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Abstract

In this paper, we introduce a new general composite iterative method for finding a
fixed point of a strictly pseudocontractive mapping in Hilbert spaces. We establish the
strong convergence of the sequence generated by the proposed iterative method to
a fixed point of the mapping, which is the unique solution of a certain variational
inequality. In particular, we utilize weaker control conditions than previous ones in
order to show strong convergence. Our results complement, develop, and improve
upon the corresponding ones given by some authors recently in this area.
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1 Introduction
Let H be a real Hilbert space with inner product (-,-) and induced norm | - ||. Let C be
a nonempty closed convex subset of H and let 7 : C — C be a self-mapping on C. We
denote by Fix(T) the set of fixed points of 7.

We recall that a mapping T : C — H is said to be k-strictly pseudocontractive if there
exists a constant k € [0,1) such that

ITx - Tyl> < llx—yI? + k|| (I - T)x = (1 = T)y]",

Vx,y € C.

The mapping T is pseudocontractive if and only if
(Tx — Ty,x—y) < |lx—y||>, VxyeC.

T is strongly pseudocontractive if and only if there exists a constant A € (0,1) such that
(Tx - Ty,x-y) < A-Wlx-y%, VxyeC.

Note that the class of k-strictly pseudocontractive mappings includes the class of nonex-
pansive mappings 7 on C (i.e., | Tx — Ty|| < |lx — y||, Yx,y € C) as a subclass. That is, T is
nonexpansive if and only if T is 0-strictly pseudocontractive. The mapping 7 is also said
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to be pseudocontractive if k =1 and T is said to be strongly pseudocontractive if there
exists a positive constant A € (0,1) such that T — Al is pseudocontractive. Clearly, the class
of k-strictly pseudocontractive mappings falls into the one between classes of nonexpan-
sive mappings and pseudocontractive mappings. Also we remark that the class of strongly
pseudocontractive mappings is independent of the class of k-strictly pseudocontractive
mappings (see [1-3]). The class of pseudocontractive mappings is one of the most impor-
tant classes of mappings among nonlinear mappings. Recently, many authors have been
devoting the studies on the problems of finding fixed points for pseudocontractive map-
pings; see, for example, [4—9] and the references therein.

Let A be a strongly positive bounded linear operator on H. That is, there is a constant
¥ > 0 with the property

(Ax,x) = Vlx|*>, VxeH.

It is well known that iterative methods for nonexpansive mappings can be used to solve
a convex minimization problem: see, e.g., [10-12] and the references therein. A typical
problem is that of minimizing a quadratic function over the set of fixed points of a non-
expansive mapping on a real Hilbert space H:

1
in — (Ax, x) — (x, b), 11
min - (A%, %) - (x, ) (11)
where C is the fixed point set of a nonexpansive mapping S on H and b is a given point
in H. In [11], Xu proved that the sequence {x,} generated by the iterative method for a
nonexpansive mapping S presented below with the initial guess xy € H chosen arbitrary:

Xpa1 = 0b + ([ —a,A)Sx,, VYn>0, (1.2)

converges strongly to the unique solution of the minimization problem (1.1) provided the
sequence {o,} satisfies certain conditions.

In [13], combining the Moudafi viscosity approximation method [14] with Xu’s method
(1.2), Marino and Xu [13] considered the following general iterative method for a nonex-
pansive mapping S:

Xps1 = Y Xy + ([ — 0, A)Sxy, Vn>0, (1.3)

where f is a contractive mapping on H with a constant « € (0, 1) (i.e., there exists a constant
a € (0,1) such that ||f(x) - f(¥)|| < allx —yll, Vx,y € H). They proved that if the sequence
{a,} of control parameters satisfies appropriate conditions, then the sequence {x,} gener-
ated by (1.3) converges strongly to the unique solution of the variational inequality

((yf -A)%x-%) <0, VxeFix(S),
which is the optimality condition for the minimization problem

1
in —(Ax,x) — h(x),
(i 5 A i)

where / is a potential function for yf (i.e., W' = yf).
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On the other hand, Yamada [12] introduced the following hybrid steepest-descent
method for a nonexpansive mapping S for solving the variational inequality:

Xn+l = (1 - anF)Sxm V}’l 2 01 (14)

where S : H — H is a nonexpansive mapping with Fix(S) # @; F: H — H is a p-
Lipschitzian and 7n-strongly monotone operator with constants p > 0 and 1 > 0 (i.e.,
|Ex—Fy|| < p|lx—y| and (Fx—Fy,x—y) > nllx—yl||%, x,y € H, respectively),and 0 < 1 < i—g,
and then proved that if {§,} satisfies appropriate conditions, the sequence {x,} generated
by (1.4) converges strongly to the unique solution of the variational inequality:

(FX,x—%) >0, Vx e Fix(S).

In 2010, by combining Yamada’s hybrid steepest-descent method (1.4) with Marino with
Xu’s method (1.3), Tian [15] introduced the following general iterative method for a non-
expansive mapping S:

X1 = QY fxy + I — ayuF)Sx,, V>0, (L.5)

where f is a contractive mapping on H with a constant « € (0,1). His results improved
and complemented the corresponding results of Marino and Xu [13]. In [16], Tian also
considered the following general iterative method for a nonexpansive mapping S:

Xpe1 = oY Vo, + ([ — auF)Sx,, Vn>0, (1.6)

where V' : H — H is a Lipschitzian mapping with a constant / > 0. In particular, the results
in [16] extended the results of Tian [15] from the case of the contractive mapping f to the
case of a Lipschitzian mapping V.

In 2011, Ceng et al. [17] also introduced the following iterative method for the nonex-
pansive mapping S:

%ni1 = Pclany Vay + (I — oyuF)Sx,], ¥n>0, (1.7)

where F: C — H is a p-Lipschitzian and 7n-strongly monotone operator with constants
p>0and n>0,V:C— H is an [-Lipschitzian mapping with a constant / > 0 and 0 <
W< %. In particular, by using appropriate control conditions on {«,}, they proved that
the sequence {x,} generated by (1.7) converges strongly to a fixed point ¥ of S, which is the
unique solution of the following variational inequality related to the operator F:

(WFX— yVE,X—p) <0, VpeFix(S).

Their results also improved the results of Tian [15] from the case of the contractive map-
ping f to the case of a Lipschitzian mapping V.

In 2011, Ceng et al. [18] introduced the following general composite iterative method
for a nonexpansive mapping S:

Yn = — 0y tF)Sx + oty f,
KXy = = lgnA)an + ﬂnym Yn >0,

(1.8)
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which combines Xu’s method (1.2) with Tian’s method (1.5). Under appropriate control
conditions on {«,} and {B,}, they proved that the sequence {x,} generated by (1.8) con-
verges strongly to a fixed point ¥ of S, which is the unique solution of the following varia-

tional inequality related to the operator A:
(A-D%%-p)<0, VpeFix(S).

Their results supplemented and developed the corresponding ones of Marino and Xu [13],
Yamada [12] and Tian [15].

On the another hand, in 2011, by combining Yamada’s hybrid steepest-descent method
(1.4) with Marino and Xu’s method (1.3), Jung [7] considered the following explicit iterative
scheme for finding fixed points of a k-strictly pseudocontractive mapping T for some 0 <
k<1:

Xn+l = anyf(xn) + Buxy + ((1 - Bl - anuF)Pch,,, Vn >0, (1.9)

where S: C — H is a mapping defined by Sx = kx + (1 — k) Tx; P is the metric projection
of H onto C; f: C — C is a contractive mapping with a constant « € (0,1); F: C — C
is a p-Lipschitzian and n-strongly monotone operator with constants p > 0 and 1 > 0;
and 0 < u < /2)—2. Under suitable control conditions on {«,} and {8,}, he proved that the
sequence {x,} generated by (1.9) converges strongly to a fixed point ¥ of T, which is the
unique solution of the following variational inequality related to the operator F:

(WFX - yfX,%-p) <0, VpeFix(T).

His result also improved and complemented the corresponding results of Cho et al. [5],
Jung [6], Marino and Xu [13] and Tian [15].

In this paper, motivated and inspired by the above-mentioned results, we will combine
Xu’s method (1.2) with Tian’s method (1.6) for a k-strictly pseudocontractive mapping T
for some 0 < k < 1 and consider the following new general composite iterative method for

finding an element of Fix(T'):

Y =y Vau + (I — oyt F) Ty,
X1 = — ,BnA)Tnxn + Bnyn, VYn=>0,

(1.10)

where T, : H — H is a mapping defined by T, x = A,x + (1 - A,)Tx for 0 <k <A, <Ai<1
and lim,,_, - A, = A; A is a strongly positive bounded linear operator on H with a constant
Y € (1,2); {o,} € [0,1] and {B,} C (0,1] satisfy appropriate conditions; V : H — H is a
Lipschitzian mapping with a constant / > 0; F : H — H is a p-Lipschitzian and n-strongly
monotone operator with constants p >0 and n > 0;and 0 < u < i—g. By using weaker con-
trol conditions than previous ones, we establish the strong convergence of the sequence
generated by the proposed iterative method (1.10) to a point ¥ in Fix(T), which is the
unique solution of the variational inequality related to A:

(A-Dx%-p)<0, VpeFix(T).
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Our results complement, develop, and improve upon the corresponding ones given by Cho
et al. [5] and Jung [6-8] for the strictly pseudocontractive mapping as well as Yamada [12],
Marino and Xu [13], Tian [15] and Ceng et al. [17] and Ceng et al. [18] for the nonexpansive

mapping.

2 Preliminaries and lemmas
Throughout this paper, when {x,} is a sequence in H, x, — x (resp., x, — x) will denote
strong (resp., weak) convergence of the sequence {x,} to x.

For every point x € H, there exists a unique nearest point in C, denoted by Pc(x), such
that

|x=Pc@)| <llx-yll, VyeC.

Pc is called the metric projection of H to C. It is well known that P¢ is nonexpansive and
that, forx € H,

z=Pcx <+— (x-2zy-2)<0, VyeC. (2.1)
In a Hilbert space H, we have
ll = y11> = llxl® + Iyl* - 2(x,9),  Vx,y € H. (2.2)
Lemma 2.1 In a real Hilbert space H, the following inequality holds:
lx+y)* < x> + 2(n,x + ), Vx,y€H.

Let LIM be a Banach limit. According to time and circumstances, we use LIM,(a,,) in-
stead of LIM(a) for every a = {a,} € £*°. The following properties are well known:
(i) foralln>1, a, <c, implies LIM,,(a,) < LIM,(c,),
(i) LIM,(asn) = LIM,(a,) for any fixed positive integer N,
(iti) liminf,_ o a, < LIM,(a,) <limsup,,_, ., a, for all {a,} € [*°.
The following lemma was given in [19, Proposition 2].

Lemma 2.2 Let a € R be a real number and let a sequence {a,} € I*° satisfy the
condition LIM,(a,) < a for all Banach limit LIM. If limsup,_, . (dn1 — an) < 0, then

limsup,_,  a, <a.
We also need the following lemmas for the proof of our main results.

Lemma 2.3 ([20, 21]) Let {s,} be a sequence of non-negative real numbers satisfying
Sl < (L= @y)Sy + Wpby + 17y, VY1 >0,

where {w,}, {8,}, and {r,} satisfy the following conditions:
(i) {wn} C[0,1] and Y 57 w, = 00,
(i) limsup,_, o8, <0 or Yy o) wul8,| < 00,
(i) 7, >0 (m>0), > 020 ru < 00.

Then lim,—, o0 S, = 0.
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Lemma 2.4 ([22] Demiclosedness principle) Let C be a nonempty closed convex subset of
a real Hilbert space H, and let S : C — C be a nonexpansive mapping. Then the mapping
I - S is demiclosed. That is, if {x,} is a sequence in C such that x, — x* and (I — S)x,, — y,
then (I — S)x* =y.

Lemma 2.5 ([23]) Let H be a real Hilbert space and let C be a closed convex subset of H.
Let T : C — H be a k-strictly pseudocontractive mapping on C. Then the following hold:
(i) The fixed point set Fix(T) is closed convex, so that the projection Prix(r) is well
defined.
(ii) Fix(PcT) = Fix(T).
(ili) If we define a mapping S: C — H by Sx = Ax + (1 — A)Tx for all x € C. then, as
A € [k,1), S is a nonexpansive mapping such that Fix(T) = Fix(S).

The following lemma can easily be proven (see also [12]).

Lemma 2.6 Let H be a real Hilbert space H. Let F : H — H be a p-Lipschitzian and n-

strongly monotone operator with constants p >0 and n > 0. Let 0 < pu < f)—g and 0 <t <
&€ <1.Then G:=&I - tuF : H — H is a contractive mapping with constant & — tt, where

T=1-/1-u2n-ppe?).

Lemma 2.7 ([13]) Assume that A is a strongly positive bounded linear operator on H with
a coefficienty >0 and 0 < ¢ < ||A||™L. Then |I - CA| <1-¢Y.

Finally, we recall that the sequence {x,} in H is said to be weakly asymptotically regular if
w- lim (x,,1 —x,) =0, thatis, x,,; —x, —0
Hn— 00
and asymptotically regular if
lim (%41 — x4l = 0,
Hn— 00
respectively.

3 The main results
Throughout the rest of this paper, we always assume the following:
« H is areal Hilbert space;
o T:H — H is a k-strictly pseudocontractive mapping with Fix(T") # ¥ for some
0<k<l;
+ F:H — H is a p-Lipschitzian and n-strongly monotone operator with constants
p>0andn>0;
+ A:H — H is a strongly positive linear bounded operator on H with a constant
y €(1,2);
« V:H — H is an [-Lipschitzian mapping with a constant [ > 0;
e O<p< /2)—2’ and 0 < yl<t,wheret =1-/1-u2n - up?);
o T;:H — H is a mapping defined by Tyx = Axx + (1 — A,) Tx, t € (0,1), for
0<k<i<A<landlimsgAi;=A;
o T,:H — H is a mapping defined by T,x = 1,2+ 1 —A,)Tx for 0 <k <X, <A <1land
limy, 00 Ay = A;
+ Prix(r) is a metric projection of H onto Fix(T).
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By Lemma 2.5(iii), we note that 7; and T, are nonexpansive and Fix(7T) = Fix(T}) =
Fix(T,,).
In this section, we introduce the following general composite scheme that generates a

net {x;} in an implicit way:

te(0,min{L, 217 )
Xt = (1 — Q[A)Ttxt + et[t]/ th + (I - t/,LF)Ttxt] (31)

We prove strong convergence of {x;} as £ — 0 to a fixed point ¥ of T which is a solution

of the following variational inequality:
(A-Dx%-p)<0, VpeFix(T). (3.2)

We also propose the following general composite explicit scheme, which generates a se-
quence in an explicit way:

Vn =0yY Vxn + (I_O‘VIMF)Tnxm
X1 = ([ = BrA) Tyxy + Bnyn, Yn=>0,

(3.3)

where {o,} € [0,1], {B,} C (0,1] and x¢ € H is an arbitrary initial guess, and establish
strong convergence of this sequence to a fixed point ¥ of T, which is also the unique solu-
tion of the variational inequality (3.2).

Now, for ¢ € (0, min{1, TZ%ZI}) and 6; € (0, ||A|| "], consider a mapping Q; : H — H defined
by

Qux=U-6,A)Tx + Qt[ty Vx + (I - t,uF)Ttx], Vx e H.

It is easy to see that Q; is a contractive mapping with constant 1 — 6,(y — 1 + t(t — y)).
Indeed, by Lemma 2.6 and Lemma 2.7, we have

1Qex - Quyll < || - 6:A) T = (I - 6, A) Ty |
+ 6, [ty Vo + (I = tuF) Tox] = [ty Vy + (I = tuF) Ty ]|
< (=67 llx =yl + Oty [ Ve = Vyll + | (1 = tuF) Tox = (I = tuF) Ty ]
< (1=07)llx =yl +6,(1 - t(x =y D) lx -y

=[1-6.(F -1+t -yD)]llx-yll.

Sincey € (1,2), T — ¥/ > 0, and

’

2-y 2-y
0 <t<min 1,—y =< 4
T -yl T -yl

it follows that

0<(7—1+t(r—yl))<1,
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which along with 0 < §; < ||A| ™! <1 yields
0<1—9t(7—1+t(r—yl)) <1

Hence Q; is a contractive mapping. By the Banach contraction principle, Q; has a unique
fixed point, denoted x;, which uniquely solves the fixed point equation (3.1).

We summary the basic properties of {x;}, which can be proved by the same method
in [18]. We include its proof for the sake of completeness.

Proposition 3.1 Let {x;} be defined via (3.1). Then
(i) {x:} is bounded for t € (0, min{1, TZ_;}Z});
(i) limgq ||x; — Tpxe|| = O provided lim;_, ¢ 6, = 0;
(iii) «;: (0, min{1, 12__31}) — H is locally Lipschitzian provided 6; : (0, min{1, 12_;31}) —
(0, |[Al 7] is locally Lipschitzian, and X, : (0, min{1, 12__31}) — [k, 1] is locally

Lipschitzian;

(iv) %, defines a continuous path from (0, min{1, 2L}) into H provided

- -yl _
0; : (0, min(1, 12__;’1}) — (0, |A||™Y] is continuous, and A : (0, min{1, 2__]’/’1}) — [k,\] is
continuous.

T

Proof (1) Let p € Fix(T). Observing Fix(T) = Fix(7;) by Lemma 2.5(iii), we have

[l - pll
= |- 60.A)Tox, + 6,[ty Vi, + I — tuF) T, | - p |
= | -6,A)Tx, — I - 0,A)T,p + 0,[ty Vi, + I — tuF) Ty, — p| + 6,1 = A)p |
< ||t - 6.A) T — (I = 0, A) Tup|| + 6, ||ty Vi, + (I — tuF) Ty, — p|| + 6. (I = A)p |
= ||t - 6,A)Tex, — I - 0,A)Tp|
+ 6, | (I = t)F) Tixe — (I - tiF) Top + t(y Vay = wEp) | + 6:11 - Al lp|
<@ =6)lx: = pll + 6, [ = t0)llxe — pll + t(yLlxe = pll + 1y Vo — uEpll) |
+ 01 - Allpll.

So, it follows that

_ = Alllpl + £y Vo - pEpll _ L= Alllp] + tlly Vb - nEpl

x —

llx: - pll < R BT = 51
_ M=Alllpll + lly Ve - nEp|l
f— 7_1 M

Hence {x;} is bounded and so are {Vx;}, {Tx;}, {T:x;}, and {FT;x;}.
(ii) By the definition of {x,}, we have

lloce = Tyaell = ”9t[(1 —A) T, + t(y Ve, — /vLFTtxt)] ”
= 0| (I = A) Ty, + t(y Ve, — wFTexy) |

< Ol = Al Texell + tlly Vg = wEFTyxe|| = 0 ast— 0,

by the boundedness of {Vx;} and {FT;x;} in (i).
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(iii) Let ¢, to € (0, min{1,

2__31 1), Noting that

T

I Texe — Togeo | < W Texe — Texeg Il + 1 Ty — T |l

< e =2 | + 1As = Ao |11y — Txso I,
we calculate

lloce — 44 |l
= || (I —6,A)Tyx; + Gt[ty Vxs + (I — tuF) Ttxt]
— (I =04y A) Tyyxey — Oy [ Loy Vixry + (I = ot F) Tyyy, ||
< || = 6.A) Ty — (I = 04, A) Toxe | + || (I = 601 A) Texe — (I = 0, A) Ty x|
+ 10, = 04 || £y Vasy + (I =t F) Toxy |
+ 04 || [£y Ve + (I = tnF) Tyxe | = [toy Vg + (I = ot F) Tros, ||
<16 = O AN Toe |l + (1 = O W) Texe — Tty |
+16; — 0y, “L‘y Ve, + (I - t,uF)Ttxt” + 6y, H (E—to)y Vay + toy (Vi — Vxy,y)
— (t = to)UETyxy + (I = topuF) Ty — (I — touF) Too s, |
<160 = O | IIAINN Tooxe || + (1 — 9t07)[||xt = %o || + 1A = Ao 1oy — Toxg, ||]
+ 10 = O | [ Toeell + £(y | Vel + | FToce )]
+ Oy [(V 1Vl + iIFTexell) 1€ = to] + toy Llloee = %2, || + (1= toT) | Toke = Toy%e, ]
<160 = O AN Troxe || + (1- 9t07)(||xt = xgo || + e = Ago gy — Toxeg ||)
+ 10 = O | (1 Toeell + 1| Vaee | + sl FT o)
+ Oy (Y IVae |l + IIFTex )| = tol + Ory oy Lloe —xz4

+ 0 (1 - tof)(”xt = x50 || + [ = Ago Iy — Txeg ||).

This implies that

NANN Teoeell + 1| Texeell + v | Vaeell + pll ETeox |
O (¥ =1+ to(t — ¥1))
VI Vaell + | FTexe ||
Y —1+ty(r -yl
N (1-6: (Y =1+ to7)]ll%gy — Ty
O (7 =1+ to(z —y1)

llocz — 2z, || < 16 — O |

|t - tol

|)"t _)"t0|'

Since 6, : (0, min{1, 2L}) — (0, |l A||"!] is locally Lipschitzian, and A, : (0, min{1, rz-;Z/}) —

-yl
[k, 1] is locally Lipschitzian, x; is also locally Lipschitzian.

(iv) From the last inequality in (iii), the result follows immediately.

We prove the following theorem for strong convergence of the net {x,} as £ — 0, which

guarantees the existence of solutions of the variational inequality (3.2).

Page 9 of 21
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Theorem 3.1 Let the net {x;} be defined via (3.1). Iflim,_, ¢ 0; = 0, then x; converges strongly
to a fixed point X of T as t — 0, which solves the variational inequality (3.2). Equivalently,
we have Ppix(T)(ZI - A)% = 35

Proof We first show the uniqueness of a solution of the variational inequality (3.2), which
is indeed a consequence of the strong monotonicity of A — I. In fact, since A is a strongly
positive bounded linear operator with a coefficient ¥ € (1, 2), we know that A —I is strongly
monotone with a coefficient -1 € (0,1). Suppose that ¥ € Fix(T) and ¥ € Fix(T) both are
solutions to (3.2). Then we have

(A-D%%-%)<0 (3.4)
and

(A-Dxz-%) <o. (3.5)
Adding up (3.4) and (3.5) yields

(A-Dx-(A-Nx%-%)<0.

The strong monotonicity of A — I implies that ¥ =% and the uniqueness is proved.
Next, we prove that x, — ¥ as t — 0. Observing Fix(T) = Fix(7};) by Lemma 2.5(iii), from
(3.1), we write, for given p € Fix(T),
x—p=1-0A)Tx—(I-0A)T;p+ et[tl/ Ve + (I — tuF) Texy —P] +6,(1-A)p
= (I = 6,A)(Tpxe = Top) + 6,[t(y Ve — pEp) + (I = tuF) Ty, — (I = tuF)p]

+6,(I-A)p,
to derive

e = plI* = ((I = 0, A)(Tyx, = Typ), %, — p) + O:[ £y Vit — Fp, x, — p)
+ <(I —tuF)Tyxy — (I — tuF)p, x; —p)] + 9:((1 —A)p,x; —p)
< (1-6:7) % - pl* +6,[A = t7)l|x - p|I* + tyllx: - p?
+t(y Vp — uFp, x; = p)] + 0,1 - A)p,x, - p)
= [1-60,(y -1+ t(r - yD)]llx - pII?

+6,(t(y Vo — uFp,x, — p) + (I = A)p, x; - p)).

Therefore,

llx; —pll* < = (£(y Vp — uEp, %, — p) + (I = A)p, %, - p)). (3.6)

y—-1+t(t -yl

Since {x,} is bounded as ¢ — 0 (by Proposition 3.1(i)), we see that if {t,} is a subsequence
in (0, min{1, rz—;Zl}) such that ¢, — 0 and x;, — x*, then from (3.6), we obtain x;, — x*. We
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show that x* € Fix(T). To this end, define S: H — H by Sx = Ax + (1 — )Tk, Vx € H, for
0 <k <A < 1. Then S is nonexpansive with Fix(S) = Fix(T) by Lemma 2.5(iii). Noticing
that

1S, — %6, | < IS, — T, %, || + 1| T,y %, — %, |l

(r - )\tn)”xtn — Ty, || + | Ty, — %4, |

A=Ay,

= 1- 2, ez, — T, 1| + 1| T, %1, — %, |
1+A -2,

= ﬁ e, — T8, I,

by Proposition 3.1(ii) and A;, — X as t, — 0, we have lim,,_, oo (/ — S)x;, = 0. Thus it follows
from Lemma 2.4 that x* € Fix(S). By Lemma 2.5(iii), we get x* € Fix(T).
Finally, we prove that x* is a solution of the variational inequality (3.2). Since

Xt = (1 — Q[A)Ttxt + Gt[ty th + (1 - t/LF)T[xt],
we have
Xt — Ttxt = 9[(1 —A)Ttxt + Gtt(y th - [/LFT[xt)

Since T} is nonexpansive, I — T; is monotone. So, from the monotonicity of I — T, it follows
that, for p € Fix(T) = Fix(T}),

0= ((1— T)x — (I = To)p, x; —P> = ((1— Ty)xs, %; —17>
= 9t<(1 = A)Tixy, % —19> + 0ty Ve, — WFTyx, % — p)

= 0t<(1 — A)xg, x; —p) + 9t<(1 - A)T; - D)xs, %, —p) + 0,t{y Vxy — WFTyx;, %, — p).
This implies that
((A =Dy, %, —p> < <(1 —A)T; — D)xy, %, —p) + t{y Va, — nFTyx;, %, — p). (3.7)
Now, replacing ¢ in (3.7) with ¢, and letting # — oo, noticing the boundedness of {y Vx;, —

WFT, %, } and the fact that (I — A)(T,, — I)x;, — 0 as n — oo by Proposition 3.1(ii), we
obtain

((A - Dx*, x* —p) <0.
That is, x* € Fix(T) is a solution of the variational inequality (3.2); hence x* = ¥ by unique-
ness. In summary, we have shown that each cluster point of {x;} (at £ — 0) equals X. There-

fore x, — xast— 0.

The variational inequality (3.2) can be rewritten as

(@I -AF-%%-p)>0, VpeFix(T).
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Recalling Lemma 2.5(i) and (2.1), this is equivalent to the fixed point equation
Prixr)(2I — A)X) = %. O
Taking F =1, u =1and y =1 in Theorem 3.1, we get
Corollary 3.1 Let {x;} be defined by
x; = (I — 0,A)Tyx; + Gt[tht +(1-1¢) Ttxt].

Iflim;_0 6, = 0, then {x;} converges strongly as t — 0 to a fixed point X of T, which is the

unique solution of variational inequality (3.2).

First, we prove the following result in order to establish strong convergence of the se-
quence {x,} generated by the general composite explicit scheme (3.3).

Theorem 3.2 Let {x,} be the sequence generated by the explicit scheme (3.3), where {a,}
and {B,} satisfy the following condition:

(C1) {a,}cl0,1] and {B,} C (0,1], @), — 0 and B, — 0 as n — oo.
Let LIM be a Banach limit. Then

LIM, (((A - D)%% - x4)) <0,
where X = lim,_, o+ x, with x; being defined by

x = (I — 0,A)Sx, + 6, ty Vo, + (I — tuF)Sxy ], (3.8)
where S : H — H is defined by Sx = Ax + (1 - A\)Tx for0 <k <i<1.

Proof First, note that from the condition (C1), without loss of generality, we assume that
0< B, <Al forall » > 0.

Let {x;} be the net generated by (3.8). Since S is a nonexpansive mapping on H, by The-
orem 3.1 with 7; = § and Lemma 2.5, there exists lim;_,ox; € Fix(S) = Fix(T). Denote it
by %. Moreover, ¥ is the unique solution of the variational inequality (3.2). From Proposi-
tion 3.1(i) with T; = S, we know that {x;} is bounded, so are {Vx;} and {FSx;}.

First of all, let us show that {x,} is bounded. To this end, take p € Fix(T) = Fix(T},), Then
it follows that

lyn =PIl = ety Vitu + (U = awitF) Tt~ p|
= Han(y Vit — uEp) + (I = oty b F) Ty — (I = anMF)Tnp”

< (L-au(t = yD)llxs—pll +aully Vo - uEpl,

and hence

%ne1 —pIl = ” (I = BnA) Tyn + Bryn —P”
= | = BuA) Tty — (I = BA)Tup + Bu(yn — p) + Bul — A)p||
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< |t = BuA) Tt = (I = BoA)Tup | + Bullyn — Il + Balll = Alllp
< (L= BuP)%n = pll + Bal (1 = au(r = ¥ D) llxn = pll + aully Vo — 1Epll]
+Bulll - Alllpll

< (1= Bu(7 = D)y = pll + Bu(lly Vo - wEpll + I = Allllpl)
ly Ve — nkpll + I = Alllipll

(1= Bu( =) llxn = pll + Bu(¥ = 1)

y -1
ly Ve — nkpll + Il - Allllpl
< max [lx, - pl, — .
y -1
By induction
ly Vo — ukpll + I = Alllpll
nxn—pnsmax{nxo—pn, 2 ’;_1 PR wnzo.

This implies that {x,} is bounded and so are {Tx,}, {T,x,}, {FTuxn}, {Vx,}, and {y,}. Asa
consequence, with the control condition (C1), we get

Ine1 = Tl = Bullyn — AT x|l — O (n — 00),
and

”Sxt — Xn+l || = ”Sxt - an” + ”an - Tnxn” + ” Tnxn _xn+1”
< % = xull + 1A = Aullloen = Tl + [ Tt — X1
= ”xt —Xn ” + €y, (3‘9)
where e, = |A — Aylllxy — x| + %041 — Tuxnll — O as m — oco. Also observing that A is
strongly positive, we have
(A%, — A, — %) = (Al — %0), % — %)

> Vllxe —xall®. (3.10)
Now, by (3.8), we have

Xy —Xps1 = ([ — 0 A)Sx; + Ot[ty Ve + (I - t,uF)Sxt] — Xil

= -0,A)Sx; — (I —0;A)x,,1 + Gt[ty Va, + (I — tiuF)Sx, — Ax,,+1].
Applying Lemma 2.1, we have

2
”xt —Xn+l ”2 S || (1 - etA)Sxt - (I - etA)erl ||
+20,(Sx, — t(WFSxy — y Viy) — A1, % — X )
< (L= 0,7)211S%; = %sa 1> + 260, (Sxy — %0, % — K1)

— 20, (WESx; — Y Vg, % — Xpa1) + 200 (%t — AXppy1, X0 — K1) (3.11)
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Using (3.9) and (3.10) in (3.11), we obtain

lloct — %11

< (L= 071185 = Xwa II* + 26, (S = %0, X = Xovs)
+ 20,t(y Vxy — WFSxs, Xt — X141)
+ 20, (% — AXpyi1, % — Xpa1)

<@1- 9t7)2(||xt — x| + en)2 + 20, || S0y — x|l 116 — X
+ 205ty Ve — WESxe |12 = X | + 260, (6 — A%, X6 — X41)

= (077 = 26)V e = xull® + e = xall® + (1= 6,7)* (2l1; — %]l + €5,)
+ 200115 — xe e — X | + 20,21y Viey — nESxe || 1% — X
+ 204 {0y — AXpi1, Xt — Xpa1)

< (077 — 20,) (Ax; — A%y 20 — %) + |2 = 241> + (1= 0,7)° (2]l — %nllen + €)
+ 20| S — x|l o6y — x| + 2681y Voo — wESxe || |2 — X |l
+ 204 (% — AXpi1, Xe — Xpa1)

= 07V (Axy — A0 — %) + 0 = x> + (1= 0,7)% (20| — xnllen + €3
+ 20 || Soc — e[ |6 — X || + 29tt|| y Vaey — WF(Sx¢) ” [l — %41
+20,[ (0 — A1, % — X)) — (A% — A%y % — %) |

= 07V (Axe = x), %0 = %) + 1xe =2l + (1= 6,7)* (2112 = xullen + €})
+ 20, (1S — xe % — Xnar | + 20,21y Vaee — wESxe || 1% — X
+20,[((I = A)xe, % — ) + (Al — K1), % — i)

— (A = ), 20 — x)]. (3.12)
Applying the Banach limit LIM to (3.12), together with lim,_,» e, = 0, we have

LIM,, ([l = %01 [1%)
< 027 LIM,, ({A (%, — %), % — %)) + LIM, [l — x,[1%)
+ 26,11 Sx; — ¢ || LIM,, (Il — %111
+20,t||y Vi, — WF Sy || LIML, (112, — %11l
+20,[LIM, (I — A)xz, % — %41)) + LIM,, (A — X41), % — X11))
— LIM, (A, — %), 2 — %)) |- (3.13)

Using the property LIM, (a,) = LIM,(4,.1) of the Banach limit in (3.13), we obtain

LIM, (((4 ~ D), — )
= LIM,,({(A = Dz, — %41))

< 7 LM, (A G~ )
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1
+ g[LIMn(nxt —xal1?) = LIM, (Il — 241 11%) ]
t

+ [1Sx — x| LIM, ([l — %4 1) + £y Vty — S || LIM, ([l — 4 l)
+LIM,, ((A(xt — K1) Xy — xn+1)) - LIM,, ((A(xt — X)Xy — xn))

= @77 LIM,, ((AGxe = %), %, = %))

+ 118, = e[| LIML, (11 = 1) + lly Vie — S| LIML, (11 = %)

Since

9t<A(xt — %), K¢ — xn) < Ol AN I — 24>

<6,K—0 (ast— 0),
where ||A| [l%; — %] < K,
[ISx; — x| > 0, and ¢t|ly Vx;— uFSx]| — 0 (ast— 0),
we conclude from (3.14)-(3.16) that

LIM,, (((A = )% % - x,)) < limsup LIM,, (((A — D)%, %, — %))

t—0

0.7
=< timsup = LIM, (A - 2,), % ~ 3,))
t—0
+ limsup [|Sx; — x| LIMn(||xt - xnll)
t—0
+ limsup ¢y Vx, — WESx, || LIM,,(IIx,g - Xy, ||)

t—0

=0.

This completes the proof.

(3.14)

(3.15)

(3.16)

O

Now, using Theorem 3.2, we establish strong convergence of the sequence {x,} gener-

ated by the general composite explicit scheme (3.3) to a fixed point X of T, which is also

the unique solution of the variational inequality (3.2).

Theorem 3.3 Let {x,} be the sequence generated by the explicit scheme (3.3), where {a,}

and {B,} satisfy the following conditions:
(C1) {a,}c[0,1] and {B,} C (0,1], o, — 0 and B, — 0 as n — o<;
(CZ) Z;io ﬁn = 0oQ.

If {x,,} is weakly asymptotically regular, then {x,} converges strongly to x € Fix(T), which is

the unique solution of the variational inequality (3.2).

Proof First, note that from the condition (C1), without loss of generality, we assume that

o,T <1and %Z;D <1foralln=>0.
Let x; be defined by (3.8), that is,

Xy = (I — 0,A)Sx; + 0, [Sxt - t(,uF(Sxt) -y th)]
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for t € (0, min{1, IZ—;ZI})’ where Sx =Ax + 1 —A)Tx for 0 <k <A <1, and lim;,¢x; :=% €
Fix(S) = Fix(T) (by using Theorem 3.1 and Lemma 2.5(iii)). Then ¥ is the unique solution
of the variational inequality (3.2).

We divide the proof into several steps as follows.

Step 1. We see that

ly Vo — nkpll + I - Allllpll
llcn = plI §max{||xo -pl, =1 , VYn>0,

for all p € Fix(T) as in the proof of Theorem 3.2. Hence {x,} is bounded and so are {Tx,},
{Twxn}, (FTuxu}, {Van}, and {y,}.
Step 2. We show that limsup,,_, . (({ — A)¥,x, — %) < 0. To this end, put

a, = <(A —1)35,35—76,1), Vn>0.

Then Theorem 3.2 implies that LIM,(a,) < 0 for any Banach limit LIM. Since {x,} is
bounded, there exists a subsequence {%n;} of {x,} such that

limsup(a,.1 — a,) = lim (a1 — ay;)
n—00 J—> o0 / /

and Xy ~VE H. This implies that Eye1 =V since {x,} is weakly asymptotically regular.
Therefore, we have

w—Ilim&-x,.1)=w-lim®-x,)=X-v),
j—00 / j—00 /

and so

lim sup(a,+1 — a,) = lim ((A -Dx,(x - K1) = (x - xn/.)) =0.
}%OO

n—0oQ

Then Lemma 2.2 implies that limsup,,_, ., 4, <0, that is,

lim sup<(1 — AVX, x, — %) =lim sup((A -Dx,% - xn) <0.

n— 00 n—00

Step 3. We show that lim,,_, « ||x, — %|| = 0. By using (3.3) and T,,% = %, we have
Yn =% = ([ = ytF) Ty — (I — 0t bF) T,% + aty(y Vi, — WFX),
and
K1 =X = ([ = BuA) Tty — TpX) + Bu(yn — %) + Bu(l — A)%.
Applying Lemma 2.1, Lemma 2.6 and Lemma 2.7, we obtain

19 = FI1> = [ (I = 0&nE) Tt — (I = 1y F) T + (v Vit — i F%) |°

< U = otnF) Tt = (I = potn YT, E|* + 200y Vit — 1FR, y, ~ %)
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<1 —anf)znxn _35”2 + 20,y Va, — uFX|| 1y —X||

< llon = %> + 20 lly Vitw — WFX | |y — %I,

and hence

Ier =312 = | = BuAN (Tt — To%) + Bulyn = %) + Bull — A)F|?
< | = BuA) (T = TR | + 280y = %o 1 - F)
+ 2B = A)F, X1 — %)
< (1= Bu7 160 = T + 2B 19 — F 01 — 7
+ 2B — A%, X1 — %)
< (L= Bu7 160 =T + B (17 = FI? + %1 —F?)
+ 2B = A)%, X1 — %)
< (1= Bu¥)* Iu — %I
+ Bul 6w = RN + 2001y Vit — WER | 1y — %]
+ Bull%ns = %[ + 28,((I — A)X, %11 — %)
= [@= Ba7)? + Bu] 2w =TI + 200 Bully Vit — wER s 3|

+ lgn”xnﬂ _%”2 + 2ﬂn((1 _A)%;xrul —%> (3'17)

It then follows from (3.17) that

_ —\2
1 —F2 < wnxn —%?
1-58,
I fj,e [2etnly Vitn — ER Iy = + 2{(0 = A, 01 — 3]
_ 2:‘3;1(7_ 1) |12
_ (1_ o )nxn—xu
28,7 -1) %
A 35D [2aully Vi, — wEX| Iy, — %

+ B 0 = FI? + 2~ AV, %0~ F)]

~n2
= (1= on)ll%n = X" + @by,

where

- 2:3;4(7 - 1)
" 1- IBn
1 ~ _ ~ ~ ~
8 = m[wnﬂy Vitw — WEX | |yn = %I + Ba ¥ len = FII* + 2{(I — A)F, %s1 — X))
It can easily be seen from Step 2 and conditions (C1) and (C2) that w, — 0, Y o @, =

oo and limsup,,_, ., 8, < 0. From Lemma 2.3 with r, = 0, we conclude that lim,_, ||%, —
%|| = 0. This completes the proof. O
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Corollary 3.2 Let {x,} be the sequence generated by the explicit scheme (3.3). Assume that
the sequence {o,} and {B,} satisfy the conditions (C1) and (C2) in Theorem 3.3. If {x,}
is asymptotically regular, then {x,} converges strongly to ¥ € Fix(T), which is the unique

solution of the variational inequality (3.2).
Putting © =1, F =I and y =1 in Theorem 3.3, we obtain the following.

Corollary 3.3 Let {x,} be generated by the following iterative scheme:

Y =, Vi, + (1 — o) Tyixy,

X1 = (= BrA) T + Buyn, VYn=0.

Assume that the sequence {o,} and {B,,} satisfy the conditions (C1) and (C2) in Theorem 3.3.
If {x,,} is weakly asymptotically regular, then {x,} converges strongly to x € Fix(T), which is
the unique solution of the variational inequality (3.2).

Putting o, = 0, Vi > 0 in Corollary 3.3, we get the following.

Corollary 3.4 Let {x,} be generated by the following iterative scheme:
Xni1 = (= BpA) T + BuTuxn, Yn > 0.

Assume that the sequence {B,} satisfies the conditions (C1) and (C2) in Theorem 3.3 with
a, =0, Vu > 0. If {x,} is weakly asymptotically regular, then {x,} converges strongly to

x € Fix(T), which is the unique solution of the variational inequality (3.2).

Remark 3.1 If {@,}, {8} in Corollary 3.2 and {A,} in T, satisfy conditions (C2) and

(C3) ZZZO otys1 — oty | < 00 and Ziio |Bu+1 — Bul < 00; or

(C4) 302, lotnsn — oty | < 00 and lim,,, o % =1 or, equivalently, lim,,—, o % =0 and

n+l -

lim,,— oo % =0; or,

(C5) D020 a1 — aty| < 00 and | Byst — Bul < 0(Bus1) + O D g On < 00 (the perturbed
control condition);
(C6) 20 Ans1 = Aul < 00,
then the sequence {x,} generated by (3.3) is asymptotically regular. Now we give only the
proof in the case when {«,}, {8,}, and {1, } satisfy the conditions (C2), (C5), and (C6). By
Step 1 in the proof of Theorem 3.3, there exists a constant M > 0 such that, for all # > 0,

len = Txnll < M, MIFT x|l + v IVl <M, and A Txall + lyall < M.
Next, we notice that

1 Tuxn — Tuoixnall < N Tuxn — Tuxp-a |l + | Tpuxn-1 — Ty1Xu-1l
< xn =1l + 1A = Ayl 1601 — Topa ||

= “xn _xn—IH + |)\n - )\n—l |M
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So we obtain, for all # > 0,

171 = yua
= [l ny (Van = Vauor) + v (0t — 1) Viewa
+ (I =yt F) Tty — (I = 0yt F) Tp1tpey + (0t — 0tue1)ETpo11 |
< (L= anlt = YD) Tutn = Tucano | + Lot — et | (¥ [ Vituoa | + I FTpo161 )

=< (1 - an(f - yl))(”xn _xn—IH + |)\n - )\n—l |M) + |an - an—1|Mr

and hence

[1%241 = %]
= (I = BaA) Tk + Buyn = I = ButA) Tnor%nt — Bu-rVn |
< ||t = BAN T — Tyor2n1) |
+1Bn = Bua AN Tya®na | + Bullyn = yu-rll + 1Bn = Bu-alllyn-ll
<A =BV Ty — Ty1xnll
+ Bu(1 = au(t = 1)) (%0 = Xt l + (A = A1 [M) + Buloy — pa M
+ 181 = Buca | (AN Tucatna || + 1yn-all)
< (1= Bu¥) (10 = Fna | + [An = Ano1|M)
+ Bu[ (1= au(t = ¥ D) (1% = %t ll + [An = Aot |M) + 0ty — a1 |M]
+1Bn = B lM
< A= BuY)xn = 1l + (2w = Ay M
+ Bullxn — Xl + [Ay — Ay IM + |ty — aya M+ | By — By IM
= (1= Bu¥ = D) %0 = xucall + 1B — Buca IM + 2| A = Apa M + |ty — €ty | M
< (1= B = D)% = xpall + (0(Bn) + 001) M + |ty — 0ty1 M
+ 2|Ay; — A1 M. (3.18)

By taking s,41 = %441 — %4, @y = B.(¥ — 1), 0,8, = Mo(B,,) and r, = (|ey, — &y1| + 01 +
2| Ay — Ayo1|)M, from (3.18) we have

Sp+1 = (1 - wn)sn + wnan + 7y
Hence, by the conditions (C2), (C5), (C6), and Lemma 2.3, we obtain
lim ||xn+1 _xn” =0.
n—00
In view of this observation, we have the following.
Corollary 3.5 Let {x,} be the sequence generated by the explicit scheme (3.3), where the

sequences {0}, { B}, and {1} satisfy the conditions (C1), (C2), (C5), and (C6) (or the con-
ditions (C1), (C2), (C3) and (C6), or the conditions (C1), (C2), (C4), and (C6)). Then {x,}
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converges strongly to ¥ € Fix(T), which is the unique solution of the variational inequal-
ity (3.2).

Remark 3.2 (1) Our results improve and extend the corresponding results of Ceng et al.

[18] in the following respects:

(a) The nonexpansive mapping S: H — H in [18] is extended to the case of a k-strictly

pseudocontractive mapping T : H — H.

(b) The contractive mapping f in [18] with constant & € (0,1) is extended to the case of

a Lipschitzian mapping V with constant / > 0.

(c) Therange O <ya <t =pu(n- “sz) in [18] is extended to the case of range

0<yl<t=1-/1-u2n—-up?). (For this fact, see Remark 3.1 of [17].)

(2) We point out that the condition (C3) > "2 [&y41 — | < 00 and > e | Bus1 — Bul < 00

in [18, Theorem 3.2] is relaxed to the case of the weak asymptotic regularity on {x,} in
Theorem 3.3.

(3) The condition (C5) on {8, } in Corollary 3.5 is independent of condition (C3) or (C4)

in Remark 3.1, which was imposed in Theorem 3.2 of Ceng et al. [18]. For this fact, see [24,
25].

(4) Our results also complement and develop the corresponding ones given by Cho et

al. [5] and Jung [6-8] for the strictly pseudocontractive mapping as well as Yamada [12],

Marino and Xu [13], Tian [15] and Ceng et al. [17] for the nonexpansive mapping.

(5) For several iterative schemes based on hybrid steepest-descent method for general-

ized mixed equilibrium problems, variational inequality problems, and fixed point prob-

lems for strictly pseudocontractive mappings, we can also refer to [26—32] and the refer-

ences therein.
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