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Abstract

Introduction: This paper explores the feasibility of using touchless textile sensors as an input to environmental control
for individuals with upper-extremity mobility impairments. These sensors are capacitive textile sensors embedded into
clothing and act as proximity sensors.

Methods: We present results from five individuals with spinal cord injury as they perform gestures that mimic an
alphanumeric gesture set. The gestures are used for controlling appliances in a home setting. Our setup included a
custom visualization that provides feedback to the individual on how the system is tracking the movement and the type of
gesture being recognized. Our study included a two-stage session at a medical school with five subjects with upper
extremity mobility impairment.

Results: The experimenting sessions derived binary gesture classification accuracies greater than 90% on average. The
sessions also revealed intricate details in participant’s motions, from which we draw two key insights on the design of the
wearable sensor system.

Conclusion: First, we provide evidence that personalization is a critical ingredient to the success of wearable sensing in
this population group. The sensor hardware, the gesture set, and the underlying gesture recognition algorithm must be
personalized to the individual’s need and injury level. Secondly, we show that explicit feedback to the user is useful when
the user is being trained on the system. Moreover, being able to see the end goal of controlling appliances using the
system is a key motivation to properly learn gestures.
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Introduction . . .
to wear these devices, then no intervention can take

Technological miniaturization and low-power systems
have precipitated an explosive growth in capability and
adoption of wearable sensors. These sensors can be
applied to many medical and rehabilitative applica-
tions, including physiological monitoring,' telemedi-
cine,” rehabilitation compliance,® and assistive input.*
The prevalence of such systems has increased to the
point that wearable sensors and systems have become
a major fixture in medical rehabilitative and assistive
devices and are poised to change the way that medical
practitioners interact with patients.

However, wearable sensors face issues with main-
taining patient compliance. If the patient chooses not

place on the person’s behalf. Therefore it is critical
that compliance issues are addressed by either reducing
the burden of patient instrumentation or creating an
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incentive for the user to wear these systems. To address
the former, building sensors directly into a user’s cloth-
ing or environment can greatly reduce the burden of
instrumentation, and provide a more seamless interface
in which to gather and actuate on collected informa-
tion. E-textile systems solve this by using textiles as the
sensors themselves. For instance, Project Jacquard®
from Google Research is an industry project with the
goal of creating fabric sensors embedded into day-
to-day clothing.

Assisting a user to perform tasks addresses the issue
of creating an incentive to wear such systems. These
sensors can then be used to provide input for applica-
tions such as environmental control and home automa-
tion. These kinds of sensors have immediate impact as
an accessibility tool, especially to those with upper-
extremity mobility impairments. Persons with this diag-
nosis, whether the result of a disease or injury, often
require wheelchairs for mobility. Depending on the
severity of the motor impairment, a user may require
systems and sensors such as the sip-n-puff,® eye gaze
tracking, or electroencephalography (EEG) monitor-
ing’ as an assistive interface to facilitate input.
Sensors built into clothing or into the environment
such as bedsheets or wheelchair pads can act as a
simple and nonintrusive input for gesture recognition,
facilitating additional interaction patterns for individ-
uals with these kinds of disabilities.

Designing a wearable gesture recognition system for
upper extremity mobility impairment is a difficult and
multifaceted problem. First, the amount of mobility
that a person has is highly dependent upon the type
of injury or disease which precipitates the mobility
impairment. A stroke may remove fractionated move-
ment (ability to control specific portions of a limb) or
somatosensation (feeling), while a complete spinal cord
injury removes all neurological functions below the
injury site. Second, there is large variation in injury
levels and hence, the degree of limb mobility that a
user may have is highly variable. A person with a C6
spinal cord injury may maintain the ability to pronate
their forearm, while a person with a C4 spinal cord
injury may lose all or most motor function involving
the arms. Third, within the same injury level or exact
diagnosis there exist a broad range of exact motions a
person is capable to perform and what they have
relearned through rehabilitation. Finally, even con-
sidering all of these other factors to be held even,
there remains large variation in hand postures, body
build, and limb reachability, all which could potentially
affect the best position to place an assistive device.
For these reasons, it is critical that the assistive device
conforms as much as possible to the mobility profile
of the individual user. With this requirement in mind,
this paper asks and addresses the following

question: What underlying principles should govern the
design of sensors built into clothing for gesture recogni-
tion and environmental control for individuals with upper
extremity mobility impairments?

This paper aims to highlight the primary challenges
through a clinical study addressing the use of textile
wearable sensors as an accessibility tool for people
with these types of motor impairment. Our custom
sensor, illustrated in Figure 1 is an array of conductive
textile plates sewn into fabric such as denim jeans. The
flexible sensors can also be built into items of daily use
such as wheelchair pads, bedsheets, and pillow covers
using embroidery. The sensors capture movement in its
proximity and work on the principle of change in cap-
acitance. A user wears the sensor array and performs
gestures in the proximity of the sensor. We focus on an
alphanumeric gesture set based on EdgeWrite.® The
system uses a position tracking and dynamic time warp-
ing (DTW)-based signal processing algorithm that
converts the raw capacitance measurements to an
alphanumeric gesture. Each classified gesture can be
used to control appliances in a home setting. We per-
form a usability study of the wearable sensor on five
individuals with C3-C6 spinal cord injuries. Figure 1
demonstrates our experimental setup. The cameras and
accelerometer-enabled smartwatch were used to cap-
ture groundtruth and baseline data for the system
setup. We use a custom visualization to provide feed-
back to the user on how they are performing the gesture

Figure |. The figure shows our prototype system and experi-
mental setup demonstrated by a subject. The system is com-
posed of a four by three capacitive sensor array sewn into the
denim fabric using conductive wires. The data from the sensors
are analyzed using our custom-designed wireless module, which
uses capacitance measurement ICs, an MSP430 micro-controller,
and Bluetooth wireless module. It also demonstrates the
Smartwatch accelerometer, which was used to profile gestures
for confidence and intensity. The visualization demonstrates two
kinds of feedback; instantaneous positional data, and post-gesture
classification.
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and how the system is recognizing the gestures. The
system was evaluated in a multiday study in a medical
school setting.

Our study builds on related work on assistive tech-
nology and user studies that evaluate assistive technol-
ogy. Here we compare and contrast our work with the
most relevant literature.

Assistive technology: Assistive technology is a field
that includes the use of any tool that enables a user to
perform a task that would be otherwise difficult or
impossible. This means that assistive technology can
be as simple as a “Mouth Stick” for various pointing
exercises,” to a complex system such as EEG-driven
wheelchairs'® or electromyogram (EMG) prostheses.'!
Gesture recognition in assistive technology has been
considered in recent years, including head gesture con-
trol of wheelchairs'? and smart interfaces to assist indi-
viduals with cognitive disabilities.'® Recent years have
seen the growth of wearable sensors such as wrist-worn
accelerometers, wrist bands, and headgear for gesture
recognition. More recently there is a surge of systems
where sensors can be built into items of daily use such
as clothing® for gesture recognition. While most of
these systems are touch-based, our textile sensor
system is touchless and uses change in capacitance to
measure movement in the proximity of the sensors.'*
Touchless sensing is critical for the considered popula-
tion where users often experience limited sensitivity to
their periphery and continuous touch can lead to skin
abrasion. This paper explores the feasibility of using
touchless wearable textile sensors built into clothing
for gesture recognition in individuals with limited
mobility.

User studies on assistive devices: Assistive technol-
ogy cannot be developed completely in laboratory
environments. The devices themselves are meant to
apply to specific populations, and therefore must be
tested rigorously within that population. Thus, user
feasibility studies and evaluations have been performed
to evaluate assistive technology for multiple popula-
tions including cerebral palsy'>'® dementia,'” aging-
in-place,'® and spinal cord injury.'” Motor learning
for individuals with mobility impairments has been stu-
died for rehabilitation purposes. Amongst the salient
conclusions drawn is the importance of controlling
feedback.’®™?! Additionally, the use of virtual reality
has been considered for rehabilitation of upper-extre-
mity impairment.”> Our study considers individuals
with upper-extremity mobility impairments as a result
of spinal cord injury to the cervical vertebrae. These
individuals are typically wheelchair users and use our
wearable system for environmental control in a smart
home. Our goal is similar to the usability studies per-
formed on various assistive care devices. Through our
system, our aim is to draw fundamental elements that

must be considered in the design of the sensor hardware
and software, as well as the feedback mechanisms for
learning purposes.

Materials and methods

In our study, we use an array of textile capacitive sen-
sors built into denim fabric. The sensor array can be
placed on a subject’s thigh or built directly into cloth-
ing. The array used for the experiment is composed of
three rows of four sensors. Each sensor is one square
inch (1 x 1). The outside of the array measure 6.5 in. by
7 in., with the sensors spaced equidistant from each
other. The metallic textiles couple electrically with the
body of the user such that hand gestures performed in
the vicinity (within a few centimeters) of the sensor
array are captured by the system. We use a hierarchical
signal-processing algorithm to convert raw capacitor
values to gestures. The on-body data-collection
module performs gesture classification through two
steps: (1) The raw capacitor values are converted to a
two-dimensional projection of the geometrical centroid
of the hand onto the capacitor sensor array (CSA) and
(2) a pattern matching algorithm based on dynamic
time warping® to classify the gesture. This study
focuses on interpreting alphanumeric gestures based
on the EdgeWrite gesture set.®> A full write-up of the
system is available in our previous work.?* Below we
briefly describe the tracking algorithm.

Hand tracking algorithm: The two-dimensional pos-
ition of the hand is calculated as a linear weighted sum-
mation of sensor positions for any number of sensors
(N), multiplied by their capacitance (c¢). This acts as a
spatial centroid of capacitance which is used to estimate
two-dimensional positions as (X,p) by the following
equations:

N
i=1 "~
N
N i—1 CiVi
y:zzN‘ : &)
i=1 "1

Gesture classification: Gestures are segmented in real
time by comparing the sum of the capacitor sensors
against a threshold 7, A gesture is inferred as each
(x,p) tuple calculated from equations (1) and (2) while
Zfi o Ciis less than 7). If a gesture is exceedingly short
or long, then it is rejected as an inadvertent gesture. The
remaining gestures are then classified using DTW,*
a distance-based vector quantizer, by comparing against
a set of training gestures called the codebook. The algo-
rithm is described in Algorithm 1. DTW uses dynamic
programming to create the smallest sum distance
between two time series by compressing or dilating time.
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Algorithm 1. DTW (0, M)

Input: O = [(x1,)1),- .. ,(Xu,yn)] (positions for the ges-
ture) M = [(x].)}).. ...(x],,)] (model positions for the
gesture)
Output: d (warped distance),
d(0,0) = distance (M(1),0(1))
for i: = 1 to len(O) do
d(i,1) =d(i—1,1) + distance (M(1),0(i))
end for
for j: = 1 to len(M) do
d(l,j) =d(1,j — 1) + distance (M(j),0(1))
end for
for j: = 1 to len(M) do
for i: = 1 to len(G) do
d(ij)=min;d[d(i—1j—1),d(i—1)),d(ij—1)]
+ distance (M(/),0(i))
end for
end for
return d (n,m)
Complexity: O(n x m)

Experimental setup: To analyze how each subject
performed the gestures, a set of several input devices
was used. Figure 1 demonstrates the setup that was
utilized in the trials. Our fabric CSA was used as a
positional localization system to detect and recognize
gestures in a very low power manner. Two cameras
were mounted, which would capture two views of the
gestures; the distance of the hand from the CSA, and
the x—y location of the hand with respect to the CSA.
These two parameters are important in the calculation
of the position of the hand by the CSA device. A Sony
SmartWatch is used to capture the accelerometer values
of the hand which was used for performing gestures.
A virtual reality system built in the Unity framework?’
demonstrates instantaneous feedback to the user. This
feedback is given in two forms, a 3D tool that shows
the motion of the arm as it performs the gesture, and a
2D tool that demonstrates the user’s calculated (X,p)
positions. Finally, we use the gestures to control an
off-the-shelf Z-Wave home automation system.
Specifically, we used the home automation system to
control lights, televisions, and fans.

Table 1. Demographic information of users in study.

User study trials

Our experiments were performed with five individuals
who have spinal cord injuries. Identities of the subjects
were anonymized and the subjects were compensated
for their time. This study was approved by the
University of Maryland Institutional Review Board
(HP-00060811). All participants signed informed con-
sent. The participants were males, right-hand dominant
with age ranging between 24 and 50 years. The demo-
graphics of the subjects in the study is shown in more
detail in Table 1, which provides the injury site, the
American Spinal Injury Association Impairment Scale
classification,® the mode of transportation that they
most commonly use, and time since the injury at the
date of the user study. Each subject participated in two
sessions, with each session containing several phases.
The first session consisted of four phases; a training
phase, an examination phase, a testing phase, and a
recall phase.

During the training phase, the user became comfort-
able using the system by moving their hand around
above the array and watching the virtual reality appli-
cation demonstrate the position extraction calculated
by the system. The user then learned each gesture in
the set of gestures defined by G, € {4,B,C,D,E} and
depicted in Figure 2, where each gesture is defined by
the alphanumeric character which it approximates. To
be trained on a gesture, the user must correctly perform
each gesture five times in succession on two different
occasions. The virtual reality application was used to
provide instantaneous positional feedback as well as
post-gesture classification (e.g., “Gesture A”’) feedback.

During the examination phase, the user was pre-
sented a set of five gestures in random order, and the
user must perform three sets correctly to verify that the
user is trained on the system and gestures. No instant-
aneous feedback was provided, but the user was given
feedback on classification through verbal instruction.

The testing phase consisted of the user selecting three
gestures from the set of five gestures, and relating them
to the three home automation components. For
instance, a user may choose to relate ““A’ to activating
and deactivating the fan. They then are presented 150
home automation commands in random order, and

User Level/type of injury Transportation Age Since injury Hand Pointer

| C6 complete ASIA A Manual chair 40 6 months Right Finger

2 C5-6 complete ASIA A Power chair 45 8 months Right Side of hand
3 C4 incomplete ASIA C Power chair/walker 29 5 months Either Fist

4 C5 complete ASIA A Power chair 24 8 months Right Fist

5 C7 complete ASIA A Power/manual chair 38 12 months Either Palm
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attempt to correctly control the fixtures using the
gestures.

Finally, the recall phase consisted of the user
attempting to create two sets of five sequential correctly
classified gestures for each of the five original gestures.

The second trial consisted first of another “recall”
session where the subjects were not prompted with
what the gestures looked like, and were asked to per-
form the five gestures from the original gesture set. The
subjects then were given eight new gestures to learn to
complete the set depicted in Figure 2 from the
EdgeWrite set, and trained on cach of these gestures,
again with instantaneous feedback using our Unity 3D
virtual reality system. They chose five of these eight
gestures, which were then given in a random order
until they were able to correctly perform three sets of
five gestures correctly. Lastly, the subjects chose three
gestures from the complete gesture set, and performed
home automation testing until the total time allotted
for the session had expired (typically ~75 gestures).
Results of the user study are presented qualitatively in
the following section through the distillation of two
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Figure 2. A pictorial depiction of the EdgeWrite® gestures
used in the user study. Only Gestures (a—e) were used in the first
trial, while gestures (j—v) were added to the original set for the
second trial.

specific insights, and quantitatively in Table 2 and in
Figure 3.

Results and discussion

Presented below is the raw classification accuracy of the
system derived from trials conducted during the user
study. The gestures were classified in real time during
the study against a set of template gestures, which were
created in a laboratory setting. The accuracy is shown
in confusion matrix form for each subject in Figure 3
and more granularly in Table 2.

From a quantitative and qualitative analysis of the
gestures performed during the user study, we draw two
salient insights.

e Personalization is critical to the success of a wear-
able gesture recognition system. Each individual per-
forms gestures of different sizes, different shapes, and
with different speeds. It is a function of the injury
level which affects the reach, speed, and way the ges-
tures are performed. Even for an individual the way a
gesture is performed varies based on factors like fati-
gue and motivation. It calls for personalization at two
levels: (1) sensor hardware construction and place-
ment on clothing and (2) design of gesture recognition
algorithms that adapt to the users.

e Explicit feedback in the form of visualization is
important for training: Using controlled feedback
through instantanecous and post hoc methods help
users learn the gestures faster. It is also critical that
the learning occurs in the context of the target appli-
cation. For instance, in our study we found that our
subjects were motivated to learn the gestures when
they could use it in the context of the smart home
automation system. Our results demonstrate that
while sensor hardware and software development is
important, a critical ingredient to the adoption of
these systems is easy-to-use feedback and training
methods.

Using the above insights, we propose algorithms and

hardware enhancements for personalized adaptations

Table 2. Accuracy of gesture classification when using a set of template gestures.

Training and evaluation (% accuracy)

Initial testing (% accuracy)

User “A” “B” “C” “D” “B” “Testing 1” “Testing 2” “Recall 1” “Recall 2”7
| 100 92.5 92.5 100 87 97 100 98 95
2 90 100 100 100 85 90 N/A 98 96
3 100 82 100 100 50 67 90 N/A 92
4 100 92.5 100 86 92.5 90 87 98 98
5 100 92.5 100 100 70 92 93 98 92
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Figure 3. Confusion matrices demonstrating the percentage of classification of each gesture type to the other classifications.

wym

Gestures with actual classification of

are inadvertent gestures that were classified by the system, and represent a false-positive

classification. If a subject had no inadvertent gestures, that column is labeled “nan.”

to wearable sensors, and recommendations of feedback
mechanisms that the gesture recognition system will
benefit from. Our study can inform the design of
usable wearable sensors for individuals with limited
upper-extremity.

Insight |: Personalization is critical to the success of a
wearable gesture recognition system

While it may seem natural that the inclusion of user
preference and ability should be considered in access-
ible and assistive technologies, many commercial or off-
the-shelf devices are not natively configurable, which
can lead to device abandonment.’’” Along with
rapid prototyping, this fact has led to a dramatic
increase in Do-It-Yourself (DIY) assistive technology
development.”® Wearable devices, such as the fabric
CSA used in this study, are well suited to use individual
configuration for particular users in the same way that
clothing can be tailored or fit specific body types.

User-level adaptation: The need for individual con-
figuration became readily apparent as the users began
to perform gestures over the array. Each of the five
subjects chose to approach the CSA in a unique
manner, as is demonstrated in Figure 4.

The exact rotation of the hand has a reduced effect
on the operation of a CSA-based system compared to
inertial-based systems, as the position tracking is calcu-
lated as the centroid of capacitance coupled to the
remote body. Fidelity of the position calculation is
inversely proportional to the distance of the remote
body that is coupled into our CSA and directly propor-
tional to the size of that body. For example, subject 1
does not retract his fingers to make a fist, and instead
uses his fingers as a pointer. While the relative area of
the body is small (finger compared to a fist), the subject
more accurately tracks a specific location very near to
the array, as is demonstrated in Figure 5(a).

Conversely, user 3 approaches the array with a fist
which is a much larger body, and spreads out the cap-
acitance over a broader area (e.g., Figure 5(b)), but
allows a greater distance from the array without
losing fidelity. The rotational orientation of the hand
with respect to the CSA was typically the palm facing
downward, but subject 2 found it more comfortable to
have his hand rotated 90°, while subject 5 chose to
alternate his palm between facing up or down as his
arm would become tired over time. These different
hand positions and orientations could potentially
reduce accuracy in vision and inertial-based systems.
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Figure 4. Hand position of the five subjects in the study. Each individual chose to use a unique hand position in performing gestures,

demonstrating the need for personalization.

(a) (b)

(©

Figure 5. Demonstration of how the capacitance centroid calculation can be affected by various hand positions. The red triangle
indicates the position that the centroid would be calculated in one-dimension above the array. The black lines are approximate

capacitance based on distance to the body. Notice that the finger (a) is very localized, and must be closer to obtain the same amount of
capacitance as the fist. The fist (b) has a large sum capacitance and the centroid of capacitance is centered roughly with the position of
the fist. The arm (c) has a very large sum capacitance, but the centroid is shifted away from the fist due to the arm extending across the

other sensor pads.

The effect on the CSA is demonstrated through the
depiction of the position centroid calculation in
Figure 5.

An artifact that is more specific to the CSA-based
system is that the angle in which one approaches the
CSA can affect the position calculation. Subject 4 has
multiple incomplete spinal cord injuries, and conse-
quently his mobility profile is more diverse. He is capable
of using an upright platform walker, but his movements
are typically slower and his shoulder movement is less
pronounced. When he uses the CSA, his entire arm
stretches across the array, which greatly spreads out
the calculated centroid for position. This effect is
demonstrated in Figure 5(c). Therefore, it was easier
for him to have the array oriented toward him on an
incline, shown in Figure 4(3B). Additionally, depending
on the movement, he may choose to use the hand that is

closer to the majority of motions so that there is not as
much strain of reaching across the array.

These adaptations by the user allowed them to
approach the CSA in a way that was comfortable and
provided maximal accuracy given a template gesture
set. This training phase is indicative of a typical
motor-rehabilitation session with an occupational ther-
apist as a person learns to use a new assistive device.
However, assuming that a person will be able to adapt
their gestures to the device is dangerous as many users
may not have the ability to perform certain motions
based on mobility constraints. Therefore, in order to
perform per-person personalization without requiring
the user to adapt to the system, we want to consider
the inverse; a system which adapts to the user. To
enable this, we consider adapting the gestures to fit
each individual’s own mobility profile through custom
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templating. This adaptation is introduced, and a poten-
tial solution is evaluated in ‘Adaptations for
Personalization.”

Insight 2: Explicit feedback in the form of
visualization is important for training

Applying the importance of controlled feedback in
motor learning and rehabilitation, a portion of the
study was conducted to determine how a user’s gestures
may vary as a function of the type of feedback which
they are receiving. As the user was initially learning the
system and the EdgeWrite gesture set, instantanecous
feedback was provided in the form of virtual reality
visualization. This component was removed and
replaced by verbal confirmation of correct gesture per-
formance. The verbal confirmation was then removed
and replaced by activation of home automation hard-
ware. In the second trial, the user was instead prompted
first with the verbal confirmation. We then covered
the array so that they did not have localized visual
feedback, and were only provided with verbal con-
firmation. While learning a new set of gestures, they
were provided with the online feedback. The session
ended with the home automation activation as
feedback.

In all of these trials, the gestures that they were per-
forming were evaluated for accuracy in real time
against template gestures. The home-automation com-
ponent provides motivation for the user to correctly
perform each gesture as the system is intended to be
an accessibility device which could help these individ-
uals in the future. It is natural, then, for the method in
which the user performs the gesture to change over time
as they attempt to match the template to obtain a
higher accuracy. The individual is learning the system
based on the visual online feedback. Therefore, the
online feedback through instantancous positional data
was removed once the user was trained on a gesture to
prevent manipulating the particular user’s form. The
user was instead provided only with knowledge of
results based on confirmation from the attendant, or
activation of home automation hardware.

Analysis of gesture timing demonstrates an important
factor in removing the instantancous feedback. When
the user is given the visual feedback they tend to try to
trace the gesture specifically, which can lead to slower
more diverse gestures. The gesture speed reduction is
shown across four of the five subjects. The gesture
length throughout the trial is demonstrated in Figure
6. Without visual feedback, the user tends to focus
solely on their own hand in relative position to the
CSA, which results in quicker more fluid motions.

To test this, we experimented with covering the CSA
with a nonconductive material so that the user did not
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Figure 6. This figure demonstrates the length (in seconds)
of each gesture for Subject I’s first trial. A linear fit line
demonstrates a reduction of over a second per gesture
throughout the trial.

Figure 7. This figure shows a portion of the trial where we
cover the capacitor sensor array with a nonconductive material
so that the motions can still be captured, but the user cannot see
where their hand is with respect to the plates.

have the ability to locate the gesture to specific pads.
This is shown in Figure 7. Removing the ability of the
individual to see the CSA results in smoother gestures,
but did result in slightly lower accuracy as subjects
would move their hand outside the bounds of the
array, causing the gesture to terminate early. The over-
all gesture accuracy without any visual location con-
firmation dropped approximately 7% compared to
performing just without the virtual reality feedback.

In order to consider a particular gesture to be
trained for a user, the motion should be consistent
and fluid, which is produced only once the instantan-
eous feedback is removed. The VR feedback acts to
demonstrate the gesture, and allow the user to properly
plan and learn the routes, but is a crutch that needs to
be removed for motor learning to properly occur.



Nelson et al.

Personalized gesture recognition

In this section, we introduce an adaptation to the CSA
recognition algorithms derived from our observations
in the user study. Using personalized training data for
gesture classification based on each user’s own motions,
we attempt to derive a representative gesture set from
the user’s own motions. Using a data-driven approach
to generate these templates guarantees that the gestures
fit within the user’s own ability, as they are created
from their own motions.

Gestures as input have become a familiar mode of
interfacing with devices. Some argue that gestures are a
more natural user interface while others consider that
gestures, by their ephemeral nature, lead to inherent
confusion when misclassification occurs.” A common
thread among the field is that accuracy (reduction of
both false-positive and false-negative classifications)
and availability are important factors when considering
gesture interfaces. Accuracy can be increased with
sophisticated signal processing, but that can come at
the expense of increased power, which can limit the
availability of systems due to reduced battery life.
A compromise exists in the use of personalization in
the gesture recognition software. The CSA system
used in this study uses DTW as a recognition algo-
rithm. DTW is a vector-quantization classifier that
calculates a Euclidean distance of time-warped pos-
itional data, and compares the relative distances against
a set of template gestures in the recognition codebook.
Personalization of the gesture set can be implemented
through replacing the codebook with gestures that are
indicative of those performed by the actual user. This
personalization is important for gesture recognition;
with more similarity between a candidate gesture and
the template gestures comes either higher accuracy or a
more dense set of gestures. Consistent user motions
that are not reflected in the templates should be cor-
rected. Figure 8 demonstrates this phenomenon as the
largest proportion of a subject’s motions is not cap-
tured correctly by the template gesture.

To perform this adaptation, we introduce two meth-
ods to replace the gesture recognition codebook. First,
we enable the user to create their own gesture set
through a distinct training session. Second, we consider
beginning with a template set, and including the user’s
gesture data in the creation of user specific templates.
Both adaptations are discussed in the following two
subsections.

Targeted training session: The first adaptation con-
siders a specific targeted “‘training’ session. In this ses-
sion, a user decides on a set of gestures which they want
to include in the set. The user then performs a number
of these gestures, and a representative set is chosen to
be included in the codebook. This process is manual,
requiring a reviewing procedure for selecting and
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Figure 8. This picture demonstrates a heat map of a particular
subject’s gesture “A” compared against the template gesture “A,”
which is represented by the red line. The inconsistency along the
left-hand side of the gesture represents a consistent error that
reduces the relative accuracy between these gestures, and could
potentially result in an incorrect classification.
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Figure 9. Training tab for the CSA system.

curating gestures. We have created a toolkit that is
usable by occupational and physical therapists to help
a user create a set of gestures. Our implementation is
depicted in Figure 9.
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Incorporating in situ motions: As an alternative or
extension to the training session, a template set of ges-
tures can be slowly replaced with the user’s actual
motions. This can be done in a number of ways. For
one, a user can provide periodic feedback about the
correctness of a classified gesture, either through
verbal or behavioral feedback mechanisms (e.g., If the
user does not try to correct the home automation
actions that were performed, or does correct in a spe-
cific manner). Another method is to create a profile of
the average motions, which are classified as a particular
gesture. Either of these methods have the additional
advantage of allowing the system to evolve with the
user over time. Enabling in situ adaptation is particu-
larly useful for assistive applications where a user’s
mobility profile may change over time, whether through
gaining additional motion through therapy or losing
mobility through the progression of a disease or
injury state.

To simulate the creation of a test set, we chose three
gestures of each classification (i.e., three each of each
“A “="E” gestures) from the beginning of each user’s
first trial which had the smallest relative distance to the
other gestures in the trial. These gestures should be
similar to a representative set of gestures selected
during a targeted training session. The gestures
chosen for the codebook were removed from the evalu-
ation set, and then the accuracy was re-evaluated with
the new “‘personalized” gesture set. This method
resulted in the results shown in Table 3.

From Table 3, we can draw a couple conclusions.
First, the training accuracy, represented the highest
accuracy increase when using a personalized gesture
set. The gestures performed during this segment were
often different than the rest of the set in both cadence
and motion paths. After removing the instantaneous
visual feedback from the user, their motions began to
be more consistent, and the motions more typically fol-
lowed the template set as the user properly “learned”
each gesture. Second, Subject 3, who had struggled to
use the system in the first trial, fundamentally changed
the way he approached the system such that the

Table 3. Accuracy of gesture classification when using a per-
sonalized set of gestures.

Training and

User evaluation “Testing 1”  “Recall I”  “Recall 2”
| 100% (+5.6%)  97% (+0%) 100% 89%
2 95.8% (+0.8%)  88% (—2%) 92.9% 95%
3 100% (+13.6%) 72% (+5%) N/A 79%
4 100% (+5.8%)  91% (+1%) 96.6% 94%
5 100% (+7.5%) 95 (+3%) 98.0% 92%

personalized gesture set tailored to him from the train-
ing data of the first day no longer matched the motions
he was performing. This suggests that changes in status
that manifest in new motion profiles can greatly inhibit
the consistent use of such a system over time. This last
conclusion points to the necessity of wearable assistive
devices to continue to learn about the user and adapt its
internal classification algorithms.

In situ gesture personalization

As described above, the ability to adapt to previously
classified motions to continually modify the template
gestures can greatly extend the lifetime usability of
assistive wearable gesture recognition. In this section,
we propose and evaluate a method for calculating and
inserting these personalized gestures into the template
gesture set.

Figure 10 demonstrates an important factor in the
creation of these personalized evaluation sets. The
histogram shows that the relative distances can be an
additional predictor toward the ‘‘correctness” of a
given gesture. This knowledge enables the ability to
select specific gestures with high correctness probabil-
ities to be inserted into the template set without the
need for explicit feedback from the user. However,
these correctness values are probabilistic, and therefore
the selection algorithm should provide an extra level of
filtering to remove gestures which appear to be correct
classifications.

Correct
Incorrect =
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Figure 10. This histogram demonstrates the relative accuracy
as opposed to the binary classification accuracy. Gestures are
cast into bins based on the distance metric calculated by the
dynamic time warping algorithm. Green bins are correctly clas-
sified gestures, and red are incorrectly classified gestures. The
dotted lines are the 25th, 50th (median), and 75th percentile for
each correct and incorrect. This figure demonstrates that
knowing the relative distance can be useful in determining the
correctness of a classified gesture.
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x-coordinates of a particular subject’s “A” gestures from the first
trial. Each black line is a single gesture performed by the subject.
The red line is the median value at each point i in the time series.
The median point at each sample is collated into a composite
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Figure 12. This figure demonstrates each of the five median ‘A’
gestures created by the subjects’ gestures during the first trial.
These are used to classify gestures from the second trial as an
additional comparison point to static templates.
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A median filter is a fairly simple approach to remov-
ing outliers and selecting the average data from a series.
To use a median filter for this application, there are
some modifications that must be made. First, gestures
can have different lengths as discussed above in
Figure 6. In order to select the median set of (x,y) pos-
itions in a time series, the inputs must be resampled to
vectors of the same size. Further, gestures may vary in
cadence (i.e., the relative speed of specific motions).
This means that points in time along two gestures
may not line up to enable proper use of the median
filter. Therefore, the resampling method should not
maintain time invariance, but should instead maintain
the aspect and position data as best as possible. A simi-
lar method is discussed in the Wobbrock et al. $1
Recognizer paper.*® This resampling method calculates
the entire distance of the composite line segments, and
selects evenly spaced points along the original path.

After resampling a set of gestures, the median filter
then calculates the median x coordinate and median y
coordinate at each point (t) in the time series. This is
demonstrated in Figure 11 for the x-coordinates of
Subject 1’s “A” gestures. This procedure is done for
each subject and each gesture to create a personalized
gesture recognition codebook, which can be used for
classifying the gesture set. The variability that exists
between these gestures on a subject-by-subject basis
can be seen in Figure 12.

To evaluate this gesture set, we compare the classi-
fication accuracy between the template gesture set and
the personalized gesture set in Figure 13. The classifi-
cation was performed only on Trial 2 gestures, while
the personalized gestures were selected from only Trial
1 gestures. Using the personalized gesture set resulted in
a reduction of 7% (three additional misclassifications)
for the ““B” gesture, and a gain of 11% (four additional
correct classifications) in the “E” gesture. While this is
a modest gain in accuracy overall, continuing to adapt
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Figure 13. These two confusion matrices demonstrate the accuracy change when using the template gesture set (left) and the

personalized gesture set (right) for all subjects.



Journal of Rehabilitation and Assistive Technologies Engineering

0
0 2000
1

4000 6000 8000 10000

12000 14000

40 -

w
o
!

N
o
!

Frequency

0 2000

4000 6000 8000 10000
Distance from best match

12000 14000

Figure 14. This figure demonstrates the relative distances
between the template gesture set (top) and the personalized
gesture set (bottom). The personalized gesture set has a much
smaller relative distance for classification than the template ges-
ture set.

to the user’s motions should result in a higher accuracy
over time. This can be shown by the relative error
which can be calculated by the distance metric dis-
cussed above. Figure 14 demonstrates this through
two histograms of the relative distances between candi-
date and codebook gestures for a personalized and a
template set of gestures.

Conclusion

This paper evaluates the usability of CSAs as an acces-
sibility device for persons with upper extremity mobility
impairments. In verifying the accuracy of the system,
we establish two insights into the development and
training of a wearable accessibility device. First, per-
sonalization is important, both on the part of the user
adapting to the system, as well as the system adapting
to the user in a symbiotic feedback loop to create an
accurate, responsive interface. Second, training users in
accessibility devices can be improved through the con-
trol of knowledge of results. By modulating what feed-
back the user receives during training, the practitioner
can motivate particular behaviors to allow user’s to feel

comfortable using the system. From the first insight, we
proposed and evaluated two methods of creating a per-
sonalized gesture set through study of motions per-
formed by people with motor disabilities. The first
uses a specific targeted “training” session to generate
static personalized gestures comprised of the individ-
ual’s own motions, to ensure that the gesture set fits
in their own mobility profile. The second considers con-
tinuous adaptation by selecting the average correctly
classified gesture in a set to add to the codebook, and
slowly replace the template set. This adaptation allows
the gestures to evolve over time with the user’s mobility
of the gesture recognition algorithm through the use of
the individuals’ own movements in training. The
insights and adaptations derived in this paper enable
this textile accessibility system to be more available
and more accurate to users, and create a more sustain-
able and reliable system for people to interact with their
environment.
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