Lyapunov stability theorem and drive-response concept, the glob-
ally asymptotically synchronization has been discussed for a general class of uncertain
stochastic discrete-time neural networks with mixed time delays which consist of time-
varying discrete and infinite distributed time delays. The proposed controller is robust
to a stochastic disturbance and to the parameter uncertainties. In comparison with pre-
vious literature, the distributed delay is taken into account in our models, which are few
investigated in the discrete-time complex networks. By using the linear matrix inequality
(LMI) approach, several easy-to-verify sufficient criteria have been established to ensure
the uncertain stochastic discrete-time neural networks to be globally robustly asymptot-
ically synchronized in the mean square. The LMI-based criteria obtained are dependent
not only on the lower bound, but also on the upper bound of the time-varying delay, and
they can be solved efficiently via the Matlab LMI Toolbox. Also, the proposed synchro-

nization scheme is easy to implement in practice.
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