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Abstract
Understanding the infectious diseases outbreak of algae can provide significant
knowledge for disease control intervention and/or prevention. We consider here a
disease caused by highly pathogenic organisms that can result in the death of algae.
Even though a great deal of understanding about diseases of algae has been reached,
studies concerning effects of the outbreak at the population level are still rare. For this
reason, we computationally model an outbreak in the algae reservoir or container
systems consisting of several patches or clusters of algae being infected with a
contagious infectious disease. We computationally investigate the systems as well as
make some predictions via the deterministic SEIR epidemic model. We consider the
factors that could affect the spread of the disease including the number of patches,
the size of initial infected population, the distance between patches or spatial range,
and the basic reproduction number (R0). The results provide some information that
may be beneficial to algae disease control, intervention or prevention.
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1 Introduction
Algae are aquatic primitive multicellular photosynthetic plant species that play an essen-
tial role in aquatic ecosystems. They can come in many forms and colors. Algae can be gen-
erally characterized based on their photosynthetic pigments and combinations thereof:
Cyanophyta, blue-green algae; Rhodophyta, red algae; Chrysophyceae, golden algae; Phae-
phyceae, brown algae; Chlorophyta, green algae []. They range in size from tiny,  mi-
crometer in diameter, called microalgae, to giant kelps which can reach  meters in
length, called macroalgae [].

The macroalgae can be utilized as a crop []. Remarkably, it does not require any land or
fertilizer. For farming purposes, it is not only used for direct consumption [] in a num-
ber of ways such as human food, fish food, fertilizer, skin care, and biofuel, but also it
can help to improve the environment. Like terrestrial forests, macroalgae forests (such as
kelp forests) provide an extensive ecosystem for many organisms from the sea floor to the
ocean surface. However, the increasing use of macroalgae as crop species for commercial
purposes requires a good system and process for both cultivation and disease control.

Similar to any other living organisms, algae are plagued by diseases caused by fungi, bac-
teria or viruses. Here parasitism is mainly focused on. Parasitism is one of the common
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ecological interactions with algae. They represent a strong forcing factor for evolutionary
and ecological processes, e.g., population dynamics, species successions, competition for
resources, species diversification, and energy and gene flows []. Among their parasites,
fungi are the most dominant ones []. Few attempts have been made to include parasites in
the food web dynamics of aquatic systems []. As aquaculture continues to rise worldwide,
pathogens of algae are becoming a significant economic burden. The filamentous green
alga, Chaetomorpha media, from the western and eastern coasts of the Indian peninsula
showed infection by an oomycetous fungus Pontisma lagenidioides. The infected cells ap-
pear brownish and the infection spreads from the tip downwards of the algal filament on
incubation in seawater in the laboratory [, ].

In particular, infectious disease outbreak and control could become a huge problem for
production management. Thus, in this work, a possible infectious disease outbreak or
epidemic is our main focus. Even though the pathology aspect is quite well understood in
the most part, how macroalgae respond to pathogens and how the disease can spread at
the population level is not well known [–].

So far, to the best of our knowledge, there has been no publication on mathematical
modeling studies about infectious disease outbreak or epidemics involving macroalgae.
Since the epidemics could be extremely costly to farming, it is important to learn as much
as possible how to prevent, control, or initiate an intervention, when it happens. Typically,
there are many risk factors driving the emergence of the epidemic including population
density, degree of transmission, degree of contagion, contact nature, water condition, and
climate and so on [, ].

In this work, we apply a traditional susceptible-exposed-infectious-recovered (SEIR)
model [] to study the macroalgae system. Both time and spatial considerations were
conducted. Computational results and analyses were given. Interpretation and connec-
tion between real world and model world were carefully done.

2 Methods
We develop a spatial compartmental model based on the traditional susceptible-exposed-
infectious-recovered (SEIR) equations, where each patch of algae population is repre-
sented by a spatial compartment. Si, Ei, Ii, and Ri representing the numbers of susceptible
(capable of becoming infected), exposed (latently infected and incapable of transmitting
infection), infectious (infectious individuals capable of transmission), and removed or
dead individuals in the ith spatial compartment, respectively. Based on the model de-
scribed above and the compartmentalized structure seen in Figure , the law of mass action
leads us to the following set of coupled ordinary differential equations:

dSi

dt
= –Si

n∑

j=

βijIj,

dEi

dt
= Si

n∑

j=

βijIj – σEi,

dIi

dt
= σEi – γ Ii,

dRi

dt
= γ Ii,

()
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Figure 1 The spatial compartment of
macroalgae system. (A) A conceptual model of
infectious disease transmission in the real world.
(B) The representation of the transmission in the
mathematical form. (C) Model structure. Si , Ei , Ii , and
Ri represent the number of susceptible, exposed,
infectious, and recovered algae in theith patch,
respectively. The transition rate for each state is
shown near the transition arrow.

Table 1 Parameter values used in the simulations

Parameter Value

Basic reproduction number (R0) 1.4 or 2
Distance scaling factor (r0) 30 m
Incubation period (1/σ ) 2 day
Infectious period (1/γ ) 5 day
Initial infectious individuals 1-28%
Total number of algae individuals 900
Number of clusters 2-6
Algae population of each cluster 150-450
Area of each cluster 1,000 m2

Distance between clusters 30-600 m
Time step 10–3 day

where i = , , . . . , n and n is the number of algae patches with the conservation constraint,
Si + Ei + Ii + Ri = Ni where Ni is the total number of algae in the ith compartment (see the
parameter values in Table ).

Susceptible algae Si are infected at a rate of
∑n

j= βijIj, where βij is the transmission rate
from the jth patch to the ith patch. The summation is taken over all of the compartments
that can spread the infection to theith patch. The infected individuals (Ei) incubate the
infection for a mean duration of /σ . After passing through the exposed state, infected
individuals become infectious (Ii) with the mean duration of the contagious stage of /γ .

It should be noted that the dynamics of an epidemic here is assumed to be much faster
than the dynamics of natural birth and death (vital dynamics), therefore, birth and death
are omitted in the model. In other words the time scale of the epidemic dynamics of algal
system is much faster than that of vital dynamics. Or the birth rate and death rate of algae
is considerably much less than the incubation and infectious period of the disease. As far
as our current model is concerned, it would be more realistic if the life span of algae is
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relatively long enough compared to the infectious period. It was estimated that the life
span of the large brown attached alga, Macrocystis pyrifera, a member of a widespread
genus, could be several months [].

In epidemiology, the basic reproduction number, R, is defined as the average number
of secondary cases arising from an average primary case in an entirely susceptible popu-
lation. For the homogeneous system, where there is only one patch of algae, hence βij = β

and

R =
β

γ
. ()

In this work, we also incorporated the environmental spatial aspect into our model. In this
case the transmission rate from the jth patch to the ith patch (βij) is assumed to be

βij = κ
ρiρj

 + (rij/r) , ()

where ρi and ρj are algae density in habitat i and j, respectively, rij is the distance between
habitats i and j, r is a distance scaling factor, and κ is a constant []. The constant κ can
be obtained by using the following expression [, ]:

R = max

(
eigenvalue

(
[βij]
γ

))
. ()

Unless stated otherwise, the parameter values used in the simulation are summarized in
Table . The model equations are numerically solved using the explicit Euler method. We
numerically solved the model equations by using the explicit Euler method in the MAT-
LAB software. All simulations were run with the time step of – day. The explicit Euler
method was employed because of its simplicity. Although the Euler method has more local
truncation error than other more advanced methods (e.g., RK), we actually can reduce
the truncation error by decreasing the time step. We have checked that using the Euler
method with time step of – day does not show any noticeable numerical error and us-
ing smaller time step does not significantly improve the accuracy (data not shown). In
addition, in our system there are two different spatial scales of the disease transmission.
On the small scale, the disease spreads in a well-mixed patch of algae. Since we assumed
a homogeneous mixing of algae on this scale, we believe that the dynamics of the disease
transmission in a D- or a D-patch would be the same (given the same R). On a large
scale, it is reasonable to assume that the transmission rate between any two patches de-
pends only on the distance between those patches, not the actually locations. Hence on
this scale, the problem is virtually a one-dimensional problem, in the sense that the trans-
mission rate depends only on rij. We therefore believe that the proposed model should be
able to describe the dynamics of infectious disease transmission in algae.

3 Results and discussion
In this study, we quantitatively investigated the factors that cause the damage of algae
farm due to an epidemic of an infectious disease. The factors studied in this investigation
include R, the number of patches (density of a planting patch), the distance between the
patches and the number of initial infectious individuals.
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Figure 2 Plots show relationships between R0 and the number of patches ranging from two to six
patches (C2-C6) with the percentage of damage.

To investigate the influence of R and the number of patches on the loss in algae produc-
tion or damage or the number of recovered individuals at the equilibrium of the model,
we vary the value of R and the number of patches. In our system, the damage is highly
sensitive to the level of R. In addition, the damage is more sensitive to the number of
patches where R is small (see Figure ). At R of  to , the smaller number of patches,
the higher the percentage of damage. The sensitivity reduces when R gets higher. When
R is less than ., the damage increases by more than %. The percentage of damage
decreases when R increases. This trend is found to be similar for all numbers of patches
used in this study.

From further investigation, it is found that the number of patches is not the only factor
that influences the production loss, but the distance between the patches also plays a role.
The distance has been varied to , , ,  and  times r. Two different behaviors can
be observed (see Figure ). For the distance of r or twice r, the percentage of damage
decreases when the number of patches increases. However, the percentage of damage is
constant for the distance larger than r. This behavior is similar for a disease of R of .
and ..

Considering the effect of patch numbers and the time of the peak of the epidemic, un-
like the percentage of the damage, the day of the maximum of the epidemic is sensitive
to R. Different behaviors were found for R of . and .. For R of ., the data of the
peak varied. For R of ., three patterns were found. For r and r, the highest peak
is slightly decreased with increase of the number of clusters (see Figure ). For r and
r, the period of the peak is slightly longer as the number of patches increases. For r,
the period of the peak is close to constant for R of . and .. Note that the maximum
number of infectious (at the peak) is different for different distances. Based on our system,
a longer distance yields a lower maximum number. Computationally, we performed sim-
ulation and measured the following quantities, namely statistical hypothesis testing for
investigation between the number of patches (ci, i = , , ,  and ) on the loss or damage
and the distance among patches such that r, r, r, r and r, respectively. We can
test whether or not the number of patches and the distance between patches differ among
groups and conduct the F-test at the α = . significant level. As a result, we rejected H,
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Figure 3 Relationships between the number of patches and the spatial range (d) with the percentage
of loss.

Figure 4 Dynamics of populations with varying number of patches (R0 = 2, C = 3).

and concluded that a difference existed between the various values of R. There was no
difference with regard to the number of patches.

In Figure , the longer time required to reach the peak of the epidemic due to the dis-
tance can be explained by the emergence of two peaks of the infections. As a consequence,
it postpones the highest peak of the infectious which we consider to be one of the main
factors that affects the damage of production. We have also found that as the distance in-
creases, the first peak becomes clearer. We have tested this point by changing the number
of patches in our system to six and run the simulations again (data not shown). We found
that there are still two peaks (not five peaks) even when c = . This result does make sense
because in our model all patches are connected with an equal separating distance. The
first peak, therefore, corresponds to the epidemic in the initially infected cluster and the
second peak accounts for the epidemic of the remaining five cluster.
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Figure 5 Relationship between initial number of
infectious algae population (R0 = 2, C = 3).

The last factor that we investigated in this study is the number of initial infectious al-
gae populations. It may be expected that when the initial number of infectious population
increases, the loss should also increase. This is confirmed by our model as shown in Fig-
ure . For a certain small number of initial infectious algae populations, the change slightly
affects the loss. The effect increases in degree as the initial infectious algae population be-
comes greater than  (see Figure ). Note that R for this investigation is  and the number
of patches is three. Two different behaviors have also been observed. Of course, it would
be evidently clearer if one had measured the number of infectious individuals due to the
epidemics in comparison with that due to the initial number of infectious algal individu-
als. Unfortunately, because of the time constraint we cannot make it for the time being.
We, however, believe this could be the case as we consider if we would be concerned with
large scale imports from corporations starting macroalgae farms. Our observation could
be useful in the real-world system of cultivation of macroalgae. At this state of research it
is based on the modeling and computational aspects. It remains to be seen whether this
study will be useful enough to apply to real-world problems.

4 Conclusions
In this work, we applied the SEIR epidemics model to study the infectious disease spread-
ing in algae population. Our SEIR-based model suggests that the value of R plays a signifi-
cant role in the epidemic dynamics of algae system. Our results are considerably consistent
with the general theory. Due to the fact that R is the number of cases that one case gen-
erates on average over the course of its infectious period, the larger the value of R, the
more the infection can spread, and the harder it is to control the epidemic. When we com-
partmentalized the whole population into smaller compartments or clusters, it results in
a lower algae population density and consequently a lower contact rate as well. However,
in this work we used the transmission rule based on the modified gravity disease trans-
mission model. It is apparent from the disease transmission rate that the distance between
habitats plays a crucial role on the spread of the disease. Lastly, the number of clusters or
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habitats (for a given total population) is found to mitigate the epidemics when the number
is increased.
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