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1 Introduction
Boundary value problems are often studies in the areas of applied mathematics and
physics. With the development of technology, applications of boundary value problems
on the infinite interval attract increasing attention; see [1-4] and the references therein.
Recently, fractional differential equations have also aroused great interest; see [5—8]. At the
same time, the existence of positive solutions for nonlinear fractional differential equation
boundary value problems have been widely studied by many authors; see [9-17] and the
references therein.

In [3], the authors, using fixed point theorems in a cone, established the existence of one
positive solution and three positive solutions for the following second-order nonlinear

boundary value problems with integral boundary conditions on an infinite interval:

S5 (@ @) +f(6u(®) =0, € (0,+00),
a1u(0) = by lim o+ p(O)'(£) = [; & ()Y (5) ds,
a3 iMoo u(t) + by 1imy s oo p(O1/(8) = [3™ ga(ua(s)) ¥ (s) ds,

where f € C((0, +00) x [0,+00) x R, [0, +00)), f may be singular at £ =0, g1, : [0, +00) —
[0, +00) and ¥ : [0, +00) — (0, +00) are continuous, fowc ¥(s)ds < +o00, p € C[0, +00) N
C1(0, +o0) with p(t) > 0 on (0, +00) and f0+°° 1% < +00,d1 +dy >0,and b; >0 fori=1,2.
Iterative schemes for approximating the solutions of a nonlinear fractional boundary value

problem on the half-line were presented in [15]. The authors, based on the monotone
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iterative technique, obtained the existence of positive solutions of the following fractional

boundary value problem:

Dg, u(t) + q(t)f (£, u(t)) =0, te(0,+00),
u(0) =0, limy 400 D3 u(t) = > 0,

where 1 < @ < 2, and D, is the standard Riemann-Liouville fractional derivative. For an
overview of the literature on differential equations boundary value problems, see [6—8]
and the references therein.

Motivated by all the works mentioned, we study the following fractional boundary value

problem on the half-line:

ﬁ(p(t) D2 u(t)) +f(tu®) =0, te(0,+00),
114(0) — by Tim, v p(t) CDE, () = [ @1t (9) ds, L
az limy_, .o u(t) + by hmtﬁ+oop(t) CDngu(t) = 0+Oog2(14(5))102 (s)ds,

where “D? is the Caputo fractional derivative of order « € (0,1), p € C'([0, +00), (0, +00)),

f:(0,400) x [0,+00) — [0, +00) is a continuous function and may be singular at ¢ = 0;

a;>0,b;>0,g € C([0,+00), [0, +00)), and V; € L}([0, +00)) is nonnegative for i = 1,2.
We assume that the following conditions are satisfied:

o—1
(HO) limy o0 fot (t;f()s) ds < +00, 2—2 > M, where

1 Lt—s)*!
M=—— su — ds. 1.2
I'(@) tg[o,f’o@/o 20) 12)

(H1) There exist functions % € C([0, +00), [0, +00)) and v € C((0, +00), (0, +00)) such
that

ft,u) <v(t)h(u), te(0,+00); /mop(s)v(s) ds < +o0.
0

2 Preliminaries
In this section, we present some useful definitions and the related theorems.

Definition 2.1 (See [5, 7]) Let o > 0. For a function u : (0,+00) — R, the Riemann-

Liouville fractional integral operator of order « of u is defined by

I§ u(t) = ﬁ /0 (¢ - 9)*tu(s)ds,

provided that the integral exists.

Definition 2.2 (See [5,7]) The Caputo derivative of order « for a function u : (0, +00) —

R is given by

1 £y

Cno _
Do.ult) = v0=o | Gospri

’
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provided that the right side is pointwise defined on (0, +00), where n = [¢] + land n — 1 <
a<n.
If o = n, then “D% u(t) = u®™(¢).
Lemma 2.1 (See [7]) Let o > 0. Then the differential equation
D¢ h(t)=0
has solutions
ht)=co+crt+ct® +-+cpat"™, ¢ €eR,i=0,1,2,...,n—-1,
where n is the smallest integer greater than or equal to o.

Lemma 2.2 [f(HO) holds and y € C((0, +00), [0, +00)) with f p()y(s)ds < +oo, then the
fractional boundary value problem

S () D, u(®) +y(t) =0, ¢ €(0,+00),
a1u(0) — by limy_, o+ p(£) DG, u(t) = [~ g1(u(s)) ¥ (s) ds, 1)
@ iMoo 1(8) + b T p(E) DG, 14(8) =[5 (52 (s) s

has a unique solution
u)= [ GepyOS+AO [ a@o)nods
0 0

+ Fy(t) / @(u(9)2(s) ds,
0

where
)u 1
) (b +a [y & l"(a)p(rl) dr)(by + aplim,_, o [ & 0 dr) 0=t=s<+oo,
Glt5)= 1 i+ i ‘11’)(1” anlime o0 [ oy dr)
—b1¢2f tr)): dr, 0<s<t<+00,
. G
=ab b 1 ——dr,
P =aiby +axo; +aiar TEPQQ o T(a)p() r
1 e 1 f— a-1
Fl(t) = — (bz +ay lim (T ) / ( 2 )
P T—>+00 J F(Ol)p r) ot)p

and

1 t t— a—-1
Fy(f) = _(bl +ﬂ1/ -n" dr).
o o (a)p(r)
Proof 1t is well known that the fractional differential equation in (2.1) is equivalent to the
integral equation

PO D8, 0) = Jimy p) DGy u0) - [ pp) s 22)
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Hence,

1 1 ¢
u(t) = (0+ (t)) lim p(t)CDg‘Jt(t)—I(‘;‘Jr (M/o p(s)y(s) ds) + ¢

(t S)oz -1 t(t_s)oz—l
~Jo T(@)pls) o T(e)pls) Jo

ds \ p(t) D, u(t) -
where ¢y € R is any constant. It follows from (2.2) and (2.3) that

tlim p(t) CD‘(’,‘Jru(t) = tli%l p(t) CD‘(’)‘Jru(t) —/ p)y(s)ds
—+00 —0t 0

and

t (t _ S)a—l S
T(a)p(s)

By the boundary conditions in (2.1) we have

lim u(t) = lim p(t)CDg+u(t) lim /
+ +00 0

t—>+00

~ 1 ] t (t _s)a—l s
“‘Epﬂhﬁkérwmwo”mw”ms

bb ds+b d
+12A mwws+1ﬁ (1) ¥ (s) ds
t _ )a-1 +00
+ (az lim (e=s"™ ds + bz) / &1 (u(s)) ¥ (s) dSi|
0

=+ Jo T'(a)p(s)
and

(t S)a -1

lir(r)l p(t) CDf)‘)ru(t) = (alaz lim / p(r)y(r) drds
t—0t

t—+00

+ a1by / p)y(s)ds
0

+ﬂl/0 gz(u(s))wz(s)ds—az/(; &1 (u(s)) ¥ (s) ds).

Substituting them into (2.3), we get

~ 1 t (L‘ _ S)a—l ) t (t _ S)a—l s
”m‘ﬁﬂrwmw“eﬂﬂﬂ&orwmw<Jmm”w“
b ds
+a1by /0 p(s)y(s) )
a-1 +00
+ l (a2b1 Hwc)‘/() (I’:L( ;)9( ) p(r)y(r) drds + b1b2/0 p)y(s) ds)
a-1
(If (ozjg)a B p(r)y(r)drds

+H@A gwmmww+5mﬁ @(u(9) 2 (s) ds

p(s)y(s)drds + ¢,

Page 4 of 16

(2.3)



Jia et al. Boundary Value Problems (2016) 2016:104

Page 5 of 16
1 t (t _S)a—l ) |: t( t (t _ r)o:—l )
=— ds || a1a, lim dr ) p(s)y(s)ds
p (./0 Caps) )" =% Jo \U, Tegpt) )77
+ a1b2/ p)y(s) ds]
0
1 . t t (t _ r)oz—l +00
+ —|axb; lim / dr ) p(s)y(s) ds + b1 by / p(s)y(s)ds
Y t—=+o0 Jo \Js T(a)p(r) 0
t pt (t _ r)oz—l
- —————drp(s)y(s) ds
/0 . T P
LR / OO B0 [ g)p6)d
0 0
By(12)M<b2,andf 5)y(s) ds < +00, we have
)a 1
P f < Mp(5)y(s) € L'([0, +00)).
Hence,
fim )()/ d /mo()()l'm/[(t_r)a_ldds
i p(s drds = s)y(s) li ————dr
) A A )p( ) o PPN T@pl)
Therefore, the unique solution of the fractional boundary value problem (2.1) is
+00 +00
u(t) = f G(¢,s)p(s)y(s)ds + Fl(t)/ a (u(s))l/fl(s)ds
0 0
+ Fz(t)/ o (u(s))l/fg(s) ds. N
0
For convenience, we denote
G = (by + a1 M)(by + ar M) G - by(by — axM)
M a1b2 + ﬂzbl ’ " ﬂlbg + azbl + (llﬂgM,
Foor = b2 + ﬂzM Fo = bg - ﬂzM
M= ﬂlbz + ﬂzbl ’ = albg + a2b1 + (,ZlagM,
E _ bl + tllM _ b1
M= ﬂlbz + ﬂgbl ’ m = ﬂlbg + ﬂzbl + ﬂ142M7
—min{ Gm Flm FZW:} @_b1b2
v Gu Fin’ Fom |’ o’

T _ -1
FIZ@, Fzzl(bl +d; lim %dl’).
p P t—+00 Jo  T'(a)p(r)

Lemma 2.3 If (HO) holds, then G(t,s), Fi(t), and F»(¢t) defined in Lemma 2.2 satisfy
(1) G(¢,5) is a continuous function and G(t,s) > 0 for (¢,s) € [0, +00) X [0, +00);

(2) Fi(t), F5(t) are continuous functions, and F(t), F»(t) > 0 for t € [0, +00);
3)

G < G(t,s) <Gy for(t,s) € [0,+00) x [0, +00),

FlmSFl(t)SEM fOrt€[0,+OO),i=1,2;



Jia et al. Boundary Value Problems (2016) 2016:104 Page 6 of 16

(4) there exist constants 0 < l; < Iy < +00 such that

G(t,8) = voGpy  for (¢,s) € [, 15] x [0, +00),

Fi(t) > yoF  forte[l,bhlandi=1,2;

(5) forany s € [0,+00), lim;_, o0 G(t,5) = G < +00, limy_, .o Fi(t) = F} < +00,
limy_, ;o0 F>(2) = Fy < +00.

Proof (1) For 0 <t <s, it is easy to see that G(¢,s) > 0.
For 0 <s < ¢, by (HO) and (1.2) we have

t PAY-20
G(t,s) > l<blbz —b1a2/ %dr) > @(@ —M) > 0.
2 s T(a)p(r) p \a

Hence, G(¢,s) > 0 for (¢,5) € [0, +00) x [0, +00).
It is easy to see that G(t, s) is a continuous function.
(2) It follows from (1.2) and (HO) that (2) holds.
(3) By (HO), for ¢,s € [0, +00), we have

1 t _ -1
Glts) > ~ (b1b2 by, [T dr) S b (ﬁ —M) =G,
P s T(a)p(r) p \a

and

1 t (t _ r)a—l ) T (.[ _ r)a—l
G(t,s) < ; <b1 + 011/0 WP(”) dr) <b2 + azrgrjloo s Wp(l’) dl’) < Gy

It is easy to see that Fj,, < F;(t) < Fi for t € [0,+00), i =1,2.
(4) By (3) there exist constants 0 < /; < /; < +00 such that

G
G(t,s)>G,, = G—m -Gy =Gy for (8,s) € [l, 1] x [0, +00).
M

Similarly, we have
Fi(t) > voFim fort e [11,12] andi=1,2.

(5) By (HO) and 0 < « < 1, for any s € [0, +00), we can show that

| - (= A
lim G(t,s) =~ 1 b L _dr)(by+as ————d
Jim G(s) pti?oo« 1”’1/0 F@p() r)( 2rEIN S T ¢

t (t _ r)a—l
~ha | e d’)

1 s (t _ r)oz—l ) t (t _ r)a—l
(e [ i o) (oo, | )

t a-1
. (t-7)
_ 1 =
blazt 11+n Tt dr>
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1 t (t _ r)a—l t (t _ r,)a—l
=—(b| b li ————dr)-b li —d
p ( 1( 2t “Zriﬂnoofs F(@)p(r) ’) 192, 2% ), T@pt) ’)

=G
It is obvious that lim;_, ;o Fy(£) = F; < +00 and lim;_, ;o0 Fa(£) = F5 < +00. O
Let
E={ueclo,+00): lim u(®)<+oc] (2.4)

be a Banach space with the norm ||u|| = sup,¢(o ., |%(£)|, and
P- {u €E:u(t)>0,t€[0,+00), inf u(t)> y0||u||]
telllp]

be a cone in E.

For r > 0, we denote

K,={ueP:|ul<r}, 0K, = {ueP: |ul| =r},

Sy :=sup{h(u):0<u<r}, S, =sup{gi(u):0<u<r},
and
S :=sup{g(u): 0 <u<r}.

It follows from (H1) that S,, S|, and S, < +00.
We define the operator T : P — E by

+00

Tu(t) = /0 G(t, S)p(s)f(s, u(s)) ds + Fl(t)/o a (M(S))l/fl (s)ds
+F2(t)/ & (u(s))Ya(s)ds, ¢t e [0,+00).
0

We can easily get the following Lemma 2.4 from Lemma 2.2.

Lemma 2.4 Ifu € P, then the boundary value problem (1.1) is equivalent to the integral

equation

u(t) = A G(t,s)p(s)f(s, u(s)) ds + Fl(L‘)/0 a (u(s))lﬁl(s) ds
+ Fz(t)/0 o (u(s))l/fg(s) ds, tel0,+00).

Lemma 2.5 (See [1,18]) Let E be defined by (2.4), and Q2 C E. Then Q2 is relatively compact
in E if the following conditions hold:

(a) Q is uniformly bounded in E;

(b) the functions belonging to M are equicontinuous on any compact interval of [0, +00);
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(c) the functions from Q are equiconvergent, that is, for any given € > 0, there exists
T(e) > 0 such that |[f(t) —f(+00)| < & forany t > T(e) and f € Q2.

Lemma 2.6 If (HO) and (H1) hold, then T : P — P is completely continuous.

Proof We divide the proof into three steps.

Step 1: We show that T: P — P is well defined.

For u € P, there exists a constant 7y > 0 such that [|«|| < ro. By (H1) and Lemma 2.3, for
t,s € [0,+00), we have

G(t,s)p(s)f(s,u(s)) < G(t,s)p(s)v(s)h(u) < Gup(s)v(s)Sy,-

Since G(t,s), F1(t), F»(t) are continuous with respect to £, by using the Lebesgue dominated
convergence theorem, for ¢, € [0, +00), we have

+00

ammw@mmwg%amﬂ & (1) ¥ () ds

lim Tu(t) = lim
t—>to t—>to 0

Flim B [ () v ds
0 0
= /0 G(to,s)p(s)f(s, u(s)) ds + Fi (o) fo g (u(s))lpl (s)ds
+ F>(to) / 2 (u(s)) P2 (s) ds.
0

So, Tu € C[0, +00), and we get

+00

lim Tu(t) = A Gp(s)f (s, u(s)) ds + 1?1/0 &1 (u(9)) Y (s) ds

t—+00

+F, /0 o (u(s))wz(s) ds < +o0.

It is obvious that Tu(t) > 0, ¢ € [0, +00), by Lemma 2.3. Moreover,

inf Tu(t) > inf / G(t,s)p(s)f(s,u(s)) ds + i[}lfl]Fl(t)/ gl(M(S))l/fl(S)dS
0 telly,ly 0

te[h,lp] T telll]

+ inf Fz(t)/ & (uls))¥a(s) ds.
0

tell,lz]

By Lemma 2.3 (4) we have

inf Tu(t) >y sup ( / G(t,$)p(s)f (s u(s)) ds + Fi(2) / &(u(s))¥(s) ds
) \J0 0

te(h,l] te[0,+00

+5@A @wwwme

> yoll Tull.

Hence, T': P — P is well defined.
Step 2: We can verify that T': P — P is continuous.
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Let u,,u € Pand ||u, — u|| — 0 as n — +00. Then there exists a constant r; > 0 such that
lznll, ]l < r1. We have

0 < Gup(s)|f (s, un(s)) —f (s, u(s))| + Finr|g (n(s)) — g1 (u(s)) [¥1.(5)
+ Fou |2 (1(5)) — 2(u(5)) | ¥12(5)
< Gup(s)v(s) (h(un(s)) + h(u(s))) + Fiar (g1 (a(s)) + g1 (u(s))) ¥1(s)
+ For (g2 (n(s)) + g2 ((5)) ) ¥ras)
< 2GS, p(s)v(s) + 2F1mS,, Y1 (s) + 2FauS;, ¥ (s)
e L'([0, +00))

and, for s € [0, +00),

(s, 14(s)) —f(s,u(s)) > 0 asn— +oo,

8i(un(s)) —gi(uls)) > 0 asn— +o0,i=1,2.
Then, by the Lebesgue dominated convergence theorem we have
Mm-mnsﬂmaw@V@W®%ﬂmmma
+F1M/0+°° g1 (4n(s)) — g1 (a(s)) |91 (s) ds
+5MLWﬁAM@»<@@meuMs
— 0 asun— +o0.

Therefore, T : P — P is a continuous operator.

Step 3: We can show that T': P — P is relatively compact.

Let 2 be a bounded subset of P. Then there exists a constant r, > 0 such that ||u|| < ry
for each u € Q.

By Lemma 2.3 and (H1) we have

[ Tull = sup

te[0,+00)

/(; G(t, s)p(s)f(s, u(s)) ds + Fi(t) A aQ (u(s))lpl (s)ds

+5m/ @ (1)) Yals) ds
0

+00

< / Gup(s)v(s)h(u(s)) ds + Fiu / &1(u(s)) Y (s) ds
0 0
cEat [ ()10 ds
0

< GuS;, / p(s)v(s)ds + FlMS/,2 / Y1(s)ds + FZMS’/2 / Yo (s)ds
0 0 0

< +0Q.

So, T(£2) is uniformly bounded.
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For any T € (0,+00), since G(¢,s), Fi(t), and F,(t) are continuous, we have that G is
uniformly continuous on [0, T] x [0, T] and F; and F, are uniformly continuous on [0, T7].
This implies that, for any & > 0, there exists § > 0 such that, when ¢, 1, € [0, T], whenever
|t, — t1] < 8 and s € [0, T], we have

|G(t2,5) - G(tr,9)| <&,
|Fi(t) - Fi(t)| <&, i=1,2.

Therefore, for ¢, ¢, € [0, T], whenever |, — t;| < § and u € €2, we can show that
| Tu(t) - Tu(s,)|

< /0 |G(t1,s) - G(ty,s) |p(s)f(s, u(s)) ds
HR@) R [ (o) nod
0

+mmw5mm4 () ¥2(5) ds
<e <Sr2 /o ps)vis)ds +S,, /0 Yals)ds + S, /0 Yo (s) ds).

Hence, T(£2) is locally equicontinuous on [0, +00).
Since

+00

Tu(+00) = / @p(s)f(s, u(s)) ds+F / a (u(s))wl(s) ds
0 0
B [ (o)) ds

0
By Lemma 2.3 we conclude that
’Tu(t) - Tu(+oo)‘
< f |G(t,8) = G|p(s)f (s, u(s)) ds + | Fi(£) - Fi| f &1 (u(s))yi(s) ds
0 0

+ ]Fz(t)—fz\/o & (u(9)¥2(s) ds

— 0 ast— +o0.

Hence, T(2) is equiconvergent at infinity.
By Lemma 2.5 we obtain that 7": P — P is completely continuous. O

Lemma 2.7 (See [19]) Let E be a Banach space, P C E be a cone, and 21, Q2 be two
bounded open subsets of E with 6 € Q; C Q C Q. Suppose that T : PN (2\ Q1) > P
is a completely continuous operator such that either

@) I1Tx|| < x|, x € PN 0Oy and | Tx| = ||x|l, x € PN IRy, or

(i) I1Tx|l = llxll, x € PN 02y, and || Tx|| < |lx|l, x € PN 92,
holds. Then the operator T has at least one fixed point in PN (Q, \ Q1).
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3 The existence of positive solutions
For convenience, we give the following notation:

h t,
h? =limsup ﬂ, Jo =liminf inf 14 u)’
u—¢ u u—¢  tell,l] u
g’ =limsup ‘M gip =1im infgi(u) ,
u—>@ u u—¢ u

where ¢ = 0 or +00, and i = 1, 2. We denote

A=max{GM / p(S)(s) ds, Fu / ¥a(s) ds, Fong f wz(s)ds},
0 0 0

)

Iy 13
B= Yo mln{Gm/ P(S)dS;Flm 1//1(S)dS,F2m l/fz(S)dS}~
I I i

Theorem 3.1 Suppose that (HO) and (H1) hold. If

A(ho +g{) +gg) <l< B(ﬁroo + 41,400 +g2,+oo);
then the boundary value problem (1.1) has at least one positive solution.

Proof Since A(h° + g0 + g)) < 1, then there exists a constant r; > 0 such that, for u < r;, we
have

h(u) < <h° + %)u aw) < <g? + 8—31>u i=1,2, G.1)

where ¢, satisfies A(h° + g0 + g2 + 1) < 1.
Therefore, for any ¢ € [0, +00), u € K,,, we can get

| Tu(t)| = ‘/ G(t, 9)p(s)f (s, u(s)) ds +F1(t)/ & (u(9)) Y1 (s) ds

+E(0) /0 () ¥a(s) ds

< /o GMp(s)v(s)<ho+ %)u(s)ds+F1M /o (gf+%>u(s)1/fl(s)ds

+ Fyy /0 <g§ + %)u(s)lﬁz(s)ds

<A +g) +g5 +e&1)lull

=< [lul.

On the other hand, since B(f, + g1,+00 + £2,+00) > 1, there exist constants 7, > 0 and M;,
i=0,1,2, with fioo > Mo >0, 81,00 > M1 >0, £2,,00 > M3 > 0 such that, for ¢ € [}, [,],

f(t,u) > (MO - %)u gi(u) > (Mi - %)u i=1,2, (3.2)

where g, satisfies B(Mg + My + My — &5) > 1.
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Let ry = max{ry, % }. In view of the definition of P,

inf u(t) > yyllull forueP. (3.3)
tell,la]

According to Lemma 2.3, for u € 9K,,, we have

| Tull = sup /0 G(t,s)p(s)f(s,u(s)) ds +Fﬂt)f0 a (u(s))wl(s) ds

te[0,+00)

+F>(t) A+m o (u(s))lpz (s)ds

)

13
> / Goup(5)f (5,1(5)) ds + Fu / () Y () ds

h h

I
+Fopy / 2(u(9)) ¥a(s) ds.

h

By (3.2) and (3.3) we have

Iy I
1 Tull = / Gmp<s)<Mo—£§)u<s>ds+Flm /l (Ml—‘;—z)u(s)wl(s)ds

h

153 &
+Fom / <M2 - —>M(S)1/fz(5) ds
h 3
> B(My + My + My — &) ul|

= [lu.

Therefore, by (i) of Lemma 2.7 and Lemma 2.3, the boundary value problem (1.1) has at

least one positive solution u € ?,2 \ K, O

Remark 3.1 It follows from the proof of Theorem 3.1 that the boundary value problem
(1.1) has at least one positive solution u € P if one of the conditions f, = +00, g1,4+00 = +00,

and g5 ;0 = +00 holds.

Theorem 3.2 Suppose that (HO) and (H1) hold. If
AW + g7 +g5%°) <1< B(fo + g0 + £20);
then the boundary value problem (1.1) has at least one positive solution.

Proof 1t follows from B(fy + g1,0 + g2,0) > 1 that there exist constants r3 > 0, M}, i = 0,1,2,
with fo > Mj > 0, g10 > M; >0, go0 > M}, > 0 such that, for t € [/,15] and 0 < u < r3, we

have

[ u) > (M6 - %)u gi(u) > (M§ - %)u (3.4)

where i = 1,2, and ¢3 satisfies B(M, + M} + M} — e3) > 1.
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Thus, for any ¢ € [0, +00) and u € dK,,, we have inf.cp 1,7 u(t) > yollu| and

| Tull = sup /o G(t,s)p(s)f(s,u(s)) ds +F1(t)/(; a (u(s))wl(s) ds

te[0,+00)

+ F>(t) /0+00g2 (u(s)) Ya(s)ds

I )
> / Gmp(s)f (s, u(s)) ds + Fiy / &1(u(s)) Y (s) ds
h h

I
+5mx‘gxu@»wxgda

It follows from (3.4) that
) &3 by &3
I Tull > / Gup(s) (ME) - ?)M(S) ds +F1m/ (Mi - E)M(S)lﬂl(S)dS
h h

b &5
+ Fz,ﬂf (M’2 - —)u(s)wz(s) ds
A 3
> B(Mg + My + My — &3) ||ul|

= [lull.

On the other hand, since A(h*> + g{* + g5°°) < 1, there exists a constant 74 > 0 such that,

for u > 14, we have

h(u) < (h*‘” + %)u g(w) < (gim + %4)” fori=1,2,

where g4 with A(B+° + gf™ + g7 + g4) < 1.
Let

GuSry [y pls)v(s) ds + FiarSy, [y wn(s)ds + FanSy, [ wa(s)ds }

rq > Mmax] r3, 7y,
{ 1-A(h>° + gf>® + g5> + €4)

For any ¢ € [0, +00), u € 3K,,, we denote

Dy ={t €[0,+00) : u(t) > T4, u € 3K, },

D, ={t€[0,+00):0 < u(t) <Fau € 3K, }.

We have
|Tu(t)| = ’/ G(,s)p(s)f (s, uls)) ds+F1(t)/ &1 (u(9)) ¥ (s) ds
0 0

+5m/ @ (1)) Yals) ds
0

< /D Gup(s)v(s)h(u(s)) ds + Fy(t) | g (u(s))y(s)ds

Dy

+Ey(t) | g(uls))va(s)ds

Dy
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+ / GMp(s)v(s)h(u(s)) ds+F() | & (u(s)) Y1(s)ds
Dy

Dy

+E(t) | g2(u(s))¥a(s)ds

Dy
+00
< AR+ g1+ g% + e4) |ull + GuSy, / p(s)v(s) ds
0
+ FIMS;4 / 1/[1(8) ds + FzMS;; / 1[[2(5) ds
0 0
=< llull.

Hence, by using (ii) of Lemma 2.7 and Lemma 2.3, the boundary value problem (1.1) has

at least one positive solution u € K, \ K. O

Remark 3.2 It follows from the proof of Theorem 3.2 that the boundary value problem
(1.1) has one positive solution u € P if at least one of the conditions f; = +00, g0 = +00,
and gy = +00 holds.

Theorem 3.3 Suppose that (HO) and (H1) hold. If
1) B(fo +g1,0 +£2,0) > 1, B(fico + gl,400 + &2,400) > L and
(2) there exists a constant ¢ > 0 such that max{S,, S,,S!'} := $* < A7\,

then the boundary value problem (1.1) has at least two positive solutions.

Proof Since B(fy + g1,0 + g2,0) > 1, similarly to the proof of Theorem 3.2, there exists a con-

stant 0 < r < ¢ with
I Toell = Naell,  Null =7

Since B(fi0o + £1,100 + €2,+00) > 1, there also exists a constant R > ¢ such that
I Toll = Nl Nluell = R

On the other hand, by condition (2), for any u € 9K,

[ Tull = sup

te[0,+00)

/0 G(t,s)p(s)f(s, u(s)) ds + Fi(¢) /(; a (u(s))wl (s)ds

+ Fy(0) /0 (1) 2 (5) ds

< f Gup(&)V(s)(u(s)) ds + Fun / & ((5)) ¥ (5) ds
0 0
+Fou /0 &(u(9)) ¥a(s) ds
< GuS. /o p(s)v(s)ds + FuuS, fo ¥(s) ds + FoueS. /0 Ya(s) ds

ss*(GM f P)V(s)ds + Fung / Vi(s) s+ Fons f ws)ds)
0 0 0

<cC.
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Namely,
|Tu|| < c=|ul, uedK..

According to Lemma 2.7, the boundary value problem (1.1) has at least two positive solu-
tions 1, uy with 0 < ||is || < ¢ < ||uz]|. O

Remark 3.3 It follows from the proof of Theorem 3.3 that the boundary value problem
(1.1) has at least two positive solutions u € P if one of the conditions f; = +00, g1,0 = +00,
82,0 = 400, froo = +00, 1,100 = +00, and g3 0o = +00 holds.

Theorem 3.4 Suppose that (HO) and (H1) hold. If
1) AR + g2 +g0) <1, A(h*™ + g/ + g3*°) < 1, and
(2) there exists a constant C > 0 such that, for any t € [h,lp] and u € [yyC, C], we have

min{f (¢, u), g1 (), &)} > voB™'C,
then the boundary value problem (1.1) has at least two positive solutions.

Proof The proof is similar to that of Theorem 3.3.
It is easy to get the two positive solutions u3, us with 0 < |lus|| < C < |lua]|. (|

4 lllustration
Example We consider the following boundary value problem:

1
(D3, u(®)) +f(6u(t)) =0, te(0,+0),
1(0) — limy—.o+ p(£) D&, u(t) = [ 25D ds, (4.1)

[+ ) g

lim;_, ;o0 u(t) + 21imte+oop(t) CD8+M(t) =Jo 1452 ’

where f (¢, u) = %, ar=1,ay=1,b1=1,by =2, p(t) = €, Y1(s) = Yr2(s) = ﬁ, and

%, 0 <u <100,

&) = g(u) =
604/u—590, 100 <u < +00.

It is obvious that f : (0, +00) x [0, +00) — [0, +00) is a continuous function and singular
atz=0.

Let
e 31+t i
¥, h(u) = ute )

Jt 10

Then we have M =~ 0.610503, A = 2.19551, h** = %, g =g°=0and A(W** + gf> +
g;°)=0.219551 < 1.

On the other hand, let /; = %, I, = 1. So we have B~ 0.03, fy = +00, gio = %, i=1,2.
Namely, B(fy + g1,0 + g2,0) = +00 > 1.

v(t) =

By using Theorem 3.2 the boundary value problem (4.1) has at least one positive solu-

tion.
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