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We introduce and analyze a new iterative algorithm for finding a common element of the set of
fixed points of strict pseudocontractions, the set of common solutions of a system of generalized
mixed equilibrium problems, and the set of common solutions of the variational inequalities
with inverse-strongly monotone mappings in Hilbert spaces. Furthermore, we prove new strong
convergence theorems for a new iterative algorithm under some mild conditions. Finally, we also
apply our results for solving convex feasibility problems in Hilbert spaces. The results obtained in
this paper improve and extend the corresponding results announced by Qin and Kang (2010) and
the previously known results in this area.

1. Introduction

Let H be a real Hilbert space with inner product (:,-) and norm || - || and let E be a
nonempty closed convex subset of H. We denote weak convergence and strong convergence
by notations — and —, respectively. Let S : E — E be a mapping. In the sequel, we will use
F(S) to denote the set of fixed points of S, thatis, F(S) = {x € E : Sx = x}.

Definition 1.1. Let S : E — E be a mapping. Then S is called

(1) contraction if there exists a constant & € [0, 1) such that

|Sx-Syll <alx-yl, VxyeE, (L1)
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(2) nonexpansive if

ISx-Syll <llx-yl, VxyeE. (12)

Remark 1.2. It is well known that if E C H is nonempty, bounded, closed, and convex and S
is a nonexpansive mapping on E then F(S) is nonempty; see, for example, [1].

(3) strongly pseudocontractive with the coefficient T € (0, 1) if

2
7

(Sx-Sy,x-y)>T1|x-y Vx,y €E, (1.3)

(4) strictly pseudocontractive with the coefficient k € [0, 1) if

|Sx = Sy||* < |x - y|* + k|| (T - S)x - (I - S)y|]*, Vx,y €E; (1.4)

for such a case, S is also said to be a k-strict pseudocontraction, and if k = 0, then S is
a nonexpansive mapping,

(5) pseudocontractive if

152 = Syl* < lx = [+ | (T =S)x = (T -S)y||>, Vx,y€E. (15)

The class of strict pseudocontractions falls into the one between classes of nonex-
pansive mappings and pseudocontractions. Within the past several decades, many authors
have been devoting to the studies on the existence and convergence of fixed points for strict
pseudocontractions.

In 1967, Browder and Petryshyn [2] introduced a convex combination method to study
strict pseudocontractions in Hilbert spaces. On the other hand, Marino and Xu [3] and Zhou
[4] introduced and researched some iterative scheme for finding a fixed point of a strict
pseudocontraction mapping. More precisely, take k € (0, 1) and define a mapping Sk by

Six =kx+ (1-k)Sx, Vx€E, (1.6)

where S is a strict pseudocontraction. Under appropriate restrictions on k, it is proved the
mapping Si is nonexpansive. Therefore, the techniques of studying nonexpansive mappings
can be applied to study more general strict pseudocontractions.

The domain of the function ¢ : E — R U {+o0} is the set

domg = {x € E: (x) < +oo}. (1.7)

Lety: E — RU {+oo} be a proper extended real-valued function and let @ be a bifunction of
E x E into R such that E N dom ¢ # @, where R is the set of real numbers.
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There exists the generalized mixed equilibrium problem for finding x € E such that
O(x,y) + (¥x,y—x) +¢(y) —p(x) >0, Vy€eE. (1.8)
The set of solutions of (1.8) is denoted by GMEP(®, ¢, ¥), that is,
GMEP(®,¢,¥) = {x e E: ®(x,y) + (Px,y —x) + p(y) —(x) >0, Vy € E}. (1.9)
We see that x is a solution of problem (1.8) implies that x € dom ¢.

Special Examples

(1) If ¥ = 0, problem (1.8) is reduced into the mixed equilibrium problem for finding x € E
such that

O(x,y) +¢(y) —p(x) 20, Vy€eE. (1.10)

Problem (1.10) was studied by Ceng and Yao [5]. The set of solutions of (1.10) is
denoted by MEP(®, ¢).

(2) If ¢ = 0, problem (1.8) is reduced into the generalized equilibrium problem for finding
x € E such that

@(x,y) + (¥x,y-x) >0, VyeE. (1.11)

Problem (1.11) was studied by Takahashi and Toyoda [6]. The set of solutions of
(1.11) is denoted by GEP(®, ¥).

(3) If ¥ =0 and ¢ = 0, problem (1.8) is reduced into the equilibrium problem for finding
x € E such that

®(x,y) >0, Vy€E. (1.12)

Problem (1.12) was studied by Blum and Oettli [7]. The set of solutions of (1.12) is
denoted by EP(®).

(4) If ® = 0, problem (1.8) is reduced into the mixed variational inequality of Browder type
for finding x € E such that

(Px,y—x)+¢(y) —p(x) >0, VyeE. (1.13)

Problem (1.13) was studied by Browder [8]. The set of solutions of (1.13) is denoted
by VI(E, ¥, ¢).

(5) If @ =0and ¢ = 0, problem (1.8) is reduced into the variational inequality problem for
finding x € E such that

(¥x,y-x)>0, VyeE. (1.14)
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Problem (1.14) was studied by Hartman and Stampacchia [9]. The set of solutions
of (1.14) is denoted by VI(E, ¥). The variational inequality has been extensively
studied in the literature. See, for example, [7, 10, 11] and the references therein.

(6) If @ = 0and ¥ = 0, problem (1.8) is reduced into the minimize problem for finding
x € E such that

¢(y) —p(x) 20, VyeE. (1.15)

The set of solutions of (1.15) is denoted by Argmin(¢p).

The generalized mixed equilibrium problems include fixed point problems, variational
inequality problems, optimization problems, Nash equilibrium problems, and the equilib-
rium problem as special cases. Numerous problems in physics, optimization, and economics
reduce to find a solution of (1.8). In 1997, Combettes and Hirstoaga [12] introduced an
iterative scheme of finding the best approximation to initial data when EP(®) is nonempty
and proved a strong convergence theorem. Many authors have proposed some useful
methods for solving the GMEP(®, ¢, ¥), MEP(®, ), and EP(®); see, for instance, [5, 12-23].

Definition 1.3. Let B: E — H be a nonlinear mapping. Then B is called

(1) monotone if

(Bx-By,x-y) >0, Vx,y€E, (1.16)

(2) p-strongly monotone if there exists a constant > 0 such that

(Bx-By,x~y) > pllx-yl’, VxryeE, (117)

(3) n-Lipschitz continuous if there exists a positive real number 7 such that

|Bx-By|| <nllx-y|, VYxyeE (1.18)
(4) p-inverse-strongly monotone if there exists a constant > 0 such that

(Bx - By, x —y) > p||Bx - By 2 Vx,y € E. (1.19)

Remark 1.4. It is obvious that any p-inverse-strongly monotone mappings B are monotone
and 1/ p-Lipschitz continuous.

For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solution of variational inequalities for a f-inverse-strongly monotone mapping,
Takahashi and Toyoda [6] introduced the following iterative scheme:

Xo € E chosen arbitrary,
(1.20)
X1 = 0 Xy + (1 — ay)SPe(x, — \yBxy,), Vn>0,
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where Pr is the metric projection of H onto E, B is a f-inverse-strongly monotone mapping,
{an} is a sequence in (0,1), and {A,} is a sequence in (0,2p). They showed that if F(S) N
VI(E, B) is nonempty, then the sequence {x,} generated by (1.20) converges weakly to some
q € F(S)nVI(E, B).

On the other hand, Y. Yao and J.-C Yao [24] introduced the following iterative process
defined recursively by

x1 = x € E chosen arbitrary,
Yn = Pe(xn — LnBxy), (1.21)
Xn+1 = ApX + ﬂnxn + YnSPE (yn - )LnByn)r Vn>1,
where B is a f-inverse-strongly monotone mapping, {a,}, {f.}, and {y,} are sequences in
the interval [0,1], and {A,} is a sequence in (0,2f). They showed that if F(S) N VI(E, B) is
nonempty, then the sequence {x,} generated by (1.21) converges strongly to some g € F(S) N
VI(E, B).

Let A be a strongly positive linear bounded operator on H if there is a constant y > 0
with property

(Ax,x) >¥|x|>, VxeH. (1.22)
Y

A typical problem is to minimize a quadratic function over the set of the fixed points a
nonexpansive mapping on a real Hilbert space H:

min 1(Ax,x) —{x,b), (1.23)
xeE 2

where A is a linear bounded operator, E is the fixed point set of a nonexpansive mapping S
on H, and b is a given point in H. Moreover, it is shown in [25] that the sequence {x, } defined
by the scheme

Xn+1 = EnY f(xn) + (1 — €,A)Sxy, (1.24)

converges strongly to g = Prs)(I — A + yf)(q). Recently, Plubtieng and Punpaeng [26]
proposed the following iterative algorithm:

O(uy, y) + l(y —Up, Uy —Xn) 20, YyeH,
n (1.25)

Xns1 = €Y f(xn) + (I — €,A)Suuy,.

They proved that if the sequences {e,} and {r,} of parameters satisfy appropriate condition,
then the sequences {x,} and {u,} both converge to the unique solution g of the variational
inequality:

((A-yf)g,x—-q) >0, VxeF(S)NEP(®), (1.26)
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which is the optimality condition for the minimization problem:

1
—(Ax,
xeFISI;:\II:ZlP(@ 2 x) — h(x), (1.27)

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).

Very recently, Ceng et al. [27] introduced iterative scheme for finding a common
element of the set of solutions of equilibrium problems and the of fixed points of a k-strict
pseudocontraction mapping defined in the setting of real Hilbert space H: xo € H and let

O(un, y) + l(y — Up, Uy —Xn) >0, Vy€E,
Tn (1.28)

Xpi1 = aply + (1 — ay)Suy,

where {a,} C [a,b] for some a,b € (k,1) and {r,} C (0, c0) satisfies liminf, _, 7, > 0. Further,
they proved that {x,} and {u,} converge weakly to g € F(S)NEP(®), where q = Pr(s)ngp(@)X0-

On the other hand, for finding a common element of the set of fixed points of a k-
strict pseudocontraction mapping and the set of solutions of an equilibrium problems in a
real Hilbert space, Liu [28] introduced the following iterative scheme:

O(un, y) + rl(y —Up, Uy —Xn) 20, Vy€E,

Yn = Putin + (1= Pu) Stin, (1.29)

Xne1 = €Y f(xn) + (I — €,A)Yn, Yn2>1,

where S is a k-strict pseudocontraction mapping and {e,} and {ﬁn} are sequences in
[0,1]. They proved that under certain appropriate conditions over {¢,}, {f.}, and {r,}, the
sequences {x,} and {u,} both converge strongly to some g € F(S) N EP(®), Wthh solves
some variational inequality problems (1.26).



Fixed Point Theory and Applications 7

In 2008, Ceng and Yao [5] introduced an iterative scheme for finding a common fixed
point of a finite family of nonexpansive mappings and the set of solutions of a problem (1.8)
in Hilbert spaces and obtained the strong convergence theorem which used the following
condition.

(G) K:E — R is n-strongly convex with constant ¢ > 0 and its derivative K’ is
sequentially continuous from the weak topology to the strong topology. We note that the
condition (G) for the function K:E — R is a very strong condition. We also note that the
condition (G) does not cover the case K (x) = ||x||*/2 and 1(x,y) = x—y for each (x,y) € ExE.
Very recently, Wangkeeree and Wangkeeree [29] introduced a general iterative method for
finding a common element of the set of solutions of the mixed equilibrium problems, the
set of fixed point of a k-strict pseudocontraction mapping, and the set of solutions of the
variational inequality for an inverse-strongly monotone mapping in Hilbert spaces. They
obtained a strong convergence theorem except the condition (G) for the sequences generated
by these processes.

In 2009, Qin and Kang [30] introduced an explicit viscosity approximation method for
finding a common element of the set of fixed points of strict pseudocontraction and the set
of solutions of variational inequalities with inverse-strongly monotone mappings in Hilbert
spaces. Let {x,} be a sequence generated by the following iterative algorithm:

x1 €E,

zy = Pg (xn - ,uncxn)/

1.
Yn = Pr(x, — AyBxy), (1.30)

1 2 3
Xn+1 = Enf (Xn) + PnXn + Yn [ail )Skxn + zxil )yn + a,(1 )zn], Vn > 1.

Then, they proved that under certain appropriate conditions imposed on {e,}, {fn}, {yn},
{ai,l)}, {(x,(f) }, and { aﬁ?)}, the sequence {x,} generated by (1.30) converges strongly to g €
F(S) nVI(E, B) N VI(E, C), where q = Prs)nvi(e B)nvi(e,c) f (9)-

In the present paper, motivated and inspired by Qin and Kang [30], Peng and Yao [21],
Plubtieng and Punpaeng [26], and Liu [28], we introduce a new general iterative scheme for
finding a common element of the set of fixed points of strict pseudocontractions, the set of
common solutions of the system of generalized mixed equilibrium problems, and the set of
common solutions of the variational inequalities for inverse-strongly monotone mappings in
Hilbert spaces. We obtain a strong convergence theorem for the sequences generated by these
processes under some parameter controlling conditions. The results in this paper extend and
improve the corresponding recent results of Qin and Kang [30], Peng and Yao [21], Plubtieng
and Punpaeng [26], and Liu [28] and many others.

2. Preliminaries

Let H be a real Hilbert space and let E be a nonempty closed convex subset of H. In a real
Hilbert space H, it is well known that

Ax + (1= Dy]|* = Maxl> + A= D|lyl? - 2@ -D|x-y|>, VAe[0,1], Vx,ye H. (21)
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For any x € H, there exists a unique nearest point in E, denoted by Pgx, such that
lx - Pex|| < ||x-vy|, Yy€E. (2.2)

The mapping P is called the metric projection of H onto E.
It is well known that P is a firmly nonexpansive mapping of H onto E, that is,

(x -y, Pex - Pey) > || Pex - Pey|’, Vx,y € H. (2.3)
Moreover, Prx is characterized by the following properties: Pex € E and

(x = Pex,y — Pex) <0,
(2.4)
llx =] > llx - Pex|* + ||y - Pex|)?

forallx e H, y € E.

Lemma 2.1. Let E be a nonempty closed convex subset of a real Hilbert space H. Given x € H and
z € E, then,

z=Pex = (x-2z,y-2z)<0, VYyeE. (2.5)

Lemma 2.2. Let H be a Hilbert space, let E be a nonempty closed convex subset of H, and let B be a
mapping of E into H. Let u € E. Then for A > 0,

u € VI(E,B) < u = Pc(u - ABu), (2.6)

where Pg is the metric projection of H onto E.

A set-valued mapping T : H — 2! is called a monotone if forall x,y € H, f € Tx and
g € Ty imply (x -y, f — g) > 0. A monotone mapping T : H — 2H is called maximal if the
graph G(T') of T is not properly contained in the graph of any other monotone mapping. It is
known that a monotone mapping T is maximal if and only if for (x, f) € HxH, (x-y, f-g) >
0 for every (v, g) € G(T) implies f € Tx. Let B be a monotone map of E into H, #-Lipschitz
continuous mappings and let Ngv be the normal cone to E when v € E, that is,

Nrv={weH:{(v-uw) >0, YueE}, (2.7)

and define a mapping T on E by

Bv+ Ngv, ve€eE,
To = (2.8)

0, v¢E.

Then T is the maximal monotone and 0 € Tv if and only if v € VI(E, B); see [31].
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Lemma 2.3. Let H be a Hilbert space, let E be a nonempty closed convex subset of H, and let ¥ :
E — H be p-inverse-strongly monotone. It 0 < r < 2p, then I — p¥ is a nonexpansive mapping in
H.

Proof. Forall x,y € Eand 0 < r < 2p, we have
(T =7y = (1 =)y * = | (x - y) = r (¥ - ¥y) |
= |l = ylI* = 2r(x —y, Wx = Wy) + 7| ¥x - Wy ||
< [lx - yl* - 2rplWx - Wyl + 72| W - Wy (29)
=[x = ylI* +r(r - 20) [[¥x - ¥y

2
< [lx =yl

So, I — p¥ is a nonexpansive mapping of E into H. O
Lemma 2.4 (see [32]). Let (E,(:,-)) be an inner product space. Then, forall x,y,z € Eand a, B,y €
[0,1] with a + B+ y =1, one has

llax + By +yz||* = allx|® + Blly|)* + yllzI? - apl|x - y||* - ayllx - zI* - By|ly - =|>.  (2.10)

Lemma 2.5 (see [25]). Let E be a nonempty closed convex subset of H, let f be a contraction of
H into itself with a € [0,1), and let A be a strongly positive linear bounded operator on H with
coefficient y > 0. Then, for 0 <y <y/a,

(x-y, (A-yf)x-(A-yf)y) > (F-ya)|x-y|>, xyeH (2.11)

That is, A -y f is strongly monotone with coefficient y — ya.

Lemma 2.6 (see [25]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0 and 0 < O < ||A||™L. Then ||I - 8A| < 1-97.

Lemma 2.7 (see [4]). Let E be a nonempty closed convex subset of a real Hilbert space H and let
S : E — E be a k-strict pseudocontraction mapping with a fixed point. Then F(S) is closed and
convex. Define Sy : E — E by Si = kx + (1 — k)Sx for each x € E. Then S is nonexpansive such
that F(Si) = F(S).

Lemma 2.8 (see [33]). Let E be a closed convex subset of a Hilbert space H and let S:E — E be a
nonexpansive mapping. Then I — S is demiclosed at zero, that is,

Xp— X, Xx,—Sx, — 0 implies x = Sx. (2.12)

Lemma 2.9 (see [34]). Let E be a nonempty closed convex subset of a strictly convex Banach space
X. Let {T, : n € N} be a sequence of nonexpansive mappings on E. Suppose that (-, F(T,) is
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nonempty. Let 6, be a sequence of positive number with >,7°; 6, = 1. Then a mapping S on E defined
by

Sx = > 6,Tux (2.13)

n=1

for x € E is well defined and nonexpansive and F(S) = ;=1 F(T,,) holds.

For solving the mixed equilibrium problem, let us give the following assumptions for
the bifunction @, the function ¢, and the set E:

(A1) D(x,x) =0forall x € E;
(A2) @ is monotone, that is, ®(x,y) + ®(y,x) <Oforall x,y € E;
(A3

)
)
) foreach x,y,z € E, lim;_,o®(tz + (1 -t)x,y) < D(x,y);
(A4) for each x € E, y — @D(x, y) is convex and lower semicontinuous;
)
)

(A5) foreach y € E, x — D(x,y) is weakly upper semicontinuous;

(B1) for each x € H and r > 0, there exists a bounded subset D, C E and y, € E such
that for any z € E \ Dy,

D(z,yx) +9(yx) — 9(z) + %(yx—zfz-x> <0; (2.14)

(B2) E is a bounded set.

By similar argument as in the proof of Lemma 2.10 in [35], we have the following
lemma appearing.

Lemma 2.10. Let E be a nonempty closed convex subset of H. Let @ : E x E — R be a bifunction
satisfies (A1)—(A5) and let ¢ : E — RU{+oo} be a proper lower semicontinuous and convex function.
Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping T : H — E as follows:

TP (x) = {ZEE:(I)(z,y) +o(y) —p(z) + %(y—z,z—x) >0, Vy € E} (2.15)

forall z € H. Then, the following holds:
(i) for each x € H, T (x) #6;

(i) T? is single-valued;

(iii) T, is firmly nonexpansive, that is, for any x,y € H,

(iv) F(T®) = MEP(®, );
(v) MEP(®, ¢) is closed and convex.

TS’x—TS’y”2 <(TPx-TPy,x-y); (2.16)
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Remark 2.11. We remark that Lemma 2.10 is not a consequence of Lemma 3.1 in [5], because
the condition of the sequential continuity from the weak topology to the strong topology for
the derivative K’ of the function K : E — R does not cover the case K(x) = ||x|?>/2.

Lemma 2.12 (see [36]). Let {x,} and {1} be bounded sequences in a Banach space X and let {p,} be
a sequence in [0,1] with 0 < lim inf, o, B, <lim sup, B, < 1. Suppose xp1 = (1=Pn)ln+Pnxn
for all integers n > 1 and lim sup,, , _ (llus1 — Lull = |Xns1 = xull) < 0. Then, limy, _, o||1, — x| = 0.

Lemma 2.13 (see [37]). Assume that {a,} is a sequence of nonnegative real numbers such that

Ap1 < (1 - Qn)an +0n, n2 1/ (217)

where {9, } is a sequence in (0,1) and {0, } is a sequence in R such that

(1) 2k 0n = o,

(2) limsup, _,,(0n/Qn) <00r 332 |0y < co.

Then lim,, _, o, a, = 0.

Lemma 2.14. Let H be a real Hilbert space. Then for all x,y € H,
b+ <l + 20y, x + ). (2.18)

3. Main Results

In this section, we will use the new approximation iterative method to prove a strong
convergence theorem for finding a common element of the set of fixed points of strict
pseudocontractions, the set of common solutions of the system of generalized mixed
equilibrium problems, and the set of a common solutions of the variational inequalities for
inverse-strongly monotone mappings in a real Hilbert space.

Theorem 3.1. Let E be a nonempty closed convex subset of a real Hilbert space H. Let @1 and @, be
two bifunctions from E x E to R satisfying (A1)—(A5) and let ¢ : E — R U {+o0} be a proper lower
semicontinuous and convex function with either (B1) or (B2). Let C: E — H be a ¢-inverse-strongly
monotone mapping, let ¥1:E — H be a p-inverse-strongly monotone mapping, let ¥,: E — H
be an w-inverse-strongly monotone mapping, and let B: E — H be a p-inverse-strongly monotone
mapping. Let f :E — E be an a-contraction with coefficient a (0 < a < 1) and let A be a strongly
positive linear bounded operator on H with coefficient’y > 0and 0 <y <y/a.Let S:E — Ebea
k-strict pseudocontraction with a fixed point. Define a mapping Sy : E — E by Six = kx+(1-k)Sx,
forall x € E. Suppose that

© := F(S) N VI(E, B) N VI(E,C) N GMEP(®y, ¢, %, ) N GMEP(®,, ¢, W) #. (3.1)
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Let {x,} be a sequence generated by the following iterative algorithm:
X1EE, unEE, UneE/

1
D1 (ty, 1) + p(x) = @(up) + (P12, u —uy) + ;(u — Uy, Uy —xy) >0, Yu€eekE,

Dy (v, 0) + p(x) = p(vy) + (Wox,, v —0y) + %(v —Un, Uy —%xy) >0, VYUEE, (3:2)

k, = zx,(ql)Skxn + a,(f)PE(xn - ABx,) + af)PE (2n — unCxp) + a,(f)un + af)vn,

X1 = EnY f (Xn) + Puxn + (1= )] — €,A)ky, Vm>1,

where {e€n}, {Pn}, {yn), and {ai,i)} are sequences in (0,1), where i = 1,2,3,4,5, r € (0,2p), s €

(0,2w), and {\,} and {p,} are positive sequences. Assume that the control sequences satisfy the
following restrictions:

(C1) S =1,

(C2) lim, o, €, =0and 371 €, = oo,

(C3) 0 < liminf, . f, <limsup, ,  pn<1,

(C4) limy oo et = Al = oo st = il = 0,

(C5) d< A, <2Bande < p, <2¢ where d, e are two positive constants,

(C6) limy 0 a = a® € (0,1), where i = 1,2,3,4,5.
Then, {x,} converges strongly to a point q € © which is the unique solution of the variational
inequality:

((A-yf)g,x-q)>0, VYxeO. (3.3)

Equivalently, one has q = Po(I = A+7yf)(q).

Proof. Since e, — 0, as n — oo, we may assume, without loss of generality, that €, < (1 —
Bn)||A||I"! for all n € N. By Lemma 2.6, we know that if 0 < & < || A}, then || - 8A| < 1 - 3.
We will assume that ||I — Al <1 -Y. Since A is a strongly positive bounded linear operator
on H, we have

[All = sup{[(Ax, x)| : x € H, [|x|| = 1}. (3.4)

Observe that

(((1=Pn)] - enA)x,x) =1- P, — €,(Ax, x)
>1-fn—enllAl (3.5)

>0,
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and so this shows that (1 - p,)I — €, A is positive. It follows that

(1= Bu)I = enA|l = sup{[(((1 = pu)T - enA)x,x)| : x € H, ||x]| = 1}
=sup{l -, —e.(Ax,x) : x € H,||x|| =1} (3.6)

Sl_ﬁn_en?-

Since f is a contraction of H into itself with a € [0, 1), then, we have

[Po(I-A+yf)(x)-Po(I-A+yf)()|| < |(T-A+yf)(x)-(I-A+yf)(W)]

<= Allllx =yl +yllf) = fFW)l
(3.7)

<(@=-M)lx =yl +yalx -y

=(1-(G-ya)llx-yll, YxyeH.

Since 0 < 1-(y—ya) < 1, it follows that Po(I-A+yf) is a contraction of H into itself. Therefore
the Banach Contraction Mapping Principle implies that there exists a unique element g € H
such that g = Po(I - A+7yf)(q).

Next, we will divide the proof into five steps.

Step 1. We claim that {x,} is bounded.
Indeed, let p € © and by Lemma 2.10, we obtain

p=Pe(p~AuBp) = Pe(p - paCp) = T (I~ r¥1)p = T* (I - s¥2)p. (3.8)

Note that u, = T;D] (I -r¥)x, € dom ¢ and v, = T;I’Z (I - s¥;)x, € dom ¢; we have

1t = pll = |70 = P00~ T2 0 = P00 | < =l

(3.9)

lon = pll = |71 - s¥2)x, - T (1 = s%2)p|| < [l = p]l.
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Put z,, = Pg(x,—p,Cx,) and y,, = Pp(x,—\,Bx,). Foreach A, < 2f and p,, < 2¢ by Lemma 2.3,
we get that I — 1,,B and I — i, B are nonexpansive. Thus, we have

120 = pll = 1P (= pnCta) = P (p = jnC) |

< || (%0 = nCoxn) = (p = nCp) |

= ” (I _#nc)xn - (I —#nC)P”

< ”xn _p”'

(3.10)

”yn _P” = ”PE(xn — AuBxy) - PE(p - )L"Bp) ”

< || = AuBxy) = (p = 1uBp) |

= | - XuB)o, = (I - L.B)p||

< |low=pll < ||lxn =Pl

From Lemma 2.7, we have that Sk is nonexpansive with F(Sk) = F(S). It follows that

cx,(ql)Skxn + a,(f) Yu + 06513)2;1 + d?“n + “1(15)071

Iw—pl = |

< o || Sk = pll + i lyn = pll + o |z = pll + @ ||n = pll + @i’ o = p

< o |l = pll + @ [} = pll + i on = pll + a6 [l = pll + @57 || = |

=|lxu-p

7

(3.11)

which yields that

11 = || = len(yf () = Ap) + Bu(xn = p) + (1= Bu) I = € A) (kn = p) |
< (1= Pn=enY) [ kn = pll + Bullcn = pl| + enllyf (xn) - Ap]|
< (1= Pu—ea¥)[xn = pll + Bullxn = pll + enlly f (xn) - Ap||

< (=€) |xn =Pl + ey f(xn) = fF(P) || + enlly f (p) - Apl|
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< (=€) [lxn = pl| + envallxn = p|| + eallyf (p) - Ap||

(e (G ae M — ol + (7 — arye, 1) = Apll
= (= -anen) o -pll+ (F-ane™—="1

-A
<ma{ e - 20
Y- ay
<
-A
Smax{ﬂxl ‘P”rW—p”}, VneN.
Y - ay

(3.12)

Hence, {x,} is bounded, and so are {u,}, {v.}, {zn}, {yn}, {kn}, {f(xn)}, {Cx,}, and {Bx,}.
Step 2. We claim that lim,, _, o, ||Xn+1 — X5|| = 0 and lim,, _, ,» || k;, — x| = 0.

Observing that u,, = T;I’ "I -r%)x, € domy and u,1 = TrCD '(I -r¥1)xys1 € dom ¢, by
the nonexpansiveness of TTCD ', we get

T (I - W)X — T (I - 7¥1)x,

||un+1 - un” = < ||xn+1 — x,,||. (313)

Similarly, let v, = T;D (I -s¥,)x, € dom ¢ and v, = T;D *(I = s¥3)xp.1 € dom ¢; we have

T (I - sW))x1 — T2 (I - sW¥2)x,

w1 = oall = | < st = %l (3.14)

From z,, = Pe(x, — pnCxy) and y, = Pe(x, — 1, Bx,); thus, we compute

|zne1 — zull = ”PE(xn+1 - ,un+1cxn+1> - P (xn - ,uncxn) II I
< II (xn+1 - ,un+1cxn+1) - (xn - ,uncxn) ”
= ” (xn+1 - ,un+1cxn+1> - (xn - ,un+lcxn) + (ﬂn - ,un+1)cxn”

(3.15)
< ” (xn+1 - ,un+1cxn+1) - (xn - Hn+1cxn) ” + |I/¢n - Hn+1|||cxn||
= ”(I - I/ln+1c)xn+l - (I - ﬂn+1c)xn” + |Hn - ﬂn+l|”cxn”
< loenar = xull + |#n - .“n+1|||cxn||-
Similarly, we have
||]/n+1 - ]/n” = |Pe(xps1 — Aps1 Bxpi1) — Pe(x — Ay Bxy,)||
(3.16)

< ||xn+1 - xn” + |-)Ln - )‘n+1|||an||-
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Also noticing that

ki, =a, )Skxn + zxf)yn + a(3)zn + rx,(f)un + ai{r’)vn

(3.17)
1 2 3 4 5
ki1 = tfo)lSkxnu + rxiﬁ)lynu + rxfﬁ)lznu + a,ﬁflunu + rxiflvnu,
we compute
1 1 2
lknit = Kall < @l 1Skt = Sexall + @l = @ [1Skxall + @l [[ymer = yll
2 3
+ “5121 - “n |yl + “n+1||zn+1 -z + ipr)l
4) 4) 5
+ @ Ntr = wall + @) = a8 [l + a8 [0ne1 = val| + |00, —
1 1 1 2
< aiﬁ)l”xnﬂ = Xl + a,(ﬁ?l - L‘(,(q) ISkl + ‘XSH.)1”:Vn+1 - ]/n”
2 3 3
+ a2 = aP| yall + S Nzner = zall + |2, = a1zl
4) 4) 5
+ @ Ntr = wall + @) = a8 [l + a8 [0ne1 = val| + |00, - a
(3.18)
Substitution of (3.13), (3.14), (3.15), and (3.16) into (3.18) yields that
1 1
et = nll < @y 1men = xall + |y — a
+ - + | B a®
a2 (X1 = 2l + 1Ay = Apaa [ Baall} + [ — I
3 3
+ a;(r1-21{||x1’l+1 = Xp| + |I’ln_l’ln+1|||cxn”} ,(121
4) 4) (5) ®)
+ an+1||x"+1 - xn” + an+l n+1”x7"‘*'1 - x”” + n+1 -a
1 1 2 2 3 3 4 4
< [xn+1 = x| +M1< “1(1+)1 —a,(q) + "‘51+)1 ail) + “iw)l zx,(q) + "‘;(1+)1 —afl)
® - Ay = A
+ X, an +| el + |/4n //ln+l|
(3.19)
where M, is an appropriate constant such that
M 2 max{sup{llskxnll},sup{IIyn },sup{llzall}, sup{lluall},
n>1 n>1 n>1 n>1
(3.20)

sup{[|oa ||}, sup{[|Bxnll}, sup{[|Coxx||} }

n>1 n>1 n>1
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Putting x,+1 = (1 — Bn)l, + Puxy, for alln > 1, we have

Xni1 = PnXn enyf(xn) + (1= PBn)I - enA)k
1_ﬁn - 1- ﬁn

I, = (3.21)

Then, we compute

€n+1Yf(xn+1) + ((1 _ﬂn+1)I - €n+1A)kn+1 B en}’f(xn) + ((1 - ﬁn)I - €nA)kn
1- ,gn+1 1- ﬂ"

ln+1 - ln =

€n+l
Ak, — Ak,
1- ﬂn _ﬁn+1 H

=5l () -

1= ﬂn+ Yf(xn) + kne1 — ky +

ﬁn

- E"” (v () = Ak + %(Akn =Y f(xn)) + kni1 = K.

(3.22)
It follows from (3.19) and (3.22) that
€n+
s =l = s = 5l € 255y o) | + ARl + 52 (1Al + £ o)
+ ||kn+1 - kn” - |Ixn+1 - xn”

e”” (”Yf(xn+1 | + | Ak ll) + f"ﬁn (LAKull + [y f Gen) |I)

- 1-
+ Ml( “51131 e 512+)1 + “n+1 a,) | + 514+)1
+ 51521 + A = At | + |I4n ,un+1|>
(3.23)
This together with (C2), (C3), (C4), and (C6) implies that
limsup([|lns1 = Lnll = 12041 — 2xl]) < 0. (3.24)

n—oo
Hence, by Lemma 2.12, we obtain ||/, — x,|| — 0asn — oo. It follows that

nlgr;o”xnﬂ —xull = nlg'%o(l - ﬂn)“ln — x4l = 0. (3.25)
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Moreover, we also get

UM [|ttys1 = ]l = Hm |01 = 0]l = Bm [|zys1 = 24l = Hm || yne1 = va|
n—oo n—oo n—oo n—oo

(3.26)
= lim || kys1 — ky]| = 0.
Observe that
X1 = Xn = €x (Y f(3n) — Axn) + (1= B — €4Y) (kn — X). (3.27)
By conditions (C2), (C3), and (3.25), we have
limy, — o || ks — x4 || = 0. (3.28)
Step 3. We claim that the following statements hold:
(s1) limy, — oo||xn — Uyl = 0;
(82) limy, — o||2n — yull = 0;
(3) limy, 0|l — znll = 0;
(s4) limy, —, o ||x, — vy = 0.
For p € ©, we compute
2 2
|20 = PII” = || Pe (xn = pnCatn) = Pe(p = uanCp) |
2
< || (en = paCoxn) = (p = puCp) ||
2
= || (xtn = p) = n(Cxtn = Cp) |
(3.29)

< Jln = pII* = 24 = p, Cx = Cp) + 3| C2u = Cp |
< |lxw = pII* + pn (= 28) | Cx — Cp||*

= [ln = pII” = e (26 = o) [ Coxu = Cp|I”
By the same way, we can get

I < 1 pIF ~ (26 - 1) [ B~ B (3:30)
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We note that

2
i = plI* = |1 (0 = r¥0)0, = T (1= r )|
< || = r¥y)x, - (1= r¥)p|*

= | (xn = p) - r(¥1x0 - ¥1)p ||’

= lxn —p* = 2 — p, Wiy = Wip) + P2 Wrx, ~wip” B3
< ll2tn = I = 2rp|[ W1, — Wap| + 72| ¥rx — 1|
= |lxn = plI* + 7 (r = 2p) |¥1x, — ¥1p|1?
= |lxp = pl* = r(2p = 1) [¥1x, — ¥ip|*.
Similarly, we have
||on - p||2 < |lxn - p”2 - 52w - s)||Wax, — ‘Pzp”Z. (3.32)

Observe that

len = pII” < Sk =PI + a6y = pII* + 0|z =PI + 26 4 = pI* + 2| =

< llw=p* + oy = pI* + Nz = P + 0l = pI* + i o = |

(3.33)
Substituting (3.29), (3.30), (3.31), and (3.32) into (3.33), we obtain
e =l < 6= I+ af? {1, = pI = s (28— 1) | B, — B
¢ 0 { %0 = pI = a (28~ 1) o — oI}
4) 2 2
+ a, Xy =p| —r2p-1)|[|¥ix, - ¥1p
{1 I =r2p -1 I} 330

+ad{ [lxn = plI” - 2w - 9)[[¥ax, - Wap||}
= ll2en = PII” - @21 (28 = 1) | Bxa = Bp||* - " e (2 = pa) | Cxn = Cp||*

= @, r(2p 1) [ Wix, = Cip||* - ;s (2w — 5) || Wax, - Wap||”.



20 Fixed Point Theory and Applications

It follows from (3.2) and (3.34) that

201 = pII°
= llewy f(xn) + Buxn + (1= BT = e A)kn = ||’
<enllyfxn) = Apl|* + Bullxn = pII* + (1 = Bu = €a¥) en = pI”
< enlly f(xn) = Al + Bullxn — pII* + (1= B — €a7)
X {len = plI* = a4 (28 = An) | Bxn = Bp|* = i i (28 = i) || Cn = Cp||®

~ar(2p =)W1 = Wap||* - @52 = 5) [ W2, - Wapl|'}

= eu||yf (xn) = Ap||* + (1= &x¥) |20 = p|” = (1= Bu — en¥) s’ 1 (2B - Au) || Bx — Bp||*
~ (1= P =€)l un (28 = pn) || Cxu - Cp|)?
— (1= Bu - &) 7(2p - 1) || 1 - ¥ap||?
—(1-p0,—-€e.y a,(15)s 2w - 8) (| WPrx, — ¥ z
(1-Bn—eny)ay s( ) p
< eullyf () = Ap|* + |20 = pII” = (1= Bu — ea¥) s 1 (2B = Xa) || Bxw - Bp||?
— (1= Pu—en¥) el 1n (28 = ) || Cxo - Cp||?
— (1= Pu—eq)ar(2p = 1) || ¥12, - ¥ip||?
—(1-p0,—€eny a5,5)s(2w— $)||[Wax, — ¥r 2
(1~ Bn—e€nY) p

< eullyf(en) = Ap|* + [lxn = pII* = (1= Bu — enT) ety 1 (28 = ) || Cx — Cp |-

(3.35)
It follows from (C5) that
— () 2
(1= Pu = enY)an in (25 = pn) | Cxu = Cp||
< enlly fGea) = ApI* + [lxa = p|I” = llws = pII”
(3.36)

= eullyf (en) = Ap|* + (|xn = pI| = 1xme1 = pI1) (1 = ]| + [l201 = ]

< enllyf o) = Ap” + e = xall (|0 = Pl + |1 = PI)-
From (C2), (C6), and (3.25), we have

;}ijrgo||an -Cp| =0. (3.37)
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Since s € (0,2w), we also have

(1-p.— en?)a£5)s(2w - 5)||¥ax, - ‘Pzp”z
< eullvfCen) = Ap|* + %0 = pII” = |2 - pII” (338)

< enllyf () = ApI + 11w = all (12 = 1| + [[ 1 = pI)-
From (C2), (C6), and (3.25), we obtain
Ji_r)rc}o”quxn -¥p| =0. (3.39)
Similarly, from (3.37) and (3.39), we can prove that

tim |B, = Bp| = lim ¥, =] =0. 340

On the other hand, let p € © for each n > 1; we get p = T,”' (I - r¥;)p. By Lemma 2.10(iii),
that is, Ty is firmly nonexpansive, we obtain

s = pII*

2
TO (I - 7%y, — T (I - r‘Pl)pn

(T -1¥1)x, — (I - r¥1)p, un —p)

= 5 {1 =90, (=PI o = I = T = P2, = (1= P = (- ) )

1

L= I = I = 15— 1) — i, ~ i) )

1

< z{llxn = plI* + lletn =PI = ot = nll® + 272, = | W12, = W] = 72| W10, - ‘Plpllz}-
(3.41)

IN

So, we obtain

||uen - p||2 < |xn — p||2 —N1%n = uall® + 27|25 = ||| 1260 — ¥ap |- (3.42)
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Observe that

|y = pII* = || Pe(atn = 1uBxa) - Pe(p — 1uBp)||?
< <(I - MB)x, — (I - )‘nB)Pryn _P>

1
= {10 =By = (L= LB | + [l = P

([ = 2uB)yxu = (1= 1B)p - (yu =) |I*}

(3.43)
1 2
< S {1 =PI + llya =PI = | ko = ya) = 20 (Bxa - Bp) ||’}
1
< 5{ 1 =PI + llya =PI = 1% = yall* = 23| Bxs - Bp||*
+ 24 (X — Y, Bxy — Bp)},
and hence
v = I* < lla =PI = 1160 = yall” + 2010 = yull | B - Bp|- (344)
By using the same argument in (3.42) and (3.44), we can prove that
”vn _P”2 < ”xn - P“2 — |l = Un”Z +28|x, - Un”lllPan -
(3.45)

Iz = II” < 1% = PII” = 120 = 2all® + 2paall200 — zall]|Cxa — Cp.
Substituting (3.42), (3.44), and (3.45) into (3.33), we obtain
ko = pI* < e’ lln =PI + & lyn =PI + @i |z = pII* + @[t = pII* + @ [0 = p|*
< af || = plI* + @ {1 = pII* = ll2tn = yall* + 21200 = [ B — B[}
+ {6 =PI = 1 = 2l + 2ualla - zal[|C - Cll )
a2 (12w = pII” = v =l + 27l — ||| W16, — ¥ip ]|}
@ {[l2n = pII* = v = oal + 25l = 0l [Wax, — Erp]l}
= 1 =PI = o 10 = yll” + 20002 [l = yall || B, ~ B
— a2t = zall* + 2ty X0 — zall|| Cxa - Cp|
— |20 — n|” + 27, ||y — || P10 - P |

— a||xn = vall? + 2508 |30 = Ol || 220 — ap||-
(3.46)
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From Lemma 2.4, (3.2), and (3.46), we obtain

w1 = pII* = le(y f () = Ap) + Bu(xn = p) + (1 = Bu) = enA) (Feu = p) ||
<enllyf(xn) = Ap||* + Bullxn = p|* + (1= Bu = &a¥) | kn - ||
< enllyf(en) = Ap|* + Bullxn - p ||
+ (1= o= ea) { I1xn = PI* = 2|60 = yull* + 2002 [|60 = | [ B - Bp|
— a1 = Zall® + 2pty) | = zull || Cat — Cp|
4)

= i len = wn” + 2ral? |, — 1 ||| ¥100 — E1p|

5 5
= aflxn = oall” +25aflx, - oall[| Y20 ~ ¥ap |}

= enllyf(xa) - Ap|* + (1 - &) || xa - p|*
~ (1= Pu—en¥)a? | X0 = yull” + 2(1 = Bu — €a¥) At || = yu| || Bxn - Bp||

- (1=, - en?)af)ﬂxn —z|* + 2(1-Pn - en?)ﬂnaf)nxn - z4||||Cxs — Cp||

= (1= Bu— eal) s 1 = el + 27 (1 = B — ea¥)ats I = e[| ¥10 = Pip|
— (1= Bu = eal) s 1 = vall* + 25 (1 = B — ex¥) el |5, = 0all || ¥220 = Cap|
< eullyf(xn) = Apl* + llxn = pII* = (1 = Bu = exT) | % = |
+2(1 = B = ea¥) k|| % = || Bxa = Bp|| = (1= B = en¥) e’ 1 = zall®
+2(1 = B = e naty %0 = zall[|Cxo = Cpll = (1= B = €)1 =
+2r (1= B — en¥) s 120 = [ B16 = Wip|| = (1= B = exT) e |2 = 0ul]
+25(1 = B — €aT) 2 1% — Ol || ¥220 — ¥ap||-
(3.47)

It follows that

(1= B = en¥) s 12w =l < enlly £ (n) = AP|® + Iwer = 2l (|20 = | + [| 201 = )
+2(1 = o = e)Ana” |0 = ||| B, - Bp|
+2(1= By — V) pncty, 1 — zall|| Cxtn = Cp |
+2r (1= Bu — V)t 120 = all | ¥120 — Wip |

+25(1 = B — €a7) 2 %0 — Ol || 220 — ap||-
(3.48)
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From (C2), (C6), (3.37), (3.39), (3.40), and ||x,41 — x,|| — Oasn — oo, we also have

Jim [l = un|| = 0. (3.49)

From (3.47) and by using the same argument above, we can prove that

lim ||, = yul| = Hm [lx, = 2]l = lim [|x, = oa]] = 0. (3.50)

n—oo

Applying (3.28), (3.49), and (3.50), we obtain

Jgr;o”kn — Uyl = nli_l)lgo”kn - ]/n” = nli_{r;o”kn = zull = nlgrc}o”kn — vyl = 0. (3.51)

Step 4. We claim that limsup, ,_((A-yf)q,9—-x,) <0, where g = Po(I - A+7yf)(q) is the
unique solution of the variational inequality ((A-yf)g,x —q) >0, forallx € ©.
To show the above inequality, we choose a subsequence {x,,} of {x,} such that

limsup((A-yf)q,q—xn) = iﬁj{;((A =Yf)a,9 - xu)- (3.52)

n—oo

Since {x,,} is bounded, there exists a subsequence {xnij } of {x,,} which converges weakly to
z € E. Without loss of generality, we can assume that x,, — z. We claim that z € ©.
That is, we will prove that

z € F(S) N VI(E, C) N VI(E, B) N GMEP(®, ¢, ¥1) N GMEP(®,, ¢, ¥,). (3.53)

Assume also that A, — X € [d,2p] and p, — p € [e, 2¢].
Define a mapping Q : E — E by

Qx = aWSxx + a®Pe(1 - AB)x + a® Pg(1 - uC)x + a® TP (I - r'¥;)x -
3.54
+a®OT® (I - r¥,)x, Vx€E,

where limnéwafp =a® € (0,1), wherei = 1,2,3,4,5. Since Z?:l a,(f) =1 and by Lemma 2.9,

we have that Q is nonexpansive and
F(Q) = F(Sx) N F(Pg(1 - AB)) N F(Pe(1 - uC)) N F(Tf’l (I- r‘P1)> n P(T§’2(1 - rlpz))

= F(S) N VI(E,C) N VI(E, B) N GMEP(®y, ¢, ¥1) N GMEP(d3, ¢, ¥,).
(3.55)
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Notice that
1Qxy — x|
<1Qxn = knll + [[Fen = x|
= ” [tx(l)Skxn +aPP:(1-AB)x, + a(3)PE(1 - uC)xy + a®TO(I - r¥))x,
+a® T (I—r‘Pz)xn] - [aill)skxn+a§lz)Pg(l—AnB)xn+af’>PE(1 - unC)xy,

TP (I=r )y + ) T (1= r92)ac,] [ + e =

< |a(1) o |IPe(I = AuB) x|l

1Sknl| + @@ || Pe(I = AB)xn — Pe(I = AuB) x| + |a<2> —a®?
+a || Pe(I = pC)axy = Pe(I = pnC) x| + [ a® = af? ||| Pe (1 = paC) |

[ - af?| 721 - ), * I =

+ |zx<5) —a)

||T§’2(1 —r¥,)x,

1 2
< |a® = @i |1Skall + @14, = MiIBxa | + [« - & |[PE(T = 1)

[1Pe (T = ) x|

3
+ oy~ el |Cox + [~ a3

+ |a(4) - a,(f) ‘ ”bel (I -r%y)x, zxfls)

" |a<5> _

||T§’2(1 —r¥,)x,

+ ||k — x4]|

5 .
<K a®D — a4 A = A+ | - + |k = xll,
fon =
i-1
(3.56)

where K; is an appropriate constant such that

} sup(IIPE(T = 1,B)xl),

n>1

Ki > max{sup{ “Tf’1 I -1r%)x,

n>1

},5;2113{ ”TSCD2 (I -r¥;)x,

Sulf{”PE(I —an)xnll}rsulf{IIanII}rsulf{IIanII},SUP{IISkxnII}}-
nz n> n>

n>1

(3.57)
From (C4), (C6), and (3.28), we obtain
Jim [l2c, — Qx| = 0. (3.58)

Since Po(I-A+yf)(q) is a contraction with the coefficient « € [0, 1), we have that there exists a
unique fixed point. We use g to denote the unique fixed point to the mapping Po(I-A+y f)(q).
Thatis, g = Po(I-A+yf)(q). Since {x,,} is bounded, there exists a subsequence {x,,} of {x,}
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which converges weakly to z. Without loss of generality, we may assume that {x,,} — z. It
follows from (3.58), that

;}i—r&”x"" - ani” =0. (359)

It follows from Lemma 2.8 that z € F(Q). By (3.55), we have z € ©.
Hence from (3.52) and (2.4), we arrive at

lim sup((A -yf)q,q - xn) = lim sup ((A-yf)q,9 - xn,)
n— oo n— oo (360)

=((A-vf)q,9-2) <0.
On the other hand, we have

((A=v)a,q-xn1) = ((A=Yf)q %0 = xps1) + (A= Yf)q,9 — xu)

(3.61)
< [[CA=yH)allllxn = xnall + ((A=yf)4,q = xn)-
From (3.25) and (3.60), we obtain that
lim sup ((A-yf)q,q— xna) <0. (3.62)

n—oo

Step 5. We claim that lim,, _, || x, — gl| = 0.
Indeed, by (3.2) and using Lemmas 2.6 and 2.14, we observe that

[onet = qll = llenyfen) + Buxn + (1= Bu)] - €nA)kn —q|°
= (1= Bu)] = €nA) (kn = q) + Pu(xn — q) + €a(yf (xa) = Ag) |

(A-p)I-ed) ’
A R

+ 2e,(yf (xn) — Aq, Xni1 — q)

((1=pn)I ~enh)
1-pn (k

< (1-pn q) + Pu(xn = q)

2
+Pullxn - gl

<(1-pn) )
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+ 2eny(f (oen) = (), Xns1 = q) +26n(yf(9) = Ad, X1 = 4)

((1-Bu)] - enA) ’
1-p6, (k

+2enyal|xn = q||||xne1 - ql| + 2ex(y f (q) = Aq, xni1 - q)

2
< ”(1_:6")1_6"A|| ”kn
< 1_‘3"

+enya(||xn = qll® + |2 - 4ll*) +26a(vf (4) - Ag, X1 = )

2
< Il(l_ﬁﬂ)l_enA” ”x
1-pn "

+enya([lxn = qll” + 1xues — 4ll*) +2en(yf (4) = Aq X1 - q)

. <<(1—ﬁn) —Yen)

=)+ Pullxa~all’

< (1=pn)

2 2
= qlI” + Bulln 4

=4|l” + pulln - ql”

1-pn

+enyallxu - q||” + 2ea(yf (q) - Aq, Xne1 - q)

2
+m+%w>hwwf

-2 -
v Y €n 2
< <1 -2y —ay)e, + 1 —ﬁn> l|xn = 4|
+ Enyat||xnan — qllz +2e,(yf(q) — Aq, Xpi1 - q), (3.63)
which implies that
2 2(? - a}/)en 2
v =all”< (1 " oaye, )l
(3.64)
€n Tzen )
* 1_aY€n 1_,371 len_q” +2<Yf<q)_Aq/xn+l_q> .
Taking

=2
__ Cn Y €n R B B
T —aYen{l—ﬂn llxn = qll” +2(yf (q) = Aq, xn1a q>}

(3.65)
_2(y —ay)en

" 1-aye,
then, we can rewrite (3.64) as

s = 4ll” < (1= 0u) [l = 4l + 0, (3.66)



28 Fixed Point Theory and Applications

and we can see that 377, 0, = oo and limsup, ,_(0,/¢,) < 0. Applying Lemma 2.13 to
(3.66), we conclude that {x,} converges strongly to g in norm. This completes the proof.

If the mapping S is nonexpansive, then Sy = Sg = S. We can obtain the following result
from Theorem 3.1 immediately.

Corollary 3.2. Let E be a nonempty closed convex subset of a real Hilbert space H. Let @1 and @, be
two bifunctions from E x E to R satisfying (A1)—(A5) and let ¢ :E — R U {+oo} be a proper lower
semicontinuous and convex function with either (B1) or (B2). Let C: E — H be a é-inverse-strongly
monotone mapping, let ¥1:E — H be a p-inverse-strongly monotone mapping, let ¥,:E — H
be an w-inverse-strongly monotone mapping and let B: E — H be a p-inverse-strongly monotone
mapping. Let f : E — E be an a-contraction with coefficient a (0 < a < 1) and let A be a strongly
positive linear bounded operator on H with coefficient y > 0and 0 <y <y/a.Let S: E — Ebea
nonexpansive mapping with a fixed point. Suppose that

© := F(S) N VI(E, B) N VI(E,C) N GMEP(®y, ¢, ¥1) N GMEP(dy, ¢, ¥5) #0. (3.67)

Let {x,} be a sequence generated by the following iterative algorithm (3.2), where {€,}, {Pn}, {¥n},
and {a,(f)} are sequences in (0,1), wherei =1,2,3,4,5,r € (0,2p), s € (0,2w), and {\,} and {p,}
are positive sequences. Assume that the control sequences satisfy (C1)—(C6) in Theorem 3.1. Then,
{xn} converges strongly to a point q € © which is the unique solution of the variational inequality:

((A-yf)g,x—q) >0, VxeO. (3.68)

Equivalently, one has g = Po(I - A+yf)(q).

Ifep=0% =% =0A=Iy=1andy, =1-¢, - f,in Theorem 3.1, then we can
obtain the following result immediately.

Corollary 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H. Let ® and ®,
be two bifunctions from E x E to R satisfying (A1)—(A4). Let C : E — H be a ¢-inverse-strongly
monotone mapping and let B : E — H be a p-inverse-strongly monotone mapping. Let f : E — E
be an a-contraction with coefficient a (0 < a < 1) and let A be a strongly positive linear bounded
operator on H with coefficient y > 0and 0 <y <y/a.Let S : E — E be a k-strict pseudocontraction
with a fixed point. Define a mapping Sy : E — E by Sxx = kx + (1 — k)Sx, for all x € E. Suppose
that

© = F(S) N VI(E, C) N VI(E, B) N EP(®;) N EP(d,) #0. (3.69)
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Let {x,} be a sequence generated by the following iterative algorithm:
x1€E, u,€E, v,€E,

1
D1 (uy, u) + ;(u—un,un -x,)>0, VYueekE,

1
@O, (vy,,0) + §<U — Uy, Uy —xy) >0, VYUEE,

(3.70)
zp = Pg (xn - ,uncxn)/

Yn = PE(xn - -)Lann)r

k, = asll)Skxn + a,(qz) Yn + zxf)zn + a,(f)un + a5,5) Un,

Xn+l = enf(xn) + ﬁnxn + Ynkn/ Vn>1,

where {en}, {Pn}, {yn}, and {as)} are sequences in (0,1), where i = 1,2,3,4,5, r € (0,0),
s € (0,00), and {A,} and {p,} are positive sequences. Assume that the control sequences satisfy
the condition (C1)—(C6) in Theorem 3.1 and €, + fn+ Yy = 1. Then, {x,} converges strongly to a point
q € ©, where q = Pof(q).

If B=0, C =0, and @ (u,, u) = P1(v,,v) = 0 in Corollary 3.3, then P = I and we get
Uy = Yn = X, and v, = z, = X,,; hence we can obtain the following result immediately.

Corollary 3.4. Let E be a nonempty closed convex subset of a real Hilbert space H. Let S : E — E
be a k-strict pseudocontraction with a fixed point. Define a mapping Sy : E — E by Sgx = kx + (1 -
k)Sx, for all x € E. Suppose that F(S) # . Let {x,,} be a sequence generated by the following iterative
algorithm:

x1 €E,
kn = aySkxny + (1 —ay)xy, (3.71)
Xn+l = enf(xn) + ﬁnxn + Ynkn/ Vn > 1/
where {€,}, {Pn}, {yn), and {a,} are sequences in (0,1). Assume that the control sequences satisfy

the conditions (C2) and (C3), lim,, ., = a € (0,1) in Theorem 3.1, and €, + By + yn = 1. Then,
{xn} converges strongly to a point q € F(S), where q = Prs) f(q).

Finally, we consider the following Convex Feasibility Problem (CFP):

M
finding an x € ﬂ Ci, (3.72)
i=1

where M > 1 is an integer and each C; is assumed to be the of solutions of equilibrium
problem with the bifunction ®;,i = 1,2,3,..., M and the solution set of the variational
inequality problem. There is a considerable investigation on CEP in the setting of Hilbert
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spaces which captures applications in various disciplines such as image restoration [38, 39],
computer tomography [40], and radiation therapy treatment planning [41].
The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Theorem 3.5. Let E be a nonempty closed convex subset of a real Hilbert space H. Let be a @;
bifunction from E x E to R satisfying (A1)—(A5) and let ¢p:E — R U {+oo} be a proper lower
semicontinuous and convex function with either (B1) or (B2). Let C;:E — H be an ¢;-inverse-
strongly monotone mapping for each i € {1,2,3,...,N}. Let f:E — E be a contraction mapping
with coefficient a (0 < a < 1) and let A be a strongly positive linear bounded operator on H with
coefficient’ y > 0and 0 <y <y/a. Let S:E — E be a k-strict pseudocontraction with a fixed point.
Define a mapping Sk : E — E by Six = kx + (1 — k)Sx, for all x € E. Suppose that

N M
F:=F(S)N <ﬂ VI(E, ci)> N <ﬂ MEP((Dj,(p,‘P]-)> #0. (3.73)

i=1 j=1
Let {x,} be a sequence generated by the following iterative algorithm:

x1 €E, uy € E,

1
@ (un,N+1/u1)+(P(x)_(P(un,N+l)+<1P1xn/u_un,N+1>+r_<u1_un,N+1/un,N+l_xn> >0, Yu; €E,
1

1
(Dz(un,N+2,uz)+<P(x)—<P(un,N+z)+(‘P2xn,u—un,N+2>+E(“z—un,Nn,un,NJrz—xn) >0, VYup€E,

1
(I)N(un,M/uM)+‘P(x)_(P(un,M)+<1PMxnzu_un,M>+a<uM_un,M/ UpMm —Xn)20, Yup €E,

Zn1 = P (xn - ,un,lclxn)/

Zn2 = P (xn - ,un,2c2xn)/

Zp,N = PE (xn - ,un,NCan)/
N M
kn, = an,OSkxn + len,izn,i + Z Xn,jUn,j,
i=1 j=N+1

X1 = €Y f (%n) + Puxn + (1= o) — €,A)kn, Yn>1,
(3.74)

M
where &ty0, Xn1, Xn2, And, Ay N, -, Oy N+1,-- -, Anm € (0,1) such that 35y an; = 1, {pn;} are
positive sequences, and {e,} and {f,} are sequences in (0,1). Assume that the control sequences
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satisfy the following restrictions:
(C1) lim, s €, =0and 377 €, = oo,
(C2) 0 <liminf, . f, <limsup, ,  pn<1,
(C3) limy, - o |Un+1,i — Hnil =0, foreach 1 <i < N,
(C4) e; < pn,; < 28, where e; is some positive constant for each 1 <i < N,
(C5) limy s i = a4 € (0,1), foreach 1 <i < M.

Then, {x,} converges strongly to a point q € S which is the unique solution of the variational
inequality:

((A-yf)a,x-q)>0, Vxe¥. (3.75)

Equivalently, one has q = P¢(I - A+yf)(q).
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