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Abstract

This article studies a boundary value problem of nonlinear fractional differential
equations with three-point fractional integral boundary conditions. Some new
existence results are obtained by applying standard fixed point theorems. As an
application, we give two examples that illustrate our results.
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1 Introduction

Fractional differential equations have recently proved to be valuable tools in the modelling
of many phenomena in various field of science and applications, such as physics, mechan-
ics, chemistry, biology, economics, control theory, aerodynamics, engineering, etc. See
[1-6]. There has been a significant development in the theory of initial and boundary
value problems for nonlinear fractional differential equations; see, for example, [7-15].

Ahmad and co-authors have studied the existence and uniqueness of solutions of non-
linear fractional differential and integro-differential equations for a variety of boundary
conditions using standard fixed-point theorems and Leray-Schauder degree theory. Ah-
mad et al. [16] discusses the existence and uniqueness of solutions of fractional integro-
differential equations for fractional nonlocal integral boundary conditions. Ahmad et al.
[17] and references therein give details of recent work on the properties of solutions of
sequential fractional differential equations. Ahmad et al. [18] considers solutions of frac-
tional differential equations with non-separated type integral boundary conditions. In Ah-
mad et al. [19], the Krasnoselskii fixed point theorem and the contraction mapping prin-
ciple are used to prove the existence of solutions of the nonlinear Langevin equation with
two fractional orders for a number of different intervals. Ahmad et al. [20] discusses the
existence and uniqueness of solutions of nonlinear fractional differential equations with
three-point integral boundary conditions.

Cabada et al. [21] have also studied properties of solutions of nonlinear fractional dif-
ferential equations. They used the properties of the associated Green’s function and the
Guo-Krasnosellskii fixed-point theorem to investigate the existence of positive solutions
of nonlinear fractional differential equations with integral boundary-value conditions.
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Motivated by the papers [16] and [20], this article is concerned with the existence and
uniqueness of solutions for a boundary value problem of nonlinear fractional differential
equations with three-point fractional integral boundary conditions given by

‘Dix(t) =f (¢,x(t)), t€[0,1],q€(1,2], (1.1)

x(0) =0, oz[]px](n) =x(1), O0<n<l, (1.2)

where °D? denotes the Caputo fractional derivative of order g, /¥ is the Riemann-Liouville
fractional integral of order p, f : [0,1] x R — R is a continuous function and « € R is
such that o # I'(p + 2)/n”*1. By C([0,1],R) we denote the Banach space of all continuous
functions from [0, 1] into R with the norm

%l = sup{|x(#) ;¢ € [0,1]}.

We note that if p = 1, then condition (1.2) reduces to the usual three-point integral con-
dition. In such a case, the boundary condition corresponds to the area under the curve of
solutions x(£) from £t =0 to ¢ = 1.

2 Preliminaries
In this section, we introduce notations, definitions of fractional calculus and prove a

lemma before stating our main results.

Definition 2.1 For a continuous function f : [0,00) — R, the Caputo derivative of frac-
tional order g is defined as

“DIf(t) = r(n;_q) fot(t —s) T s)ds, n-l<q<mn=[q)+1,

provided that f")(¢) exists, where [g] denotes the integer part of the real number 4.

Definition 2.2 The Riemann-Liouville fractional integral of order g for a continuous
function f(¢) is defined as

If(t) = %q) /0 (t-9)Tf(s)ds, >0,

provided that such integral exists.

Definition 2.3 The Riemann-Liouville fractional derivative of order g for a continuous
function f(¢) is defined by

1

_ d\" [ n-q-1 _
qu(t)—”T_LI)(E) /O(t—s) = f(s)ds, n=I[q]+1,

provided that the right-hand side is pointwise defined on (0, 00).

Furthermore, we note that the Riemann-Liouville fractional derivative of a constant is
usually nonzero which can cause serious problems in real would applications. Actually,


http://www.advancesindifferenceequations.com/content/2012/1/93

Sudsutad and Tariboon Advances in Difference Equations 2012, 2012:93 Page 3 of 10
http://www.advancesindifferenceequations.com/content/2012/1/93

the relationship between the two-types of fractional derivative is as follows

. B 1 t f(n)(S)
DO~ g Jy G
n-1
~ fP0)
=DYO-Y gt

n-1 (k)o
Zwtk}, t>0,n-1<g<n.

= D1 [f (t) - %

k=0

So, we prefer to use Caputo’s definition which gives better results than those of Riemann-
Liouville.

Lemma 2.1 [3] Let g > 0, then the fractional differential equation
‘Diu(t) =0

has solution
ul)=ko + kit +kot®> + - + kyit"™, ki €R,i=0,1,2,...,n-1,

where n is the smallest integer greater than or equal to q.

Lemma 2.2 [3] Let g >0, then
19°DUy(t) = u(t) + ko + kit + kot®> + -+ + kg "L,

forsomek; €R,i=0,1,2,...,n—1where n is the smallest integer greater than or equal to q.

Lemma2.3 Leta # 22 1< q < 2. Then for h € C([0,1],R), the problem

np+1 ’
‘Dix(t)=h(t), O0<t<l, (2.1)
x(0) = 0, a[Px](n) = x(1), (2.2)

has a unique solution

IR P (p+2)t Lo
x(t) = Tq)/o (t=8)T"h(s)ds — T+ 2) /(; (1 - 5)7 " u(s) ds
app + 1)t nors . L
+ T(q)(T(p +2) — anr+l) /o /0 (n— s (s — )T h(r) drds. (2.3)

Proof By applying Lemma 2.2, we may reduce (2.1) to an equivalent integral equation

x(t) = %q) fo (¢ = 8) T h(s) ds — ¢co — 1, (2.4)

for some ¢g,c; € R.
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From x(0) = 0, it follows ¢ = 0. Using the Riemann-Liouville integral of order p for (2.4),
we have

Px(t) = Fi(p) /Ot(t e [%q) /Os(s - h(r) dr - cls:| ds
tp+1

IR S S PP PR ~
_F(p)F(q)/o /(;(t P (s=r)T""h(r)drds ClF(p+2)'

The second condition of (2.2) implies that

p+1

o " -1 -1 an
W/o /O(n—s)p (s—r) h(r)drds—clr(p+2)

1
= %Q)/o (1-5)7h(s)ds — c1.

Thus,

T(p+2) ! _
= F(q)(F(p+2)—anP+1)/0 (1 - )7 h(s) ds

ap(p +1) noprs B L
_F(q)(F(p+2)—anp+1)/o fo(’?—s)” (s =) h(r)drds.

Substituting the values of ¢y and ¢; in (2.4), we obtain the solution (2.3). O

In the following, for the sake of convenience, set

A 1 'p+2) an?T(p + 2)
= + + N
Fig+1) T@+DIC(p+2)-ant| TE+q+1)IT(p+2)-an|

(2.5)

3 Main results
Now we are in the position to establish the main results.

Theorem 3.1 Assume that there exists a constant L > 0 such that
(H1) [f(t,x)—f(t, )| <Llx—y|, foreach t € [0,1], and all x,y € R.

IfLA <1, where A is defined by (2.5), then the BVP (1.1)-(1.2) has a unique solution on [0,1].

Proof Transform the BVP (1.1)-(1.2) into a fixed point problem. In view of Lemma 2.3, we
consider the operator F: C([0,1],R) — C([0,1],R) defined by

F(x)(t) = %q)/o (t - )77 f (s, x(s)) ds
B I'(p+2)t
T(q)(T(p +2) —anr)

ap(p + 1)t nops B |
T +2) —apr) /0 /o (n =)~ (s = )77 f (r, x(r)) dr ds.

Obviously, the fixed points of the operator F are solution of the problem (1.1)-(1.2). We

/1(1 - s)q_lf(s,x(s)) ds
0

shall use the Banach fixed point theorem to prove that F has a fixed point. We will show
that F is a contraction.
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Let x,y € C([0,1], R). Then, for each t € [0,1] we have

|F(x)(t)—F(y)(t)|
_F /(t 81 f (5,%(5)) = f (s,9(5))| s

Cp+2 e B
1“(q)|r(19+2)—oﬂ)"’”|./.(1 ) [f(s,x(s)) f(s,y(s))|ds

ap(p +1) . .
LIl (p +2) anp+1|/ f(n—s)p (s = f (rx(r) = f (r,5(r)) | dr ds

L=yl ", ey
= I'(q) fo(t o1 ds

LT (p+2)[x -] 1 .
F(q)|F(P+2)—anp+l|/(l_S)q ds

DL||x -
Otp(p+ ) ”x y” / /(n S)p 1(S r)q ldrds
L(@)IT(p +2) — an?*|
_Lix-yl LT (p +2)|lx -yl
I'(g+1) T(g+DIT(p+2)—ant]
ap(p +1)L|x - y||n"*1B(q + 1, p)
F(g+DIT(p +2) —anrt]

, where B is the beta function.

L(g+)I"(p)
I(p+q+1)

By using the property of beta function, B(g + 1,p) = we have

Lllx | LT (p+2)[lx -yl
+
- F(q+ 1) T(g+DIT(p+2)—an
an?™ T (p +2)L|lx - y|
+ .
Fp+qg+1)IC(p+2)—anPtl

[F@@) - FO)

Thus
|E@) - F)|| < LAx - yll.

Therefore, F is a contraction. Hence, by Banach fixed point theorem, we get that F has a
fixed point which is a solution of the problem (1.1)-(1.2). d

The following result is based on Schaefer’s fixed point theorem.

Theorem 3.2 Assume that:

(Hy) The function f :[0,1] x R — R is continuous.
(H3) There exists a constant M > 0 such that |f(t,x)| < M for each t € ] and all x € R.

Then the BVP (1.1)-(1.2) has at least one solution on [0,1].

Proof We shall use Schaefer’s fixed point theorem to prove that F has a fixed point. We

divide the proof into four steps.

Page 5 of 10
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Step L. Continuity of F.
Let {x,,} be a sequence such that x,, — x in C([0, 1], R). Then for each ¢ € [0,1]

|F(x)(2) —F(x)(t)|

q-1
_l"(q) (t s) [f(s,x,,(s)) f(s,x(s))|ds

T(p+2)
F(q)ll“(p(li; anp+1|/ 1= )17 |f (5,2(s)) —f (5 %(5)) | ds

ap(p +1) . B
T'(q)IT(p +2) — anrH| /0 /o (=Y s = IHf (r,24(r)) = f (r,x(r)) | dr ds

< %q) /Ot(t =)0 sup [f(s,24(9)) —f (s,(5)) | ds

s€l0,1]

C(p+2) 1
L@ (p +2) - an| f =9 fe,(9) =f o ()] ds

ap(p +1) 1 _
T(q)IT(p+2) an”“l// =9 st

X sup [f (7, % r)) -f(r )|drds

rel0,1]

Since f is continuous function, then ||F(x,) — F(x)|| = 0 as n — oo. This means that F is

continuous.
Step II. F maps bounded sets into bounded sets in C([0, 1], R).

So, let us prove that for any r > 0, there exists a positive constant / such that for each

x € B, ={x e C([0,1],R) : ||| < r}, we have ||F(x)|| <!.Indeed, we have for any x € B,

L ' _ )1
’F(x)(t)‘ < F(q)/o(t s) [f(s,x(s))’ds

C(p+2) 1 o
F(q)|r‘(p+2)_anp+1|/(l )T f (s, x(s)) | ds

ap(p +1)
C(@IT(p+2) omp+1|// =8y s =) f (r,x(r) | drds

which in view of (Hs) gives

ﬁ ‘ _ )1
|F(x)(t)|§1,(q)/o(t s)11ds

C(p+2)M 1 -,
- d.
C(@IT(p +2) —anP*l| /0 (1-s) S

ap(p + )M
L(@)IT (p +2) — anp+|

n s
/ (n—-sPYs—r)T drds.
o Jo

Hence, we deduce that

M T(p+2)M
OO = S T DT+ 2) e ]
al(p + 2)MnP*1

"T@+q+ DM +2) —an |’

Page 6 of 10
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Thus,
|F@)| < AM =1

Step III. We prove that F(B,) is equicontinuous with B, defined as in Step II.
Let 0 < <t <1landx € B,, then

|F@)(82) - Fx) (0|
‘— —)T (- )T llf s, )
- _ g1
) -/t1 (L —9)Tf (s,x(s)) ds

- 1
(tzr (Ptl-l)-z(p—+a277)1’+l) /(; (- S)qilf(sfx(s)) ds

al(glsp(gjz(tz_t,;i+1 f/ (=8~ (s =) Tf (r,(r)) dr ds

— _ q—l_ _ q-1
Sr(q)/o [(t2 =977 = (61 = )" [f (5,2(5)) | ds

%q) /:(tz —8)T7f (s, %(s))| ds

(t,—t)T(p +2)
L(@)IT(p +2) —an?*!|
ap(p +1)(t - 1)
D(@)IT (p +2) — anp+|

- % /0 1 [(ta—9)"" = (6 —5)""]ds
Moo

-1
+Tq)/t1 (t, =) ds

(t-t)T(p+2)
q)lr(p+2 p+l|/ (l—S)q ldS

ap(p +1)(t, — )M L B

= tgeple -8+ @ -]
(t— )T (p + 2)M
[(g+1)|T(p +2) — anptl|
an’*(ty —t)C'(p + 2)M
Clp+q+D)IT(p+2)—an+t|

1
1 -9 f(s,x(5)) | ds
0

n / S(n =V s =) f (r,x(r)) | drds
0 JO

M(t, — 1)?
I'g+1)

Actually, as & — t, the right-hand side of the above inequality tends to zero. As a
consequence of Steps I to III together with the Arzela-Ascoli theorem, we get that F :
C([0,1],R) — C([0,1],R) is completely continuous.

Step IV. A priori bounds.
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We show that the set
E= {x € C([O,l],R) :x = AF(x) for some 0 < A < 1}

is bounded.
Let x € E. Then x(¢) = AF(x)(¢) for some 0 < A < 1. Thus, for each ¢ € [0,1] we have

_L ' _g)a1
F(q)/(;(t s) f(s,x(s))ds

Al (p+2)t 3
" T(@)(T(p +2) —anrt) / 1= s5)T7f (s, %(5)) ds

aip(p + 1)t
Ng)(T(p+2) ay,p+1)/ / =)' s =T (r,x(r)) dr ds.

This implies by (Hs) that for all £ € [0,1], we get

|F(x)(8)] < % /Ot(t_s)ql ds

AT (p + 2)M
D(@)IT (p +2) —anr*t| Jo
arp(p +1) b1 41
- drd
F(@)IT(p+2)- an"”l/ /(” st drds
M T(p+2)M
“T(g+1) T(g+1)IT(p+2)—antt|
al'(p +2)MnP*1
+ .
Fp+q+1)|T(p+2)—anptl|

1
(1-5)71ds

Hence, we deduce that
|F@)| < AM:=R.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem,
we conclude that F has a fixed point which is a solution of the problem (1.1)-(1.2). O

4 Examples
In this section, in order to illustrate our results, we consider two examples.

Example 4.1 Consider the following three-point fractional integral boundary value prob-

lem
. % ~ e—sinzt . |x|
D2x(t) = e —le T € [0,1], (4.1)
x0)=0,  3[I34] (%) = x(1). (4.2)

Set n =1/3, ¢ =3/2, p=5/2, a = /3 #£T(p + 2)/P* = [(9/2)/(1/3)7 and f(t,x) =
(e ¢/(2 + )?)(|wl/(1 + |x1). Since [[f(t,x) —f(&,2)]| < (1/4)]l« - y], then, (Hy) is satisfied

Page 8 of 10
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with L = 1/4. We can show that

IA :L|: Cp+2) . an?*r (p +2) :|

T(g+1)  Tq+DITp+2) —ap]  Tp+q+ DM@+ 2)—anr™|

1[ 4 3,780 35437
== + +
4|37 2,835 16 68,0407 — 384

i| ~ 0.376950576 < 1.

Hence, by Theorem 3.1, the boundary value problem (4.1)-(4.2) has a unique solution on
[0,1].

Example 4.2 Consider the following three-point fractional integral boundary value prob-

lem
1
4 t3e%
Dix(t) = , t<1, 43
b= T2, 0sis 43)
1 1
x(0) = 0, g[I%x] (5> = x(1). (4.4)

Set n =1/2, g = 4/3, p =5/3, @ = 1/3 # T'(p + 2)/pP*! = T(11/3)/(1/2)} and f(t,x) =
t3e72/(1 + ta). Clearly |f(t,x)| < 1t3e2/(1+tx%)| <1=M.

Hence, all the conditions of Theorem 3.2 are satisfied and consequently the problem
(4.1)-(4.2) has at least one solution.
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