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Abstract

Pooled sequencing can be a cost-effective approach to disease variant discovery, but its applicability in association studies
remains unclear. We compare sequence enrichment methods coupled to next-generation sequencing in non-indexed pools
of 1, 2, 10, 20 and 50 individuals and assess their ability to discover variants and to estimate their allele frequencies. We find
that pooled resequencing is most usefully applied as a variant discovery tool due to limitations in estimating allele
frequency with high enough accuracy for association studies, and that in-solution hybrid-capture performs best among the
enrichment methods examined regardless of pool size.
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Introduction

Genome-wide association studies (GWAS) have precipitated a

dramatic rise in the discovery of novel, robustly-associated

complex trait loci. As the majority of these signals involve

common alleles with modest or small effect sizes, a large

proportion of genetic variance remains unexplained. Low

frequency (minor allele frequency [MAF]v0.05) and rare

(MAFv0.01) variants may be associated with complex traits and

help account for the ‘missing’ heritability [1,2] (for example as

recently shown for hypertriglyceridemia [3]). A comprehensive

catalogue of rare variants does not yet exist, although large-scale

resequencing efforts such as the 1000 Genomes (1KG) [4] and

UK10K (www.uk10k.org) Projects are enhancing our understand-

ing of human sequence variation.

Experimental costs associated with variant discovery have been

drastically reduced through the advent of next-generation

sequencing technologies; however, whole-genome deep sequenc-

ing of individual samples in large disease association studies

remains prohibitively expensive and likely will for some time.

Pooling DNA samples could empower cost-efficient sequence

variant identification and allele frequency estimation. This can in

theory enable comparisons between disease cases and controls,

bypassing the need for exhaustive genotyping, and allowing the

identification of promising novel association signals, for example as

applied to the discovery of the type 1 diabetes IFIH1 locus [5].

Non-indexed, or non-barcoded, pools (which form the focus of

this study) do not enable the assignment of variants to individuals,

but have lower associated costs. Even though targeted resequen-

cing in pools has attractive attributes that may facilitate disease

association studies, technical and analytical parameters central to

this study design have not been empirically evaluated yet. Pooling

studies are sensitive to DNA quantification and pool construction.

The choice of target enrichment method is important. PCR is

difficult to multiplex, optimize and normalize, but can be highly

effective. The ability of PCR-enriched targeted resequencing to

sensitively identify low frequency and rare variants and estimate

their frequency in non-indexed pools has been established, but

evaluations have been restricted to small-scale experiments

investigating up to 300 kb [5–12]; however, most post-GWAS

sequencing efforts target several megabases. Hybrid-capture

methods (array-based [aHC] and in-solution hybrid-capture

[sHC]) are easy to multiplex and enable large-scale experiments

[13–17]. A recent investigation illustrated that they can be

successfully applied to the targeted resequencing of 2.6 Mb in

individual samples [18], but their effectiveness in pooled samples is

not clear.

Here, we assess variant detection and frequency estimation of

different sequence enrichment methods (long-range PCR, aHC

and sHC) in non-indexed pools of 1, 2, 10, 20 and 50 samples

(Tables S1, S2) across six genomic regions encompassing coding

and non-coding sequence (1.6 Mb in total, Table S3), and

evaluate the feasibility of these approaches in the context of

complex disease association studies. Specifically, we evaluate the

uniformity of target coverage, the sensitivity and specificity of

variant detection and the accuracy of frequency estimation in non-
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indexed pools of different sizes and across different enrichment

methods for the first time.

Results

Alignment of Reads to Target
Enrichment specificity can be assessed by comparing the

proportion of sequencing reads that map to the target regions.

The lower the specificity, the higher the sequencing capacity

required to achieve the desired target coverage. We observed large

variability in the total number of reads produced by each of the

three enrichment methods (Table 1, Table S4). This variability is

also evident for the PCR and aHC technical replicates we

conducted (for the Pool of 20; Tables S5, S6). It is common

practice in whole genome sequencing (WGS) to remove potential

duplicate reads to avoid biases in coverage analyses as well as

downstream analyses, but applying this practice in pooled targeted

sequencing of a relatively small target region with a high depth of

coverage is still a matter of debate. Therefore we calculated

alignment statistics both before and after removing potential

duplicate reads. PCR showed the highest percentage of sequencing

reads that map to the target region both before and after duplicate

read removal (Table 1, Table S4). Conversely, both aHC and sHC

showed higher proportions of mapped on-target reads with good

mapping quality scores (§20) both before and after duplicate read

removal (Table 1, Table S4). The mapping quality score of reads is

an important factor in accurate variant detection and the specificity

of target enrichment impacts directly on target coverage.

Target Coverage Depth and Uniformity
Target coverage depth directly affects the ability to detect

variants, and depth is affected by the removal of potential

duplicate reads. The higher enrichment specificity of PCR

resulted in a higher overall mean read depth for target bases as

compared to aHC and sHC, taking pool size and number of lanes

sequenced into account regardless of duplicate read removal

(Figure 1; Figures S1, S2, S3; Tables S7, S8). PCR yielded a

higher percentage of target bases covered at §206per individual

across all pool sizes (Figure 1; Figure S1). However, target regions

were not covered in a uniform way. For example, we found

different coverage of protein coding versus non-coding target

regions with duplicate read removal affecting the depth by

approximately 100–200 reads but not the overall trend (Tables

S9, S10; Figures S4, S5, S6, S7). Both aHC and sHC

preferentially covered protein coding regions over non-coding

regions across all pool sizes, whereas PCR demonstrated a bias in

the opposite direction (Tables S9, S10; Figures S4, S5, S6, S7, S8,

S9, S10, S11; t-test p-valuev0.05 in all pools, for all methods).

The same trends were observed in the technical replicates

conducted (Figures S8, S9, S10, S11). An analysis of %GC,

repeat and low complexity regions in the protein coding and non-

coding target regions (Table S11) showed that non-coding DNA

contains a higher proportion of repeat elements, thereby making

it difficult to design highly specific oligonucleotide probes,

affecting coverage for the hybrid capture methods. PCR

experiments tended to favour the overall lower GC content of

non-coding regions (Figures S12, S13, S14).

Table 1. Target sequence enrichment success before duplicate removal.

Pool Number Total Number % Reads Mapped % Reads Mapped % Reads Mapped

of Lanes Reads to Referencea to Targeta to Target w/§Q20b

1 PCR 1 44,232,852 48.97 46.05 44.27

1 aPD 1 61,487,334 95.80 21.82 21.58

1 sPD 1 35,813,898 97.90 46.55 45.95

2 PCR 1 30,843,770 97.92 85.97 79.61

2 aPD 1 58,352,664 92.19 13.07 12.91

2 sPD 1 29,554,192 97.50 46.96 46.36

10 PCR 2 55,278,922 84.51 73.44 67.02

10 aPD 2 90,319,688 96.44 18.62 18.15

10 sPD 2 85,783,964 97.83 48.13 47.48

20 PCR 3 121,378,560 89.33 80.88 75.37

20 aPD 3 103,231,280 97.24 34.05 33.44

20 sPD 3 111,444,476 97.11 45.91 45.31

50 PCR 7 132,547,082 99.74 70.90 67.42

50 aPD 7 251,257,124 96.02 22.62 22.27

50 sPD 7 295,115,044 97.52 49.97 49.30

For each pool and sequence enrichment method this table details the total number of reads generated for the pool, the percentage of total reads mapped to the
reference genome, the percentage of total reads mapped to the target regions, and the percentage of mapped reads that mapped to the target regions with mapping
quality §20. The total number of reads for a pool is calculated from the fastq file(s) generated for each lane of sequencing. The percentage of reads mapped to the
reference is calculated from the BAM file generated from merging all the Maq map files for each lane for a pool. The percentage of reads mapped to the target regions is
calculated as the number of reads with at least one base overlapping a target region divided by the total number of reads. The percentage of reads mapped to the
target regions with a mapping quality score §Q20 is calculated as the number of reads with at least one base overlapping a target region with mapping Q§20 divided
by the total number of reads.
a: Calculated by samtools view –c.
b: Calculated by samtoools veiw -c -q 20.
doi:10.1371/journal.pone.0026279.t001

Pooled Sequencing for Disease Association Studies
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Variant Detection Sensitivity and Specificity
Variant discovery is linked with coverage depth, but study

design power importantly also depends on a balance between

false positive and false negative variant discovery rates. A major

reason for the removal of duplicate reads is to remove biases in

variant detection and calling. To address issues related to

removing duplicate reads in variant detection and frequency

estimation in pooled targeted resequencing we analyzed all pools

with the removal of duplicate reads before variant calling, and

pools of 1, 10 and 50 individuals for the PCR and sHC

enrichment without the removal of duplicate reads. We found the

total number of called variants to increase with pool size, in

keeping with the variants known to be present in each pool

(Tables S12, S13). The removal of potential duplicate reads

reduces the total number of variants called, with the effect being

largest for PCR enrichment and for larger pools (Tables S12,

S13). As the number of sequence-identified variants increased,

the proportion present in dbSNP129 decreased regardless of

duplicate read removal (Tables S14, S15). This trend could either

be due to a higher false positive rate in larger pools, or to the fact

that deep sequencing identified variants not present in dbSNP.

We utilized HapMap, Illumina chip and 1KG data available for

the pooled individuals to directly address questions of false

positive and false negative rates (Table S1). sHC demonstrated

the highest sensitivity to detect HapMap variants across all pool

sizes and for both removing and not removing duplicate reads,

except in the case of enriching a single individual after duplicate

read removal (in which case aHC performed best; Table 2, Table

S16). The removal of duplicate reads has a dramatic effect on the

sensitivity in the pool of 1 enriched by PCR. Although the pre-

duplicate read removal sensitivity is higher overall the difference

in sensitivity is only approximately 1–3%. The same trend was

observed when considering 1KG variants and the union of all

known variants (Tables S19, S20, S21, S22).

Figure 1. Target coverage per individual in pool before duplicate removal. This shows a cumulative relative frequency plot of the
percentage of target bases with §X coverage depth normalized by the number of individuals sequenced for: (A) Pool of 2, (B) Pool of 10, (C) Pool of
20 and (D) Pool of 50 individuals. The x-axis is in increments of 106coverage. The black squares/lines illustrate the data for PCR enrichment, the blue
squares/lines illustrate the data for aHC enrichment and the orange squares/lines illustrate the data for sHC enrichment. The first square represents
the percentage of target bases with §106coverage per individual in the pool, and so on for each square in increments of 106. This analysis assumes
equal representation of each individual in the pool of DNA.
doi:10.1371/journal.pone.0026279.g001

Pooled Sequencing for Disease Association Studies
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We found that PCR had overall lower sensitivity to detect

known singleton HapMap variants compared to HC methods

(Table S23). Similarly, HC methods showed higher sensitivity to

detect the variants identified in the single-individual pool

particularly after duplicate read removal (Tables S24, S25), and

sHC generally performed better than aHC. The ability to

accurately call variants depends on sequence coverage, and the

depth is affected by duplicate read removal. The read depth of

false negative HapMap variants was significantly different to that

of true positives, for both HC methods across pools of 2–50

individuals (Figures S15, S16, S17; data not shown pool of 2 and

50) (t-test p-valuev0.05 in all cases). A similar trend was observed

for PCR (Figures S15, S16, S17). For both hybrid capture methods

there was a trend towards a lower GC content in 200 base-pair

regions around false negative HapMap variants compared to true

positive variants, and the pattern was similar before and after

duplicate read removal (Figures S18, S19, S20). This trend was not

as prominent for the PCR experiments. The ability to call variants

is also tied to the frequency of the variant in the pool. The false

negative HapMap variants tended to have lower allele frequencies

in the pools compared to true positives, and this trend was

accentuated before duplicate read removal (Figures S21. S22, S23,

S24, S25). This is in keeping with the fact that false negatives have

lower depth coverage, making low frequency variant detection

more difficult.

We found specificity (true negative rate), calculated on the

basis of HapMap loci monomorphic in the pooled samples, to

decrease as the complexity of the pool increased, and for a given

pool the specificity was higher after duplicate read removal

(Table 3, Table S17). False positives could be ascribed to

genotype misclassification in HapMap or to sequencing error in

our experiment. To resolve this, we examined data across 22 of

the pooled samples present in both HapMap and 1KG. 1KG

data corroborate the pooled sequencing findings across over

92% of overlapping loci for pools of more than one sample after

duplicate reads are removed. For sHC, the concordance is

100% regardless of pool size when duplicate reads are removed,

but is reduced to 95% when duplicates are included for the pool

of 1 individual (Table 4, Table S18). The inclusion of duplicate

reads uniformly increases the proportion of calls corroborated

by 1KG for PCR. We examined the rate of genotype

discordance between HapMap and 1KG at all sites in the

regions examined for the 22 samples and found it to be 1.8%.

Given the deep coverage of target bases in our experiment and

concordance with 1KG we infer that the calculated false positive

rates are likely to be overestimates.

Variant Frequency Estimation
The usefulness of pooled sequencing approaches in complex

trait studies is primarily encapsulated by the ability to perform

association tests through allele frequency estimate comparisons

between pools of disease cases and controls. We compared

estimated allele frequencies from the resequenced pools with those

from HapMap and 58BC data and found that the sHC designs

achieve the highest accuracy (Figures 2–3, Figures S26, S27, S28).

The accuracy of frequency estimates improved with increasing

pool size and was higher after duplicate read removal. The

correlation between estimated allele frequency from sequencing

the pool of 50 and from known genotypes was 95.8%, 97.9%, and

99.0% for PCR, aHC, and sHC respectively when duplicate reads

were removed (Figure 2). However, when duplicate reads were

included in the analysis the correlation in the same pool increased

slightly for the PCR enrichment and dropped slightly for the HC

methods (Figure 3). The decrease in correlation between true and

estimated allele frequency pre-duplicate read removal was also

seen for the pool of 10 individuals (Figures S26, S27). The allele

frequency estimates appear to be stable and robust. For example,

frequency estimates from the technical replicates of the Pool of 20

have a correlation of 98.59% for PCR and 99.31% for aHC

(Figures S29, S30). Overall, pooled sequencing resulted in under-

estimates of the true allele frequency regardless of duplicate read

removal (Tables S26, S27).

We found the per-individual read depth at called variants to be

weakly correlated with frequency estimate accuracy, and to vary

across enrichment methods (Figures S31, S32, S33, S34). The

inclusion of potential duplicate reads before the analysis increased

Table 2. HapMap variation detection sensitivity after
duplicate removal.

Pool Pool Pool Pool Pool

of 1 of 2 of 10 of 20 of 50

(1089)a (1459)a (1999)a (2067)a (2145)a

PCR 26.26 87.46 92.35 96.27 95.80

aHC 97.15 85.33 96.60 97.82 94.41

sHC 94.12 95.07 98.30 98.16 96.88

This table contains the percentage of the known HapMap variants with at least
one non-reference allele in the pool that each pool and enrichment method
discovered (true positives). The false negative rate is 100 minus this value.
a: number of non-reference HapMap variants in pool.
doi:10.1371/journal.pone.0026279.t002

Table 3. HapMap variation detection specificity after
duplicate removal.

Pool Pool Pool Pool

of 1 of 2 of 10 of 20

(1722)a (1353)a (683)a (590)a

PCR 99.88 98.97 97.66 96.95

aHC 98.84 98.67 97.22 96.61

sHC 99.07 98.74 97.22 96.95

This table contains the percentage of the known HapMap variants with no non-
reference alleles and no missing genotypes in the pool that each pool and
enrichment method correctly didn’t call as a variant (true negatives). The false
positive rate is 100 minus this value.
a: number of reference HapMap variants in pool.
doi:10.1371/journal.pone.0026279.t003

Table 4. 1KG support for HapMap false positive loci after
duplicate removal.

Pool Pool Pool Pool

of 1 of 2 of 10 of 20

PCR 2(50%) 14(100%) 15(93.33%) 14(92.86%)

aHC 19(94.74%) 17(94.12%) 16(100%) 15(100%)

sHC 16(100%) 16(100%) 16(100%) 16(100%)

This table contains the number of loci considered false positives based on
HapMap data that are present in 1KG and the percentage of these overlapping
loci that the 1KG data supports the presence of non-reference alleles in the
pool.
doi:10.1371/journal.pone.0026279.t004

Pooled Sequencing for Disease Association Studies
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this correlation (Figures S32, S35). There was a stronger correlation

between the number of variant alleles in the pool and the accuracy

of the allele frequency estimates (Figures S36, S37, S38, S39, S40).

This correlation was also higher when potential duplicate reads

were included in the analysis (Figures S37, S40). Interestingly, the

higher the number of variant alleles in the pool, the worse the allele

frequency estimates, a trend consistently observed across all

enrichment methods and pool sizes. Specifically, we observed that

low frequency variants tended to be more accurately estimated

(Figures 2–3; Figures S26, S27, S28, S36, S37, S38, S39, S40).

Reproducibility of Results
Reproducibility was assessed by performing technical replicates

for PCR and aHC for the Pool of 20 individuals as a representative

example. The HC replicates yielded more consistent results in terms

of the number of reads produced and median coverage of target

bases (Tables S5, S6). The sensitivity of HapMap variant detection

varied by 4% between PCR replicates, and 2% between aHC

replicates (Table S28). We next considered the number of variants

that overlap between replicates as a function of the total number of

unique variants called across replicates. The overlap rates of called

variants across pairs of replicates were low (59%) for both PCR and

aHC (Table S29). For variants called in both technical replicates the

correlation between estimated allele frequencies was found to be

high (98.6% and 99.3% for PCR and aHC respectively) (Figures

S29, S30). When comparing allele frequencies for these overlapping

variants (i.e. expecting identical estimates under an ideal experi-

mental scenario), we found an average absolute allele frequency

difference of 2.7% for PCR (across 7,233 overlapping variants) and

2.1% for aHC (6,713 variants) (Table S29).

Cost
We compared the relative cost implications of the different

study designs considered here. Considering the results after

Figure 2. Accuracy of non-reference allele frequency estimation at HapMap/58C intersection variants for the Pool of 50 after
duplicate removal. An analysis of the correlation between the non-reference allele frequency estimates from the sequencing based variant caller
and the allele frequency calculated from the reference genotypes. The analysis includes the true positive variants called by the sequencing based
variant caller for which there were ƒ2 missing genotypes in the reference genotypes. The correlation coefficient is the Pearson’s correlation
coefficient. The figure shows the analysis for: (A) PCR enrichment, (B) aHC enrichment and (C) sHC enrichment.
doi:10.1371/journal.pone.0026279.g002
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duplicate reads were removed, the Pool of 10 individuals had the

highest sensitivity and specificity for pools greater than 1 individual

but they were only 2% higher than the Pool of 50 which provided

better allele frequency estimates and was more cost-effective. For

example, for a pooling experiment involving 1000 cases and 1000

controls the Pool of 50 would be associated with 30% lower costs

based on the number of sequencing lanes required as compared to

the Pool of 10 and 86% lower costs than sequencing each

individual on a single lane. Within each pool size, the cost of PCR

was 3-fold more expensive than either of the hybrid-capture

enrichment methods.

Discussion

The field of human genetics is entering a new era of next-

generation association studies. However, the cost of large-scale

sequencing experiments of individual samples or indexed pools

can be prohibitive, whilst the ability to accurately and inexpen-

sively enrich and sequence targeted regions remains important to

the research community. We have evaluated three enrichment

methods in four non-indexed pool sizes to determine the best

performing and most cost-effective strategy in the context of

disease association studies.

The proportion of reads mapping to the target region, the

uniformity of coverage of the target, and the read depth at targeted

bases represent important measures of enrichment success. PCR

yields 20–30% more on-target sequence reads than either aHC or

sHC, resulting in a higher mean read depth for targeted bases.

The hybrid capture methods show a bias for enrichment of protein

coding versus non-coding target regions, and this difference can be

explained by the high repeat content of non-coding regions. PCR

shows the opposite bias, with non-coding regions covered at higher

Figure 3. Accuracy of non-reference allele frequency estimation at HapMap/58C intersection variants for the Pool of 50 before
duplicate removal. An analysis of the correlation between the non-reference allele frequency estimates from the sequencing based variant caller
and the allele frequency calculated from the reference genotypes. The analysis includes the true positive variants called by the sequencing based
variant caller for which there were ƒ2 missing genotypes in the reference genotypes. The correlation coefficient is the Pearson’s correlation
coefficient. The figure shows the analysis for: (A) PCR, (B) aHC and (C) sHC enrichment.
doi:10.1371/journal.pone.0026279.g003
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depth than coding regions, potentially ascribed to the lower GC

content of non-coding regions.

The most relevant factors for disease association studies are variant

detection sensitivity and specificity, and accuracy of allele frequency

estimates. sHC shows the highest dbSNP129 overlap, and demon-

strates the highest sensitivity and specificity for discovering HapMap

and 1KG variants across all pool sizes. Similarly, sHC produces the

best estimation of allele frequencies across the board. Allele frequency

estimation appears to improve with increasing pool size, therefore

arguing for pooling larger numbers of samples. Interestingly, low

frequency variants appear to be better-estimated, potentially because

of higher resolution to correctly call a smaller number of alternate

alleles. The 2% average difference between allele frequencies across

technical replicates indicates that estimates are not robust. A MAF

difference at this scale could lead to false positive or false negative

signals, particularly for variants at the lower end of the frequency

spectrum, which are typically the focus of resequencing studies.

Reviewed together, the results of our experiment indicate that in-

solution hybrid capture in pools of 50 individuals has clear advantages

over the alternative strategies considered here. Advances in

sequencing and multiplexing protocols may have an effect on pool

efficiency. We also conclude that non-indexed pooled resequencing

studies are well-powered for variant discovery, but produce unreliable

allele frequency estimates, particularly within the context of complex

disease association studies.

Materials and Methods

Ethics Statement
This study has been approved by the ethics committee of the

Wellcome Trust Sanger Institute (WTSI). This study only used

extracted DNA from cell-lines, which falls outside of the UK

Human Tissue Act. The use of the 1958BC samples is covered by

a material transfer agreement (MTA) with the ALSPAC

Laboratory, University of Bristol (the 1958BC sample custodian),

which stated that the 1958BC had been collected under UK NHS

Research Ethics Committee approval from SouthEast MREC, in

Aug. 2002. REC Ref. MREC 01/1/44. The HapMap Popula-

tions/ELSI Group made recommendations for the HapMap

project during the initial planning phase, and developed an

informed consent form template (http://hapmap.ncbi.nlm.nih.

gov/consent.html). The use of the HapMap CEU DNA is

governed by these individually signed informed consent forms

that grant permission for the use of the DNA in future studies

approved by relevant ethics committees. The use of the HapMap

DNAs were approved by the HapMap Repository (Coriell).

DNA Samples
The samples sequenced consisted of 31 HapMap CEU

individuals and 19 individuals from the 1958 British Birth Cohort

(58BC). The HapMap DNA samples were obtained from Coriell

Repositories and the sample IDs are: NA122491KG , NA121561KG ,

NA120041KG , NA118311KG , NA127161KG , NA118321KG , NA11-

9931KG , NA12057, NA119951KG , NA120061KG , NA121441KG ,

NA12802, NA121461KG , NA120051KG , NA120031KG , NA07-

0001KG, NA120431KG , NA120441KG, NA119921KG , NA118811KG,

NA119941KG, NA07345, NA121541KG , NA069941KG , NA069851KG,

NA12239, NA07022, NA07034, NA12155, NA07056, NA06993.

Individuals with a 1KG superscript were sequenced as part of pilot 1 of

the 1,000 Genomes Project [4].

Region Selection
The genomic regions selected for sequencing (Table S3) had

shown suggestive evidence for association with type 2 diabetes

following cumulative analysis of low frequency/rare variants

directly typed on GWAS chips using a collapsing method [19].

Association in these regions did not replicate when further sample

sets were tested. The targets for enrichment span 1.6 Mb in total

and include entire genic regions that encompass 39 and 59 UTRs,

introns, and exons, and have been defined as 50 Kb either side of

the transcriptional start and stop sites.

Array and Solution Oligonucleotide pool design
Genomic coordinates for the regions of interest were submitted

to Nimblegen for the design of custom 385K arrays covering the

target regions. Oligonucleotide pools for hybridization in solution

phase were generated by Nimblegen to cover the same target

regions. To cover real-estate on the array, three further regions

were added on the hybrid-capture arm of the experiment (for a

total of 1.96 Mb). These additional regions were excluded from

the analysis presented here. This exclusion results in an under-

estimation of the percentage of reads mapping back to target for

the aHC and sHC experiments in Table 1.

Preparation of the pools
Each DNA sample was quantified using standard picogreen

protocols and normalized to 50 ng/ml. The pools were generated

by mixing the required volumes of the appropriate number of

samples to give a final concentration of each pool of 50 ng/ml. The

concentration of the resulting pool was checked using picogreen.

Aliquots of the same pool were used for both PCR and hybrid-

capture.

PCR
Primers were designed automatically using Primer 3 to achieve

a 5-fold depth of 5- and 10 kb amplicons across the target regions.

Where necessary, manual primer design of 5 kb amplicons using

Primer 3 was used to fill any gaps in the coverage following the

automatic design. In total 462610 kb STSs and 73765 kb STSs

were designed automatically and 8865 kb STSs manually. All

primers were pre-screened on a set of four genomic DNAs.

Products were separated on an 0.8% agarose gel, visualised with

ethidium bromide staining and scored as pass/weak/fail. Based on

the prescreening results a final set of STSs were chosen to give 3-

fold coverage over the target regions which consisted of

256610 kb STSs and 25665 kb STSs. Aliquots of the same

DNA pools used for hybrid capture were used as template for PCR

amplification with each STS. 5 kb amplicons were amplified as

follows: Primers were pre-aliquoted at a concentration of 10 ng/

ml, 4 ml per well into 384-well PCR plates. A premix was made

consisting of 2 ml of 106 Buffer (as supplied with the enzyme),

0.4 ml 10 mM dNTPs, 0.8 ml 50 mM MgSO4 (as supplied with

the enzyme), 0.12 ml Platinum Hi-Fi Taq, 11.8 ml DDW and

30 ng of pooled DNA per reaction and added to the pre-aliquoted

primers. PCR cycling conditions were as follows: 98uC for

3 minutes, followed by 15 cycles of 94uC for 30 seconds, 68uC
for 30 seconds, with the annealing temperature decreasing by 1oC

per cycle, 68uC for 5 minutes followed by 19 cycles of 94uC for

30 seconds, 58uC for 30 seconds, 68uC for 5 minutes followed by

68uC for 10 minutes. 10 kb amplicons were amplified as follows:

Primers were pre-aliquoted at a concentration of 10 ng/ml, 4 ml

per well into 384-well PCR plates. A premix was made consisting

of 2 ml of 106Buffer (as supplied with the enzyme), 0.4 ml 10 mM

dNTPs, 0.8 ml 50 mM MgSO4 (as supplied with the enzyme),

0.16 ml Platinum Hi-Fi Taq, 11.14 ml DDW and 90 ng of pooled

DNA per reaction and added to the pre-aliquoted primers. PCR

cycling conditions for were as follows: 98uC for 3 minutes,

followed by 15 cycles of 94uC for 30 seconds, 68uC for 30 seconds,
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with the annealing temperature decreasing by 1oC per cycle, 68uC
for 10 minutes followed by 19 cycles of 94uC for 30 seconds, 58uC
for 30 seconds, 68uC for 10 minutes followed by 68uC for

10 minutes. Products were visualised using ethidium bromide

staining. PCR products from each DNA pool for all STSs were

pooled together in equimolar amounts and used to construct an

Illumina library prior to sequencing as described below.

Illumina Library Construction
20 mg of DNA were sheared to 100–400 bp using a Covaris S2

following manufacturer’s protocols and the settings Duty Cycle,

20%; Intensity, 5.0; Cycles/burst, 200; Duration, 90; Mode, Freq

Sweeping. Sheared samples were quantitated on a Bioanalyzer

(Agilent, Santa Clara, USA). 10–15 mg of sheared DNA were end-

repaired, A-tailed and Illumina sequencing adapters ligated to the

resulting fragments using the Illumina Paired-End DNA Sample

Prep protocol with the slight modification that the gel size selection

step was replaced with a SPRI bead purification (following

manufacturer’s protocol).

Array Hybridization
5 mg of each library were hybridized to a custom Nimblegen

385-K array following manufacturer’s protocols (Roche/Nimble-

gen) with the modification that no pre-hybridization PCR was

performed. Captured samples were washed and eluted in 50 ml of

PCR-Grade water following manufacturer’s protocols. Eluted

samples were amplified using a master-mix containing 2 mM

MgCl2, 0.2 mM dNTPs, 0.5 mM PE.1. 0.5 mM PE.2 and 3 units

of PlatinumH Pfx DNA Polymerase per sample. Samples were

aliquoted into 3 individual wells of a plate and amplified using the

following conditions: 94uC for 5 minutes followed by 20 cycles of

94uC for 15 seconds, 58uC for 30 seconds, 72uC for 30 seconds

and a final extension of 72uC for 5 minutes. PCR products were

purified using SPRI beads prior to sequencing.

Solution Hybridization
1 mg of each library was hybridized to an oligo pool following

manufacturer’s protocols with the modifications that 14 cycles of

pre-hybridization PCR were performed and 506COT1DNA was

used in the hybridization. Following hybridization the captured

samples bound to the Streptavidin beads were washed following

manufacturer’s protocols. Post-capture PCR was performed on the

captured samples bound to the beads as described above.

Sequencing
Captured libraries were sequenced on the Illumina Genome

Analyzer II (GAII) platform as paired-end 37-bp or 54-bp reads,

following manufacturer’s protocols. The raw sequencing reads are

available through the European Genome-Phenome Archive

(http://www.ebi.ac.uk/ega, accession EGAS00001000134) and

the European Nucleotide Archive (http://www.ebi.ac.uk/ena,

accession ERP000770).

Read Mapping and Sequence Analysis
The reference human genome used in these analyses was UCSC

assembly hg18 (NCBI Build 36), including unordered sequence.

Each lane of sequencing was mapped to the reference genome

using Maq (v0.7.1) with default parameters [20]. For pools with

multiple lanes of sequencing, the individual lane mappings were

merged with the Maq utility mapmerge. The phred-scaled base

quality scores from the GAII were recalibrated using the Quality

Score Recalibration tool in the Genome Analysis Toolkit (v1.0

build January 21, 2010) [21]. Duplicate reads were identified and

marked using Picard (v1.17; http://picard.sourceforge.net/), and

for a subset of the analyses duplicates were removed with

SamTools (v0.1.7) [22]. The number of reads mapped and

mapped to target regions was calculated using the view utility in

SamTools. The %GC versus coverage analysis was performed

using the CollectGcBiasMetrics utility in Picard. The analysis of

the repeat and low-complexity content of the coding and non-

coding target regions were performed with the RepeatMasker

software (v. open-3.2.9) [23].

Variant Calling and Frequency Estimation
Variants were called on the merged BAM file from all lanes for

a pool. The BAM file used to call variants had recalibrated base

quality scores, reads mapping off the end of the reference soft-

clipped, and either duplicate reads marked or removed. The

variant calling and frequency estimation was performed by Syzygy

(v0.9.5.39) using the default parameters. Syzygy calls single

nucleotide variants and single base insertion/deletions [7]

(http://www.broadinstitute.org/software/syzygy/). This analysis

only considered Syzygy single nucleotide variant calls. Variants are

defined as a locus having §1 non-reference allele, an allele

different than the reference genome used for mapping, present in

the pool. Syzygy assigns a confidence score to all variant calls

(high, medium and low). We analyzed all the called variants

regardless of confidence.

Comparison Genotypes
The sensitivity, specificity and frequency estimation analyses

were conducted by comparing the variants and frequency

estimates from the Syzygy calls to the known variant content in

the pool using existing genotype data for each pooled individual.

We used the non-redundant release 27 HapMap genotypes for the

31 HapMap individuals used in the pooling experiments. The

genotypes were mapped to the forward strand of Build 36 of the

reference genome and sensitivity analysis included all loci where

the HapMap genotypes indicated that there was at least one non-

reference base in the pool, whereas the specificity and allele

frequency estimation analysis only included loci where all

individuals in the pool had non-missing genotype data. Twenty-

two of the HapMap individuals used in our pooling experiments

were sequenced in Pilot 1 of the 1,000 Genomes Project. We used

1KG genotypes4 for these individuals from the final pilot 1 call set

released March 28, 2010. Due to the fact that no pool consisted

solely of individuals sequenced in 1KG, we are unable to perform

specificity analysis for the 1KG loci. The 1958 Birth Cohort

(58BC) genotypes came from 2 sources. Sixteen of the pooled

individuals were genotyped as part of the Wellcome Trust Case

Control Consortium 2 (WTCCC2; Illumina 1.2 M Duo platform)

[24] and 6 individuals were genotyped as part of this project at the

Wellcome Trust Sanger Institute (Illumina 670K platform). The

WTCCC2 genotypes were downloaded from the European

Genotype Archive (http://www.ebi.ac.uk/ega/). The frequency

estimation and variant discovery specificity analysis for the pool of

50 was based on the intersection of variants that occurred in both

the HapMap and 58BC genotype sets. The variant discovery

sensitivity analysis for the pool of 50 was carried out by taking the

union of variants in 1KG, HapMap and 58BC genotype sets. The

dbSNP variants used were dbSNP129 variants downloaded from

the UCSC genome browser, with all rsIDs that mapped §2

locations in the genome removed (referred to as the non-

redundant dbSNP129). The coding/non-coding analysis was

performed by defining coding intervals for each gene as per the

March 27, 2009 release of the consensus coding sequence (CCDS)

project [25].
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Statistical Sequence and Variant Analysis
All statistical analyses were performed with the R statistical

software package [26]. The target regions and called variants were

separated into different subsets and two-sided, two-sample t-tests

with unequal variances were performed to assess differences in the

means of the distributions. An obtained t-test p-value of 0 indicates

that the p-value of the test was more significant than the statistical

software R would calculate (the highest exponent on the machine

used for calculation is 1024). The correlation coefficients reported

in Figure 2 and Figures S15, S16, S17, S18, S19, S20, S21, S22,

S23, S24 are Pearson’s correlation coefficients. Figures S19, S20,

S21 further investigate the relationship between individual read

depth and allele frequency accuracy, defined as the HapMap

frequency minus the Syzygy estimated frequency, by a least

squares fitting of the model, Accuracy~Depthbz�, and the red

lines in these figures shows the resulting estimate of the intercept

and b. Figures S22, S23, S24 further investigate the relationship

between allele count and allele frequency accuracy, as defined

above, by a least squares fitting of the model,

Accuracy~Depthbz�, and the red lines in these figures shows

the resulting estimate of the intercept and b.

Supporting Information

Figure S1 Target coverage per individual in pool after
duplicate removal. This shows a cumulative relative frequency

plot of the percentage of target bases with §X coverage depth

normalized by the number of individuals sequenced for: (A) Pool

of 2, (B) Pool of 10, (C) Pool of 20 and (D) Pool of 50 individuals.

The x-axis is in increments of 106 coverage. The black squares/

lines illustrate the data for PCR enrichment, the blue squares/lines

illustrate the data for aHC enrichment and the orange squares/

lines illustrate the data for sHC enrichment. The first square

represents the percentage of target bases with §106coverage per

individual in the pool, and so on for each square in increments of

106. This analysis assumes equal representation of each individual

in the pool of DNA.

(TIF)

Figure S2 Target coverage per lane of sequencing
before duplicate removal. This shows a cumulative relative

frequency plot of the percentage of target bases with §X coverage

depth normalized by the number of lanes sequenced for: (A) Pool

of 2, (B) Pool of 10, (C) Pool of 20 and (D) Pool of 50 individuals.

The x-axis is in increments of 106 coverage. The black squares/

lines illustrate the data for PCR enrichment, the blue squares/lines

illustrate the data for aHC enrichment and the orange squares/

lines illustrate the data for sHC enrichment. The first square

represents the percentage of target bases with §106coverage per

lane sequenced, and so on for each square in increments of 106.

(TIF)

Figure S3 Target coverage per lane of sequencing after
duplicate removal. This shows a cumulative relative frequency

plot of the percentage of target bases with §X coverage depth

normalized by the number of lanes sequenced after duplicate

removal for: (A) Pool of 2, (B) Pool of 10, (C) Pool of 20 and (D)

Pool of 50 individuals. The x-axis is in increments of 106
coverage. The black squares/lines illustrate the data for PCR

enrichment, the blue squares/lines illustrate the data for aHC

enrichment and the orange squares/lines illustrate the data for

sHC enrichment. The first square represents the percentage of

target bases with §106 coverage per lane sequenced, and so on

for each square in increments of 106.

(TIF)

Figure S4 Pool of 20 coding vs. non-coding target
coverage per lane after duplicate removal. This figure

shows a cumulative relative frequency plot of the percentage of

target bases with §X coverage depth normalized by the number

of lanes sequenced after duplicate removal for the Pool of 20

individuals for: (A) PCR, (B) aHC and (C) sHC enrichment. The

orange squares/lines illustrate the data for protein coding target

bases and the black squares/lines illustrate the data for the non-

coding target bases. The first square represents the percentage of

target bases with §106 coverage per lane in the pool, and so on

for each square in increments of 106.

(TIF)

Figure S5 Pool of 20 coding vs. non-coding target
coverage per lane before duplicate removal. This figure

shows a cumulative relative frequency plot of the percentage of

target bases with §X coverage depth normalized by the number

of lanes sequenced for the Pool of 20 individuals for: (A) PCR, (B)

aHC and (C) sHC enrichment. The orange squares/lines illustrate

the data for protein coding target bases and the black squares/

lines illustrate the data for the non-coding target bases. The first

square represents the percentage of target bases with §106
coverage per lane in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S6 Pool of 50 coding vs. non-coding target
coverage per lane after duplicate removal. This figure

shows a cumulative relative frequency plot of the percentage of

target bases with §X coverage depth normalized by the number

of lanes sequenced after duplicate removal for the Pool of 50

individuals for: (A) PCR, (B) aHC and (C) sHC enrichment. The

orange squares/lines illustrate the data for protein coding target

bases and the black squares/lines illustrate the data for the non-

coding target bases. The first square represents the percentage of

target bases with §106 coverage per lane in the pool, and so on

for each square in increments of 106.

(TIF)

Figure S7 Pool of 50 coding vs. non-coding target
coverage per lane before duplicate removal. This figure

shows a cumulative relative frequency plot of the percentage of

target bases with §X coverage depth normalized by the number

of lanes sequenced for the Pool of 50 individuals for: (A) PCR, (B)

aHC and (C) sHC enrichment. The orange squares/lines illustrate

the data for protein coding target bases and the black squares/

lines illustrate the data for the non-coding target bases. The first

square represents the percentage of target bases with §106
coverage per lane in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S8 Pool of 20 PCR replicates coding vs. non-
coding target coverage per lane after duplicate removal.
This figure shows a cumulative relative frequency plot of the

percentage of target bases with §X coverage depth normalized by

the number of lanes sequenced for the Pool of 20 individuals PCR

replicates for: (A) Replicate 1, (B) Replicate 2. Replicate 1 is the

replicate used in all the main analyses. The orange squares/lines

illustrate the data for protein coding target bases and the black

squares/lines illustrate the data for the non-coding target bases.

The first square represents the percentage of target bases with

§106coverage per lane in the pool, and so on for each square in

increments of 106.

(TIF)
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Figure S9 Pool of 20 PCR replicates coding vs. non-
coding target coverage per lane before duplicate remov-
al. This figure shows a cumulative relative frequency plot of the

percentage of target bases with §X coverage depth normalized by

the number of lanes sequenced for the Pool of 20 individuals PCR

replicates for: (A) Replicate 1, (B) Replicate 2. Replicate 1 is the

replicate used in all the main analyses. The orange squares/lines

illustrate the data for protein coding target bases and the black

squares/lines illustrate the data for the non-coding target bases.

The first square represents the percentage of target bases with

§106coverage per lane in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S10 Pool of 20 aHC replicates coding vs. non-
coding target coverage per lane after duplicate removal.
This figure shows a cumulative relative frequency plot of the

percentage of target bases with §X coverage depth normalized by

the number of lanes sequenced for the Pool of 20 individuals aHC

replicates for: (A) Replicate 1, (B) Replicate 2. Replicate 1 is the

replicate used in all the main analyses. The orange squares/lines

illustrate the data for protein coding target bases and the black

squares/lines illustrate the data for the non-coding target bases.

The first square represents the percentage of target bases with

§106coverage per lane in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S11 Pool of 20 aHC replicates coding vs. non-
coding target coverage per lane before duplicate remov-
al. This figure shows a cumulative relative frequency plot of the

percentage of target bases with §X coverage depth normalized by

the number of lanes sequenced for the Pool of 20 individuals aHC

replicates for: (A) Replicate 1, (B) Replicate 2. Replicate 1 is the

replicate used in all the main analyses. The orange squares/lines

illustrate the data for protein coding target bases and the black

squares/lines illustrate the data for the non-coding target bases.

The first square represents the percentage of target bases with

§106coverage per lane in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S12 Pool of 20 genomic coverage as function of
%GC of reference after duplicate removal. This figure

analyzes the normalized coverage and mean base quality of

mapped bases compared to the percentage of GC bases for the

reference genome divided into 500 base-pair windows in the Pool

of 20 individuals for: (A) PCR, (B) aHC and (C) sHC enrichment.

Normalized coverage for a %GC bin is the proportion of coverage

this window accounts for relative to the mean coverage across all

%GC bins.

(TIF)

Figure S13 Pool of 50 genomic coverage as function of
%GC of reference after duplicate removal. This figure

analyzes the normalized coverage and mean base quality of

mapped bases compared to the percentage of GC bases for the

reference genome divided into 500 base-pair windows in the Pool

of 50 individuals for: (A) PCR, (B) aHC and (C) sHC enrichment.

Normalized coverage for a %GC bin is the proportion of coverage

this window accounts for relative to the mean coverage across all

%GC bins.

(TIF)

Figure S14 Pool of 50 genomic coverage as function of
%GC of reference before duplicate removal. This figure

analyzes the normalized coverage and mean base quality of

mapped bases compared to the percentage of GC bases for the

reference genome divided into 500 base-pair windows in the Pool

of 50 individuals for: (A) PCR, (B) aHC and (C) sHC enrichment.

Normalized coverage for a %GC bin is the proportion of coverage

this window accounts for relative to the mean coverage across all

%GC bins.

(TIF)

Figure S15 Pool of 10 per individual coverage at
HapMap true positive, false positive and false negative
variants after duplicate removal. This figure shows a

cumulative relative frequency plot of the percentage of variants

with §X coverage per individual in the pool at HapMap true

positive, false positive and false negative variants for: (A) PCR, (B)

aHC and (C) sHC enrichment. The black squares/lines illustrate

the data for false negative variants, the blue squares/lines illustrate

the data for false positive variants and the orange squares/lines

illustrate the data for true positive variants. The first square

represents the percentage of variants in a class with §106
coverage per individual in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S16 Pool of 10 per individual coverage at
HapMap true positive, false positive and false negative
variants before duplicate removal. This figure shows a

cumulative relative frequency plot of the percentage of variants with

§X coverage per individual in the pool at HapMap true positive,

false positive and false negative variants for: (A) PCR and (B) sHC

enrichment. The black squares/lines illustrate the data for false

negative variants, the blue squares/lines illustrate the data for false

positive variants and the orange squares/lines illustrate the data for

true positive variants. The first square represents the percentage of

variants in a class with § 106coverage per individual in the pool,

and so on for each square in increments of 106.

(TIF)

Figure S17 Pool of 20 per individual coverage at
HapMap true positive, false positive and false negative
variants after duplicate removal. This figure shows a

cumulative relative frequency plot of the percentage of variants

with §X coverage per individual in the pool at HapMap true

positive, false positive and false negative variants for: (A) PCR, (B)

aHC and (C) sHC enrichment. The black squares/lines illustrate

the data for false negative variants, the blue squares/lines illustrate

the data for false positive variants and the orange squares/lines

illustrate the data for true positive variants. The first square

represents the percentage of variants in a class with §106
coverage per individual in the pool, and so on for each square in

increments of 106.

(TIF)

Figure S18 Pool of 10 %GC context at HapMap true
positive, false positive and false negative variants after
duplicate removal. This figure shows a cumulative relative

frequency plot of the percentage of variants with a genomic context

%GC of §X% in a window of +100 base-pairs around each

HapMap true positive, false positive and false negative variants for:

(A) PCR, (B) aHC and (C) sHC enrichment. The black squares/

lines illustrate the data for false negative variants, the blue squares/

lines illustrate the data for false positive variants and the orange

squares/lines illustrate the data for true positive variants. The first

square represents the percentage of variants in a class with §10%

GC in a +100 base-pair window around a variant coverage, and so

on for each square in increments of 10% GC content.

(TIF)
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Figure S19 Pool of 10 %GC context at HapMap true
positive, false positive and false negative variants before
duplicate removal. This figure shows a cumulative relative

frequency plot of the percentage of variants with a genomic

context %GC of §X% in a window of +100 base-pairs around

each HapMap true positive, false positive and false negative

variants for: (A) PCR and (B) sHC enrichment. The black squares/

lines illustrate the data for false negative variants, the blue

squares/lines illustrate the data for false positive variants and the

orange squares/lines illustrate the data for true positive variants.

The first square represents the percentage of variants in a class

with §10% GC in a +100 base-pair window around a variant

coverage, and so on for each square in increments of 10% GC

content.

(TIF)

Figure S20 Pool of 20 %GC context at HapMap true
positive, false positive and false negative variants after
duplicate removal. This figure shows a cumulative relative

frequency plot of the percentage of variants with a genomic

context %GC of §X% in a window of +100 base-pairs around

each HapMap true positive, false positive and false negative

variants for: (A) PCR, (B) aHC and (C) sHC enrichment. The

black squares/lines illustrate the data for false negative variants,

the blue squares/lines illustrate the data for false positive variants

and the orange squares/lines illustrate the data for true positive

variants. The first square represents the percentage of variants in a

class with §10% GC in a +100 base-pair window around a

variant coverage, and so on for each square in increments of 10%

GC content.

(TIF)

Figure S21 HapMap frequency distribution of true
positive and false negative variants in the Pool of 10
after duplicate removal. This figure shows a cumulative

relative frequency plot of the percentage of variants with true allele

frequency ƒX in the pool at HapMap true positive and false

negative variants for: (A) PCR, (B) aHC and (C) sHC enrichment.

The black squares/lines illustrate the data for false negative

variants and the orange squares/lines illustrate the data for true

positive variants. The first square represents the percentage of

variants in a class with allele frequency ƒ0.01, and so on for each

square in 0.01 frequency increments.

(TIF)

Figure S22 HapMap frequency distribution of true
positive and false negative variants in the Pool of 10
before duplicate removal. This figure shows a cumulative

relative frequency plot of the percentage of variants with true allele

frequency ƒX in the pool at HapMap true positive and false

negative variants for: (A) PCR and (B) sHC enrichment. The black

squares/lines illustrate the data for false negative variants and the

orange squares/lines illustrate the data for true positive variants.

The first square represents the percentage of variants in a class

with allele frequency ƒ0.01, and so on for each square in 0.01

frequency increments.

(TIF)

Figure S23 HapMap frequency distribution of true
positive and false negative variants in the Pool of 20
after duplicate removal. This figure shows a cumulative

relative frequency plot of the percentage of variants with true allele

frequency ƒX in the pool at HapMap true positive and false

negative variants for: (A) PCR, (B) aHC and (C) sHC enrichment.

The black squares/lines illustrate the data for false negative

variants and the orange squares/lines illustrate the data for true

positive variants. The first square represents the percentage of

variants in a class with allele frequency ƒ0.01, and so on for each

square in 0.01 frequency increments.

(TIF)

Figure S24 HapMap/58C intersection frequency distri-
bution of true positive and false negative variants in the
Pool of 50 after duplicate removal. This figure shows a

cumulative relative frequency plot of the percentage of variants

with true allele frequency ƒX in the pool at HapMap/58C

intersection true positive and false negative variants for: (A) PCR,

(B) aHC and (C) sHC enrichment. The black squares/lines

illustrate the data for false negative variants and the orange

squares/lines illustrate the data for true positive variants. The first

square represents the percentage of variants in a class with allele

frequency ƒ0.01, and so on for each square in 0.01 frequency

increments. This analysis is for the 507 sites where all 50

individuals had genotype data for, which lead to only 14 false

negatives for PCR, 8 false negatives for aHC and 1 false negative

for sHC.

(TIF)

Figure S25 HapMap/58C intersection frequency distri-
bution of true positive and false negative variants in the
Pool of 50 before duplicate removal. This figure shows a

cumulative relative frequency plot of the percentage of variants

with true allele frequency ƒX in the pool at HapMap/58C

intersection true positive and false negative variants for: (A) PCR,

(B) aHC and (C) sHC enrichment. The black squares/lines

illustrate the data for false negative variants and the orange

squares/lines illustrate the data for true positive variants. The first

square represents the percentage of variants in a class with allele

frequency ƒ0.01, and so on for each square in 0.01 frequency

increments. This analysis is for the 507 sites where all 50

individuals had genotype data for, which lead to only 11 false

negatives for PCR, 1 false negatives for aHC and 1 false negative

for sHC.

(TIF)

Figure S26 Accuracy of non-reference allele frequency
estimation at HapMap variants for the Pool of 10 after
duplicate removal. An analysis of the correlation between the

non-reference allele frequency estimate from the sequencing based

variant caller and the allele frequency from the reference

genotypes. The analysis includes the true positive variants called

by the sequencing based variant caller for which there were no

missing genotypes in the reference genotypes. The correlation

coefficient is the Pearson’s correlation coefficient. The figure shows

the analysis for: (A) PCR, (B) aHC and (C) sHC enrichment.

(TIF)

Figure S27 Accuracy of non-reference allele frequency
estimation at HapMap variants for the Pool of 10 before
duplicate removal. An analysis of the correlation between the

non-reference allele frequency estimate from the sequencing based

variant caller and the allele frequency from the reference

genotypes. The analysis includes the true positive variants called

by the sequencing based variant caller for which there were no

missing genotypes in the reference genotypes. The correlation

coefficient is the Pearson’s correlation coefficient. The figure shows

the analysis for: (A) PCR and (B) sHC enrichment.

(TIF)

Figure S28 Accuracy of non-reference allele frequency
estimation at HapMap variants for the Pool of 20 after
duplicate removal. An analysis of the correlation between the

non-reference allele frequency estimate from the sequencing based
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variant caller and the allele frequency from the reference

genotypes. The analysis includes the true positive variants called

by the sequencing based variant caller for which there were no

missing genotypes in the reference genotypes. The correlation

coefficient is the Pearson’s correlation coefficient. The figure shows

the analysis for: (A) PCR, (B) aHC and (C) sHC enrichment.

(TIF)

Figure S29 Comparison of non-reference allele frequen-
cy estimation for Pool of 20 PCR technical replicates
after duplicate removal. The correlation of non-reference

allele frequency estimates for overlapping variants between the

PCR technical replicates. The y-axis are the non-reference allele

frequencies for replicate 2 and the x-axis are the non-reference

allele frequencies for replicate 1. The correlation is the Pearson’

correlation coefficient between allele frequencies.

(TIF)

Figure S30 Comparison of non-reference allele frequen-
cy estimation for Pool of 20 aHC technical replicates
after duplicate removal. The correlation of non-reference

allele frequency estimates for overlapping variants between the

aHC technical replicates. The y-axis are the non-reference allele

frequencies for replicate 2 and the x-axis are the non-reference

allele frequencies for replicate 1. The correlation is the Pearson’

correlation coefficient between allele frequencies.

(TIF)

Figure S31 HapMap allele frequency estimation accu-
racy as a function of per individual depth in the Pool of
10 after duplicate removal. This figure is a scatter plot of the

accuracy of the allele frequency estimates from the sequencing

compared to the per individual read depth at HapMap true

positive variants in the Pool of 10 individuals for: (A) PCR, (B)

aHC and (C) sHC enrichment. The accuracy of the estimates are

calculated as the frequency calculated from the HapMap

genotypes minus the frequency estimated from the sequencing

data. The y-axis is the accuracy value and the x-axis is the per

individual read depth in the pool. The red line is the least squares

fit of the model Accuracy~ReadDepthbz�, and the corr is the

Pearson’s correlation coefficient between the accuracy and read

depth.

(TIF)

Figure S32 HapMap allele frequency estimation accu-
racy as a function of per individual depth in the Pool of
10 before duplicate removal. This figure is a scatter plot of

the accuracy of the allele frequency estimates from the sequencing

compared to the per individual read depth at HapMap true

positive variants in the Pool of 10 individuals for: (A) PCR and (B)

sHC enrichment. The accuracy of the estimates are calculated as

the frequency calculated from the HapMap genotypes minus the

frequency estimated from the sequencing data. The y-axis is the

accuracy value and the x-axis is the per individual read depth in

the pool. The red line is the least squares fit of the model

Accuracy~ReadDepthbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S33 HapMap allele frequency estimation accu-
racy as a function of per individual depth in the Pool of
20 after duplicate removal. This figure is a scatter plot of the

accuracy of the allele frequency estimates from the sequencing

compared to the per individual read depth at HapMap true

positive variants in the Pool of 20 individuals for: (A) PCR, (B)

aHC and (C) sHC enrichment. The accuracy of the estimates are

calculated as the frequency calculated from the HapMap

genotypes minus the frequency estimated from the sequencing

data. The y-axis is the accuracy value and the x-axis is the per

individual read depth in the pool. The red line is the least squares

fit of the model Accuracy~ReadDepthbz�, and the corr is the

Pearson’s correlation coefficient between the accuracy and read

depth.

(TIF)

Figure S34 HapMap/58BC intersection allele frequency
estimation accuracy as a function of per individual
depth in the Pool of 50 after duplicate removal. This figure

is a scatter plot of the accuracy of the allele frequency estimates

from the sequencing compared to the per individual read depth at

HapMap/58BC intersection true positive variants in the Pool of

50 individuals for: (A) PCR, (B) aHC and (C) sHC enrichment.

The accuracy of the estimates are calculated as the frequency

calculated from the HapMap genotypes minus the frequency

estimated from the sequencing data. The y-axis is the accuracy

value and the x-axis is the per individual read depth in the pool.

The red line is the least squares fit of the model

Accuracy~ReadDepthbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S35 HapMap/58BC intersection allele frequency
estimation accuracy as a function of per individual
depth in the Pool of 50 before duplicate removal. This

figure is a scatter plot of the accuracy of the allele frequency

estimates from the sequencing compared to the per individual read

depth at HapMap/58BC intersection true positive variants in the

Pool of 50 individuals for: (A) PCR, (B) aHC and (C) sHC

enrichment. The accuracy of the estimates are calculated as the

frequency calculated from the HapMap genotypes minus the

frequency estimated from the sequencing data. The y-axis is the

accuracy value and the x-axis is the per individual read depth in

the pool. The red line is the least squares fit of the model

Accuracy~ReadDepthbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S36 HapMap allele frequency estimation accu-
racy as a function of allele count in the Pool of 10 after
duplicate removal. This figure is a scatter plot of the accuracy

of the allele frequency estimates from the sequencing compared to

the number of variant alleles at HapMap true positive variants in

the Pool of 10 individuals for: (A) PCR, (B) aHC and (C) sHC

enrichment. The accuracy of the estimates are calculated as the

frequency calculated from the HapMap genotypes minus the

frequency estimated from the sequencing data. The y-axis is the

accuracy value and the x-axis is the number of variant alleles in the

pool. The red line is the least squares fit of the model

Accuracy~AlleleCountbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S37 HapMap allele frequency estimation accu-
racy as a function of allele count in the Pool of 10 before
duplicate removal. This figure is a scatter plot of the accuracy

of the allele frequency estimates from the sequencing compared to

the number of variant alleles at HapMap true positive variants in

the Pool of 10 individuals for: (A) PCR and (B) sHC enrichment.

The accuracy of the estimates are calculated as the frequency

calculated from the HapMap genotypes minus the frequency

estimated from the sequencing data. The y-axis is the accuracy

value and the x-axis is the number of variant alleles in the pool.

The red line is the least squares fit of the model
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Accuracy~AlleleCountbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S38 HapMap allele frequency estimation accu-
racy as a function of allele count in the Pool of 20 after
duplicate removal. This figure is a scatter plot of the accuracy

of the allele frequency estimates from the sequencing compared to

the number of variant alleles at HapMap true positive variants in

the Pool of 20 individuals for: (A) PCR, (B) aHC and (C) sHC

enrichment. The accuracy of the estimates are calculated as the

frequency calculated from the HapMap genotypes minus the

frequency estimated from the sequencing data. The y-axis is the

accuracy value and the x-axis is the number of variant alleles in the

pool. The red line is the least squares fit of the model

Accuracy~AlleleCountbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S39 HapMap/58BC intersection allele frequency
estimation accuracy as a function of allele count in the
Pool of 50 after duplicate removal. This figure is a scatter

plot of the accuracy of the allele frequency estimates from the

sequencing compared to the number of variant alleles at

HapMap/58BC intersection true positive variants in the Pool of

50 individuals for: (A) PCR, (B) aHC and (C) sHC enrichment.

The accuracy of the estimates are calculated as the frequency

calculated from the HapMap genotypes minus the frequency

estimated from the sequencing data. The y-axis is the accuracy

value and the x-axis is the number of variant alleles in the pool.

The red line is the least squares fit of the model

Accuracy~AlleleCountbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Figure S40 HapMap/58BC intersection allele frequency
estimation accuracy as a function of allele count in the
Pool of 50 before duplicate removal. This figure is a scatter

plot of the accuracy of the allele frequency estimates from the

sequencing compared to the number of variant alleles at

HapMap/58BC intersection true positive variants in the Pool of

50 individuals for: (A) PCR, (B) aHC and (C) sHC enrichment.

The accuracy of the estimates are calculated as the frequency

calculated from the HapMap genotypes minus the frequency

estimated from the sequencing data. The y-axis is the accuracy

value and the x-axis is the number of variant alleles in the pool.

The red line is the least squares fit of the model

Accuracy~AlleleCountbz�, and the corr is the Pearson’s

correlation coefficient between the accuracy and read depth.

(TIF)

Table S1 Non-indexed pool designs. This table details the

HapMap and 1958BC sample composition of the non-indexed

pools of size 2, 10, 20 and 50. The table also details the number of

HapMap individuals in each pool that were sequenced in pilot 1 of

the 1KG project.

(PDF)

Table S2 Pool sequencing designs. This table details the

number of lanes sequenced per pool, the read lengths generated

per lane, and whether the pool had technical replicates performed.

(PDF)

Table S3 Target regions for enrichment. These 6 genomic

regions were selected for sequence enrichment on the basis of

preliminary rare variant association to Type 2 Diabetes. The

target regions include 50 Kb upstream and down stream of the

translation start and stop sites for each gene, and include both

protein coding (COD) and non-coding (NON-COD) sequence.

(PDF)

Table S4 Target sequence enrichment success after
duplicate removal. For each pool and sequence enrichment

method this table details the total number of reads generated for

the pool, the estimated percentage of duplicate reads, the

percentage of total reads mapped to the reference genome after

duplicate removal, the percentage of total reads mapped to the

target regions after duplicate removal, and the percentage of

mapped reads that mapped to the target regions with mapping

quality §20 after duplicate removal. The total number of reads

for a pool is calculated from the fastq file(s) generated for each lane

of sequencing. The percentage of reads mapped to the reference is

calculated from the BAM file generated from merging all the Maq

map files for each lane for a pool. The percentage of reads mapped

to the target regions is calculated as the number of reads with at

least one base overlapping a target region divided by the total

number of reads. The percentage of reads mapped to the target

regions with a mapping quality score §Q20 is calculated as the

number of reads with at least one base overlapping a target region

with mapping Q§20 divided by the total number of reads.

(PDF)

Table S5 Enrichment success for technical replicates
before duplicate removal. For each technical replicate of the

Pool of 20 this table details the total number of reads generated for

the pool, the percentage of total reads mapped to the reference

genome, the percentage of total reads mapped to the target

regions, the percentage of mapped reads that mapped to the target

regions, and the median read depth of the target regions. The total

number of reads for a pool is calculated from the fastq file(s)

generated for each lane of sequencing. The percentage of reads

mapped to the reference is calculated from the BAM file generated

from merging all the Maq map files for each lane for a pool. The

percentage of reads mapped to the target regions is calculated as

the number of reads with at least one base overlapping a target

region divided by the total number of reads. The percentage of

mapped reads mapped to the target is calculated as the number of

reads with at least one base overlapping a target region divided by

the total number or reads mapped in the BAM file.

(PDF)

Table S6 Enrichment success for technical replicates
after duplicate removal. For each technical replicate of the Pool

of 20 this table details the total number of reads generated for the

pool, the percentage of total reads mapped to the reference genome

after duplicate removal, the percentage of total reads mapped to the

target regions after duplicate removal, the percentage of mapped

reads that mapped to the target regions after duplicate removal, and

the median read depth of the target regions after duplicate removal.

The total number of reads for a pool is calculated from the fastq file(s)

generated for each lane of sequencing. The percentage of reads

mapped to the reference is calculated from the BAM file generated

from merging all the Maq map files for each lane for a pool. The

percentage of reads mapped to the target regions is calculated as the

number of reads with at least one base overlapping a target region

divided by the total number of reads. The percentage of mapped

reads mapped to the target is calculated as the number of reads with

at least one base overlapping a target region divided by the total

number or reads mapped in the BAM file.

(PDF)

Table S7 Coverage of the target region before duplicate
removal. For each pool and enrichment method this table shows
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the mean, median and standard deviation of target coverage

before duplicate removal. The mean coverage is calculated by

summing the read depth for each target base and dividing by the

total length of the target regions. The median and standard

deviation are calculated from the distribution of read depths for

target bases.

(PDF)

Table S8 Coverage of the target region after duplicate
removal. For each pool and enrichment method this table shows

the mean, median and standard deviation of target coverage after

duplicate removal. The mean coverage is calculated by summing

the read depth for each target base and dividing by the total length

of the target regions. The median and standard deviation are

calculated from the distribution of read depths for target bases.

(PDF)

Table S9 Percentage of target region reads that mapped
to the coding vs non-coding regions before duplicate
removal. This table gives the percentage of target reads that

mapped to the coding (COD) and non-coding (NON-COD)

regions before duplicate removal. This table also gives the median

read depth in the coding and non-coding target regions

(PDF)

Table S10 Percentage of target region reads that
mapped to the coding vs non-coding regions after
duplicate removal. This table gives the percentage of target

reads that mapped to the coding (COD) and non-coding (NON-

COD) regions after duplicate removal. This table also gives the

median read depth in the coding and non-coding target regions.

(PDF)

Table S11 Sequence characteristics of non-coding vs
coding target regions. An analysis of the sequence characteristics

of the target coding (COD) and non-coding (NON-COD) regions

including the repeat content as analyzed by RepeatMasker open 3.2.9.

(PDF)

Table S12 Total number of variants called by pool and
enrichment technique after duplicate removal. For each

pool size and sequence enrichment method this table details the

total number of variants called from the sequencing data.

(PDF)

Table S13 Total number of variants called by pool and
enrichment technique before duplicate removal. For each

pool size and sequence enrichment method this table details the

total number of variants called from the sequencing data.

(PDF)

Table S14 dbSNP129 overlap after duplicate removal.
This table contains the percentage of called variants for each pool

and enrichment method that are present in the non-redundant

dbSNP129.

(PDF)

Table S15 dbSNP129 overlap before duplicate removal.
This table contains the percentage of called variants for each pool

and enrichment method that are present in the non-redundant

dbSNP129.

(PDF)

Table S16 HapMap variation detection sensitivity be-
fore duplicate removal. This table contains the percentage of

the known HapMap variants with at least one non-reference allele

in the pool that each pool and enrichment method discovered (true

positives). The false negative rate is 100 minus this value.

(PDF)

Table S17 HapMap variation detection specificity be-
fore duplicate removal. This table contains the percentage of

the known HapMap variants with no non-reference alleles and no

missing genotypes in the pool that each pool and enrichment

method correctly didn’t call as a variant (true negatives). The false

positive rate is 100 minus this value.

(PDF)

Table S18 1KG support for HapMap false positive loci
before duplicate removal. This table contains the number of

loci considered false positives based on HapMap data that are

present in 1KG and the percentage of these overlapping loci that

the 1KG data supports the presence of non-reference alleles in the

pool.

(PDF)

Table S19 1KG variation detection sensitivity after
duplicate removal. This table contains the percentage of the

known 1KG variants with at least one non-reference allele in the

pool that each pool and enrichment method discovered (true

positives). The false negative rate is 100 minus this value.

(PDF)

Table S20 1KG variation detection sensitivity before
duplicate removal. This table contains the percentage of the

known 1KG variants with at least one non-reference allele in the

pool that each pool and enrichment method discovered (true

positives). The false negative rate is 100 minus this value.

(PDF)

Table S21 Total known HapMap/1KG variation detec-
tion sensitivity after duplicate removal. This table contains

the percentage of all the known variants with at least one non-

reference allele in the pool that each pool and enrichment method

discovered (true positives). The false negative rate is 100 minus this

value. For individuals that have both 1KG and HapMap data, if a

locus occurred in both data sets the HapMap genotype was

selected. If a locus occurred in both data sets and an individual’s

HapMap genotype was missing but called in 1KG, the 1KG

genotype was used.

(PDF)

Table S22 Total known HapMap/1KG variation detec-
tion sensitivity before duplicate removal. This table

contains the percentage of all the known variants with at least

one non-reference allele in the pool that each pool and enrichment

method discovered (true positives). The false negative rate is

100 minus this value. For individuals that have both 1KG and

HapMap data, if a locus occurred in both data sets the HapMap

genotype was selected. If a locus occurred in both data sets and an

individual’s HapMap genotype was missing but called in 1KG, the

1KG genotype was used.

(PDF)

Table S23 HapMap singleton detection sensitivity after
duplicate removal. This table illustrates the ability of the

sequencing based variant calling to identify variants where the

HapMap genotypes have a single non-reference or reference base.

The only loci analyzed here are those where there are no missing

genotypes for pooled individuals.

(PDF)

Table S24 Variation detection sensitivity as pool size
grows after duplicate removal. This table shows the

percentage of the variants called in the pool of 1 individual that

are also called as variants in the larger pool sizes. The individual in

the pool of 1 was also in each subsequent larger pool, therefore all
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variants called in the pool of 1 should also be found in all

subsequent pools.

(PDF)

Table S25 Variation detection sensitivity as pool size
grows before duplicate removal. This table shows the

percentage of the variants called in the pool of 1 individual that

are also called as variants in the larger pool sizes. The individual in

the pool of 1 was also in each subsequent larger pool, therefore all

variants called in the pool of 1 should also be found in all

subsequent pools.

(PDF)

Table S26 Percent of called HapMap variants with
correctly, under, and over estimated non-reference
allele frequencies after duplicate removal. For the pools

of 10, 20 and 50 individuals and each enrichment method this

table details the percent of true positive variants that the non-

reference allele frequency was correctly, under, or over estimated

by the sequencing based variant caller relative to the reference

genotypes.

(PDF)

Table S27 Percent of called HapMap variants with
correctly, under, and over estimated non-reference
allele frequencies before duplicate removal. For the pools

of 10, 20 and 50 individuals and each enrichment method this

table details the percent of true positive variants that the non-

reference allele frequency was correctly, under, or over estimated

by the sequencing based variant caller relative to the reference

genotypes.

(PDF)

Table S28 Pool of 20 technical replicates dbSNP overlap
and HapMap/1KG sensitivity after duplicate removal.
This table contains the percentage of the called variants in

dbSNP129, and the percentage of known HapMap/1KG variants

with at least one non-reference allele in the pool that each replicate

discovered (true positives). The false negative rate is 100 minus this

value.

(PDF)

Table S29 Pool of 20 technical replicate variant overlap
after duplicate removal. For the PCR and aHC technical

replicates for the pool of 20 this table details the total number of

variants called for each replicate, the number of variants called by

both replicates, the percent overlap of the called variants in the

replicates, the average absolute difference in non-reference allele

frequency for the overlapping variants, and the Pearson’s

correlation coefficient for the non-reference allele frequency

estimates between the replicates. The average absolute difference

is calculated as the sum of the absolute value of the difference in

non-reference allele frequency, divided by the total number of

sites.

(PDF)
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