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Abstract
Measles remain to be an important global public health issue in China. In spite of
large coverage rates of the first dose of Measles mumps rubella (MMR) combination
vaccines (MMR1), large numbers of measles cases continue to be reported in China in
recent years due to the high incidence and the low coverage of the second MMR
vaccine dose (MMR2). This paper is devoted to modeling the combined effects of
MMR1 and MMR2 coverage rates on the controlling of measles. To do that, we
propose and study a robust time-delayed compartment measles infection model
where MMR2 is followed after a fixed time interval of MMR1, and the combined
elements of infection and mass immunization are also considered. By using the
methods of Lyapunov functional and the uniform theory for infinite-dimensional
dynamical systems, a threshold dynamics determined by the basic reproduction
number �0 is established: the measles can be eradicated if �0 < 1, whereas the
disease persists if �0 > 1. Moreover, it is shown that the endemic equilibrium is locally
asymptotically stable once �0 > 1. Numerical simulations are performed to support
the theoretical results and to consider the effects of MMR2 on the controlling of
measles. Our results show that to eliminate measles in China, we should have MMR1
coverage rates larger than 88.01% based on perfect MMR2 coverage, and have MMR2
coverage rates larger than 92.63% based on perfect MMR1 coverage; Moreover, our
simulations suggest that there is a risk that paradox of vaccination against measles in
China may occur: that is, the final size of infected individuals may even increase in
spite of the increase of MMR2 coverage rates.

MSC: Primary 92D25; secondary 34K20

Keywords: measles model; second dose; Lyapunov function; globally asymptotic
stability; basic reproductive number

1 Introduction
Measles is one of the most contagious viral diseases, spreading especially rapidly in pop-
ulations that are dense and/or exhibit low immunity [, ]. In , the United States ap-
proved measles virus vaccine (MV), and in the s, MV were widely applied in other
parts all around the world [, ]. The vaccine can provide with protection longer than
 years, and its immunity can be seen as life-long time, the efficiency of the vaccine
reaches above % [, ]. Because the antibodies produced by the vaccine are interfered
by maternal-transferred one, the efficiency of vaccine, which reaches %-%, improves
after six months and reaches the peak when the infant becomes - months old [,
]. In the late s, most countries have listed measles vaccine to their regular immune
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plans, and the coverage of the vaccines sees a huge improvement. In , reported cov-
erage of measles vaccine for -year-olds has taken up % of all infants under  years old
[, ]. Since , in World Heath Organization (WHO) Americas, plan on eliminating
measles has reduced cases by % and higher, and the cases for death are close to zero
[, ]. Strategies for the plan include maintaining a high coverage rate by carrying out
children’s vaccine plan. In WHO West Pacific, and WHO Africa, WHO Europe, WHO
East Mediterranean, and WHO Southeast Asia, controlling on measles has also made big
process [, ].

In China, the national Expanded Program on Immunization (EPI) of a -dose monova-
lent MV schedule was implemented in , with the first dose of vaccine at  months
(monovalent attenuated vaccine, HU- or CHANG- strain) and the second dose at
 years of age average [, ]. In , the national committee for measles elimination of
China executed the National Measles Elimination Plan (NMEP) [, ], which includes the
MMR is to be administered at - months, and all measles vaccinations are free of
charge. Although China has made great progress in measles control in the framework of
the NMEP, its reported rate of measles was  cases per million in , still far above
the WHO’s recommended rate of one case per million [, , ]. The key contributors
of measles outbreaks in China include the mobility and complexity of population, the age
structure changing of measles cases and the own limitations of MV, which induce the re-
currence and epidemic of measles. Especially in the communities of floating population
where coverage rates of MMR and MMR are much lower than the national average rates
[, ], the measles rate continuously increases or keeps at higher level [, ]. Besides, the
efficiency of vaccine cannot reach %, many children have never been vaccinated and
are still susceptible to measles, and a small number children are susceptible because of the
primary immunity fail [, ].

For the overall world, WHO suggested an MMR based on MMR to ensure the validity
of immune and the prevention of the breakout, and WHO proposed the plan to achieve the
regional measles elimination goals in . However, new data show that overall progress
toward increasing global immunization coverage has stagnated in recent four years and
the  measles elimination goals set by WHO Member States will not be achieved on
time [, ]. Furthermore, comments on MMR are different both domestically and inter-
nationally, and problems are also exposed for the monitoring and management of measles
cases, which include miss out of case report, error for case report, lack of enough infor-
mation put monitor, and control on measles breakout of very difficult situation [, ].
Although the total of measles cases in some regions had gone down, measles still breaks
out in other countries such as Angola, Ethiopia, India, Russia, and China. Therefore, the
problem on the effects of MMR on measles prevention has attracted many studies in re-
cent years, including works via mathematical model [–]. Baucha et including works
via mathematical model [–]. Baucha et al. [] developed an age-structured MSEIRV
compartmental model, whereby individuals are allocated into one of a number of mutu-
ally exclusive categories based on their epidemiological status and age. Babad et al. []
employed a discrete age-specific mathematical model to predict the impact of measles
vaccination in England and Wales. Motivated by these interesting works, in this paper,
we introduce a discrete time delay to describe the fixed time interval between MMR and
MMR, and we consider the effects of MMR on the measles prevention in China. Our
study seems to be the first attempt in applying the structured model with time delay to
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addressing the dynamical changes of those susceptible and those MMR during the time
interval between MMR and MMR.

The rest of this paper is organized as follows. In Section , based on the epidemic model
of SIR, we formulate a structured mathematical model to examine the effects of MMR
on measles prevention. In Section , we identify the basic reproduction number and es-
tablish a global threshold dynamics for our model. In Section , we conduct numerical
simulations to confirm our analytical results. We conclude this paper in Section  with a
summary and discussion.

2 The model
In this section, we model the combined effects of MMR and MMR coverage rates on
the controlling of measles in China. Without MMR, our model is based on that of SIR
epidemic model with susceptible-infectious-recovered structure and bilinear incidence.
Before giving our mathematical model, we make the following assumptions:

• We assume that the measles infections only occur among the children aged less than
 years old since most of the reported measles cases in China are at the age of less
than  years [, ].

• For the infants N at the age of less than  month, they are maternally immune to
measles. We assume that they have constant birth and death rates. Moreover, when
they survive at the age of  months, they receive MMR with constant vaccination
rate ρη to get MMR-induced immunity for measles, where ρ is the effective rate
for MMR, and η is the injection rate for MMR.

• For those vaccinated individuals with MMR-induced immunity, that is, V, we
suppose they are always immune to measles before the MMR scheduled time and
they has constant death rate d′; moreover, we assume that there is a fixed time interval
τ between the MMR and MMR scheduled time [, ].

• For those the infants N who do not receive MMR at the age of  months, or who get
MMR failure, they are assumed to lose the maternal immunity and become the
susceptible compartment S to measles unless they receive MMR in future. From our
assumptions it follows that the covering rate of these infants is  – ρη.

• Since the incubation period of measles is only from  to  days, which is too short
compared with the whole immunity period of . years, the effect of incubation period
on the measles immune control is ignored.

• Those V who survived in the fixed time interval τ take MMR with constant
vaccination rate ρη to get MMR-induced immunity for measles, where ρ is the
effective rate of V for MMR, and η is the injection rate of V for MMR.

To calculate the surviving probability, we have that V(t) satisfies the following
equation for all t between the age of  month and  months + τ :

dV(t)
dt

= –d′V(t),

and thus we have V(t + τ ) = V(t) · e–d′τ , and we get the surviving rate
V(t + τ )/V(t) = e–d′τ .

• Those V who do not receive MMR at scheduled time or who get MMR failure
become the compartment Ṽ with waning MMR-induced immunity.
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• The vaccinated individuals with MMR-induced immunity, that is, V, are always
immune to measles before they become  years old.

• Those S who survived at the period before MMR scheduled time have constant rate
ρ ′

η
′
 to get MMR-induced immunity for measles, where ρ ′

 is the effective rate of S
for MMR, and η′

 is the injection rate of S for MMR.
To calculate the surviving probability, we have that S(t) satisfies the following

equation for all t between the age of  month and  months + τ :

dS(t)
dt

= –dS(t) – βS(t)I(t),

thus, we have

S(t + τ ) = S(t) · e–
∫ t

t–τ (d+βI) dσ ,

so that the surviving rate is e–
∫ t

t–τ (d+βI(σ )) dσ , which is the probability remaining for
susceptible persons.

Based on these assumptions, a flow chart of measle infection model with MMR and
MMR is sketched in Figure , where Nτ means N(t – τ ). Variables and parameters are
summarized in Tables  and , respectively.

Based on the flow chart in Figure , we obtain the time delayed compartment measles in-
fection model with both MMR and MMR models, which takes the form as the following

Figure 1 Flow chart of the secondary routine
dose in measles vaccination.

Table 1 Variables of the models given by assumptions

Symbol Definition

S Number of susceptible individuals (between the age of 8 months-14 years)
I Number of infected individuals (at the age under 14 years)
R Number of recovered individuals (under the age of 14 years)
V1 Number of vaccinated individuals with MMR1-induced immunity (between the age of

8-24 months)
V2 Number of vaccinated individuals with MMR2 (between the age of 18 months-14 years)
Ṽ1 Number of individuals with waning MMR1-induced immunity between the age of 18

months-14 years
N Number of new born susceptible individuals less than 8 months old
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Table 2 Parameters and values used in assumptions

Symbol Definition Range Baseline Unit Reference

N Total population - λ0/(d′ + 1) People [21, 22]
λ0 Birth rate - 20.75 People Years–1 [21, 22]
d Nature death and mature rate - 0.069 Years–1 [21, 22]
β Infection rate for S 0.08-0.3 0.1 People–1 Years–1 [23, 24]
β ′ Infection rate for Ṽ1 0.0088-0.099 0.011 People–1 Years–1 [23, 24]
γ Recovery rate 0-1 0.9 Years–1 [22, 25]
δ The proportion of Ṽ1 degenerated into S 0.02-0.05 0.02 Years–1 [2, 6]
d′ Childhood mortality rate - 0.00743 Years–1 [21, 22]
η1 Injection rates for MMR1 0.723-1 0.91 - [1, 2]
η2 Injection rates of V1 for MMR2 0.3-1 - - [1, 2]
η′
2 Injection rates of S for MMR2 0.3-1 - - [1, 2]

τ Time interval between MMR1 and MMR2 1.3-1.5 1.5 Years [10, 11]
ρ1 Effective rate for MMR1 0.724-1 0.98 - [13, 26]
ρ2 Effective rate of V1 for MMR2 0.857-1 0.94 - [13, 26]
ρ ′
2 Effective rate of S for MMR2 0.857-1 0.94 - [13, 26]

system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN(t)
dt = λ – d′N – ρηN – ( – ρη)N ,

dS(t)
dt = ( – ρη)N + δṼ – ( – ρη)ρ ′

η
′
Nτ e–

∫ t
t–τ (d+βI) dσ – dS – βSI,

dI(t)
dt = βSI + β ′ṼI – γ I – dI,

dR(t)
dt = γ I – dR,

dV(t)
dt = ρηN – ρηρηNτ e–τd′ – ρη( – ρη)Nτ e–τd′ – d′V,

dV(t)
dt = ρηρηNτ e–τd′ + ( – ρη)ρ ′

η
′
Nτ e–

∫ t
t–τ (d+βI) dσ – dV,

dṼ(t)
dt = ρη( – ρη)Nτ e–τd′ – δṼ – dṼ – β ′ṼI.

()

Since model () is rather challenging in analysis, we would just consider its reduced case.
According to Zhao et al., the infection rate β ′ of Ṽ is much smaller than β [, ], and
hence we may ignore the infection of Ṽ by denoting β ′ = ; then from system (), we
have that dN(t)

dt = λ – d′N – ρηN – ( – ρη)N = λ – d′N – N , limt→∞ N(t) = λ/(d′ +).
Denoting

N =
λ

(d′ + )

and using the limit system theory engaged in [, ], we have that the asymptotical dy-
namics of system () is equivalent to that of the following limit system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = N( – ρη) + δṼ – N( – ρη)ρ ′

η
′
e–

∫ t
t–τ (d+βI) dσ – dS – βSI,

dI(t)
dt = βSI – γ I – dI,

dR(t)
dt = γ I – dR,

dV(t)
dt = Nρη – Nρηe–τd′ – d′V,

dV(t)
dt = Nρηρηe–τd′ + N( – ρη)ρ ′

η
′
e–

∫ t
t–τ (d+βI) dσ – dV,

dṼ(t)
dt = Nρη( – ρη)e–τd′ – δṼ – dṼ.

()
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For system (), we get

lim
t→∞ V(t) =

Nρη( – e–τd′ )
d′ , lim

t→∞ Ṽ(t) =
Nρη( – ρη)e–τd′

δ + d
.

To obtain the asymptotical dynamics of system (), we only need to consider its subsystem

⎧
⎨

⎩

dS(t)
dt = N( – ρη) + δNρη(–ρη)e–τd′

δ+d – N( – ρη)ρ ′
η

′
e–

∫ t
t–τ (d+βI)dσ – dS – βSI,

dI(t)
dt = βSI – γ I – dI.

()

Letting

A = N( – ρη) +
δNρη( – ρη)e–τd′

δ + d
, B = N( – ρη)ρ ′

η
′
e–dτ ,

system () takes the form

⎧
⎨

⎩

dS(t)
dt = A – Be–

∫ 
–τ βI(t+σ ) dσ – dS – βSI,

dI(t)
dt = βSI – γ I – dI.

()

Next, we consider the asymptotical behavior of ().

3 Mathematical analysis
In this section, we analyze the stability of system ().

3.1 Positiveness and boundedness of solutions
Throughout this paper, we set φ(θ ) ∈ C for –τ ≤ θ ≤ , with norm ‖φ‖ = sup–τ≤θ≤ |φ(θ )|
for φ ∈ C. The nonnegative cone of C is defined as C+ = C([–τ , ], R+). The initial condi-
tions for system () are chosen at t =  as

(
S(),φ

) ∈ R+ × C+, S() > ,φ() > . ()

Let X(t) = (S(t), I(t)) be a solution to system (), Using similar methods to [, ], it is
clear that it suffices to verify that the set X(t) is positively invariant for system ().

Proposition  Let X(t) ∈ R+ × C+ be the solution of system () with the initial condition
(). Then S(t) >  and I(t) >  for all t > .

Proof By the second equation of () we have I(t) = I()e
∫ t

(βS–γ –d) dσ >  for all t > . From
the first equation of (), noting that A > B, by similar arguments we have S(t) >  for all
t > . �

Proposition  Let X(t) ∈ R+ × C+ be the solution of system () with the initial condition
(). Then S(t) and I(t) are ultimately bounded.

Proof For system (), we have Ṡ(t) < A – dS, t ≥ , and thus lim supt→+∞ S(t) ≤ A/d. By
constructing the similar function W̄ = S + I and using similar arguments to [, ], we
can prove that () is ultimately bounded. Thus, we get that I(t) is eventually bounded. �
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3.2 The equilibria
It is easy to see that system () has a unique disease-free equilibrium

E = (S, ) =
(

A – B
d

, 
)

=
(

N( – ρη)( – ρ ′
η

′
e–τd)

d
+

δNρη( – ρη)e–τd′

d(δ + d)
, 

)

.

To prove the existence and uniqueness of endemic equilibrium, we identify the basic re-
production number. Following the method and notation of [] and [], we obtain that
the basic reproduction number for system () is

� =
βS

γ + d
=

βN( – ρη)( – ρ ′
η

′
e–τd)

d(γ + d)
+

βNδρη( – ρη)e–τd′

d(γ + d)(δ + d)
,

which decreases with the increase of η, η′
. Therefore, we can reduce � by increasing

the probability of secondary vaccination η, η′
.

Proposition  If � > , then system () has a unique endemic equilibrium

E∗ =
(
S∗, I∗) =

(
γ + d

β
, I∗

)

,

and I∗ satisfies f (I∗) =  with

f (I) = A – Be–βIτ – dS∗ – βS∗I = .

Proof Note that f ′(I) = βτBe–βIτ – βS∗. Letting f ′(I) = , we have

I =


βτ
ln

τB
S∗ � I > .

Thus, it is easy to see that f (I) is decreasing when I > I and increasing when I < I. Recall-
ing that � = S

S∗ , we have f () = d(S – S∗) >  for � > ; moreover, f (I) <  as I → +∞.
Hence, we get that the equation f (I) =  has a unique positive solution I∗ > I, which proves
the proposition. �

3.3 Main results
In this section, we consider the asymptotical dynamics of system (). We will construct a
Lyapunov functional, and using the LaSalle-Lyapunov theorem, we will study the charac-
teristic equation of system ().

We obtain the local stability of a steady state of () by linearization. We linearize system
() and obtain the characteristic equation evaluated at the infected steady state [], given
by the following determinant:

∣
∣
∣
∣
∣
ζ + (d + βI) βS – Bβe–βIτ∫ 

–τ
eζσ dσ

–βI ζ – βS + γ + d

∣
∣
∣
∣
∣

= ,

where ζ is an eigenvalue. We have the following results for the disease-free and endemic
steady states.
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Theorem  The disease-free equilibrium E = (S, I) is globally asymptotically stable
when � <  and unstable when � > .

Proof The characteristic equation of () at the infection-free steady state E is

P(ζ ) = (ζ + d)
[
ζ + (γ + d)( – �)

]
= . ()

Thus, from () we get that E is locally asymptotically stable when � <  and unstable
when � > .

Define the Lyapunov functional

W = S – S – S ln
S
S

+ I.

Then it is obvious that W (t) is defined and continuous for all t ≥ , S(t), I(t) > , and
W (t) ≥  for all t ≥  with W (t) =  only at E. The time derivative of W (t) along the
solution of () is given by

dW
dt

∣
∣
∣
∣
()

=
(

 –
S

S

)

Ṡ + İ

=
S – S

S
[
d(S – S) + N( – ρη)ρ ′

η
′

(
e–dτ – e–

∫ t
t–τ (d+βI) dt) – βSI

]

+ βSI – (γ + d)I

= –
d
S

(S – S) + (γ + d)I(R – )

+ N( – ρη)ρ ′
η

′

(
e–dτ – e–

∫ t
t–τ (d+βI) dt)S – S

S
.

From Proposition  we see that S ≤ S for sufficiently large t. Thus, the function dW
dt |()

is always nonpositive for any functions S(t), I(t) >  when � < , and dW
dt |() =  if and only

if S = S, I = I. By the LaSalle-Lyapunov theorem ([], Thm. ..), the largest compact
invariant set of {F = dW

dt |() = } is the singleton point E. Thus, we conclude that E is
globally attractive in F . From the above we see that the disease-free equilibrium E =
(S, ) is globally asymptotically stable when � < . This completes the proof. �

By applying the methods and techniques of persistence theory introduced in Zhao []
for infinite-dimensional systems, which have been recently employed in [, , ], we
have the following:

Theorem  Suppose the basic reproduction number � > . Then system () is uniformly
persistent, that is, there exists a positive constant ε >  such that every solution (S(t), I(t))
of () satisfies lim inft→∞ I(t) ≥ ε.

We omit the proofs for Theorem  since they are very similar to those for [], Thm. ,
[], Thm. , and [], Thm. .; we refer the interested readers to these references.

Furthermore, by studying the stability of the endemic equilibrium of model (), we have
the following:



Li et al. Advances in Difference Equations  (2017) 2017:89 Page 9 of 14

Theorem  The endemic equilibrium E∗ = (S∗, I∗) is locally asymptotically stable when
� > .

Proof At the infected steady state E∗ the characteristic equation of model () is given by

P(ζ ) = ζ  +
(
d + βI∗)ζ + βS∗I∗ – BβI∗e–βI∗τ

∫ 

–τ

eζσ dσ = . ()

Step . We prove that the roots of the polynomial P(ζ ) =  only have negative real parts
when τ = .

When τ = , the characteristic equation reduces to

P(ζ ) = ζ  +
(
d + βI∗)ζ + βS∗I∗ = . ()

Assume that ζ, ζ are two roots of equation (), which implies that

ζ + ζ = –
(
d + βI∗) < , ζζ = βS∗I∗ > ,

and thus the real parts of roots of the polynomial p(ζ ) are all negative.
Step . We prove that ζ =  is not a root for p(ζ ) =  for any τ > .
Assume that ζ =  is a root of the equation p(ζ ) = , which implies that

βS∗I∗ – BβI∗e–βI∗τ τ = .

This equation implies that S∗ = Be–βI∗τ τ , which contradicts the proof of Proposition .
Thus, we have that ζ =  is not a root of p(ζ ) =  when τ > .

Step . We prove that there is no imaginary root for the characteristic equation evaluated
at the infected steady state of system () when τ > .

Assume that ζ = iω is a root of the characteristic equation. Then we have

(

βS∗I∗ – ω –
BβI∗e–βI∗τ sinωτ

ω

)

+
[
(
d + βI∗)ω +

BβI∗e–βI∗τ

ω
–

BβI∗e–βI∗τ cosωτ

ω

]

i = .

This equation implies that

(
d + βI∗)ω +

BβI∗e–βI∗τ

ω
–

BβI∗e–βI∗τ cosωτ

ω
= .

Thus,

cosωτ =
(d + βI∗)ω + BβI∗e–βI∗τ

ω

BβI∗e–βI∗τ

ω

> ,

a contradiction, which shows that there is no imaginary root for the characteristic equa-
tion.
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With all these three steps, we have proved that as τ increases from τ = , the real parts of
roots for p(ζ ) =  cannot be zero; indeed, ζ can neither be a zero root nor be an imaginary
root. Therefore, we show that the real roots of the polynomial p(ζ ) =  must always be
negative for any τ ≥ . This completes the proof. �

4 Numerical simulations
In this section, we conduct numerical simulations to confirm and extend our analytical
results.

Figure (a,b) confirms the results of Theorems -, indicating that � determines the
threshold dynamics of system (). Figure (c) shows that given η = η′

, the number of
infected individuals I decreases with the increase of η, η′

 and that I will finally get elim-
inated when η and η′

 are sufficiently close to . When η and η′
 increase from  to .,

the peak time is delayed. In addition, when η = η′
 = , Imax = . and I∗ = .; when

η = η′
 = , Imax = . and I∗ ≈ . The values of η and η′

 have a very important impact
on the immune control of measles. Figure (a,b) also confirms the local stability of the
endemic equilibrium when � >  and the global stability of the free-equilibrium when
� < . This verifies the results of Theorem -. From Figure (c) we know that I is more
volatile when changing the range from η, η′

 ∈ (., .) to η, η′
 ∈ (., ). The annual

reported incidence rate of measles is  per ,, that is, about . per  (total
population Ñ ). Meanwhile the range of η is from . to . in Hefei City in 
[]. The result is similar to that in Figure (c) with η = . and I = ..

Figure  shows the complicated relationship between the final size of the infected I∗

and the increase of MMR rate η, based on different MMR rates η. From Figure (a)
we find I∗ =  as () satisfies η = , η = η′

 ≥ . or η = ., η = η′
 = . This

means that even if MMR rate is %, then MMR rate should be larger than .%

to eliminate the measles. If the MMR rate η is only %, then MMR rate has to reach
%. This suggests that we should have MMR coverage rates η larger than . to
eliminate measles. From Figure (b) we get the following conclusions. First, it indicates
that if MMR rate η is rather small, then the measles could not be eliminated even with
large η. Second, it is shown that if η is large enough such as η ≥ . approximately, then
I∗ decreases with the increase of η, indicating the positive effect of increasing MMR
coverage rate on the measles control. Third, if η is rather small, say, η = ., then it comes
from Figure  (left) that I∗ will even increase as η increases from . to , which implies
some kind of paradox of MMR vaccination.

From Figure  we know that � always decreases when η, η, η′
 increase. From Fig-

ure (a) we find that � <  when η = , η = η′
 > . or η = ., η = η′

 = , sug-
gesting that we must have MMR coverage rates η larger than . to eliminate measles.
The calculation result shows that � <  when η = ., η = η′

 > .. Although we
have MMR coverage rates η larger than . in most of China, MMR coverage rates
η = η′

 < . [, ], which is the reason that China has made great progress in measles
control in the framework of the NMEP, but it still far above the WHO’s recommended rate
of one case per million [, , ].

5 Summary and discussion
In this paper, we construct and study a robust time delayed compartment measles in-
fection model with combined vaccination effects of MMR and MMR implemented in
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Figure 2 Numerical simulations of system (4) showing S, I vs time t. (a) η2 = η′
2 = 0.3, �0 = 6.8702 > 1;

(b) η2 = η′
2 = 0.99, �0 = 0.9601 < 1.
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Figure 3 I∗ according to the increase of η1, η2,
η′

2.

Figure 4 �0 according to the increase of η1, η2,
η′

2.

China. By using the methods of Lyapunov functional and the uniform theory for infinite-
dimensional dynamical system we establish the asymptotical behaviors for the model and
try to apply our results to investigate the effects of MMR and MMR on the measles
control in China. We have the following conclusions:

• Our Theorems , , and  show that the measles-free or measles-endemic only
depends on the basic reproductive number �.

• The basic reproductive number � is a decreasing function on η, that is, the coverage
rates of MMR, and on η, η′

, that is, the coverage rates of MMR for V and S. By
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increasing MMR rate we can reduce the basic reproductive number � and achieve
the goal of control disease outbreaks by making � < .

• Our results show that to eliminate measles in China, we should have MMR coverage
rates η ≥ .% based on η = η′

 = %; on the other hand, for MMR, we should
have η ≥ .% based on η = %. A recent study on migrant children in east
China shows that the MMR coverage rates are .% [], which will surely result in
outbreak of measles.

• We have also performed numerical studies of system (). The parameter values are
taken mainly from [, , , ]. We can observe that system () has  parameters,
and discussing the impact of each in detail is neither relevant nor revealing. However,
as observed in the uniform persistence and stability conditions, the epidemiological
parameter β is also important and may provide significant variations in the system
dynamics.

• Interesting results from our simulations show that, given low coverage of MMR (say,
η < .), the final size of infected individuals I∗ may even increase in spite of the
increase of MMR coverage rates, indicating some kind of paradox of vaccination,
which had been found and studied in [] for vaccination against avian flu epidemics.
A recent study in [] on migrant children in east China shows that the MMR
coverage rates on these special groups are ., which is close to ., suggesting that
there is a risk that paradox of vaccination against measles in China may occur.

Finally, we see that there are many other valuable problems in this area. For example:
() We ignore the significant variance on MMR coverage rate for some different com-
munities []; () We ignore the influences of subsequent supplementary immunization on
measles control; () We ignore the influences of incubation period on measles control. We
leave these questions for our future work.
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