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Falls are unintentional: Studying
simulations is a waste of faking time

Emma Stack1,2

Abstract

Researchers tend to agree that falls are, by definition, unintentional and that sensor algorithms (the processes that allows

a computer program to identify a fall among data from sensors) perform poorly when attempting to detect falls ‘in the

wild’ (a phrase some scientists use to mean ‘in reality’). Algorithm development has been reliant on simulation, i.e. asking

actors to throw themselves intentionally to the ground. This is unusual (no one studies faked coughs or headaches) and

uninformative (no one can intend the unintentional). Researchers would increase their chances of detecting ‘real’ falls in

‘the real world’ by studying the behaviour of fallers, however, vulnerable, before, during and after the event: the literature

on the circumstances of falling is more informative than any number of faked approximations. A complimentary know-

ledge base (in falls, sensors and/or signals) enables multidisciplinary teams of clinicians, engineers and computer scientists

to tackle fall detection and aim for fall prevention. Throughout this paper, I discuss differences between falls, ‘intentional

falling’ and simulations, and the balance between simulation and reality in falls research, finally suggesting ways in which

researchers can access examples of falls without resorting to fakery.
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Introduction

Researchers tend to agree that falls are, by definition,
unintentional and that sensor algorithms (the processes
that allows a computer program to identify a fall
among data from sensors) perform poorly when
attempting to detect falls ‘in the wild’ (a phrase some
scientists use to mean ‘in reality’). Algorithm develop-
ment has been reliant on simulation, i.e. asking actors
to throw themselves intentionally to the ground. This is
unusual (no one studies faked coughs or headaches)
and uninformative (no one can intend the uninten-
tional). Researchers would increase their chances of
detecting ‘real’ falls in ‘the real world’ by studying the
behaviour of fallers, however vulnerable, before, during
and after the event: the literature on the circumstances
of falling is more informative than any number of faked
approximations. A complimentary knowledge base (in
falls, sensors and/or signals) enables multidisciplinary
teams of clinicians, engineers and computer scientists to
tackle fall detection and aim for fall prevention.
Throughout this paper, I discuss differences between

falls, ‘intentional falling’ and simulations, and the bal-
ance between simulation and reality in falls research,
finally suggesting ways in which researchers can
access examples of falls without resorting to fakery.

Falls are unintentional, by definition

Clark et al.1 defined a fall as

an event that results in a person coming to rest unin-

tentionally on the ground or other lower level, not as a
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result of a major intrinsic event or overwhelming

hazard

In defining falling, researchers tend to focus on the
event, while elderly people and health-care providers
tend to focus on the antecedents and consequences.2

Interpretations differed widely when 477 community-
dwelling elderly people and 31 community-based
health-care providers defined a fall, so researchers and
clinicians should always define what they mean by
‘falling’. Clearly, at that time, falls researchers did not
always do so: only 46/90 papers reviewed in 20063

included a definition of falling; two of the most fre-
quently cited were by the Kellogg group4

unintentionally coming to the ground or some lower

level and other than as a consequence of sustaining a

violent blow, loss of consciousness, sudden onset of

paralysis as in stroke or an epileptic seizure

and the FICSIT collaboration5

unintentionally coming to rest on the ground, floor or

other lower level

The above definitions illustrate the consensus that falls
are unintentional, inadvertent, involuntary, or accidental
events, after which the individual comes to rest at a
lower level. Despite this consensus amongst clinical
researchers, a 2013 review on body-worn sensors6

found that papers on fall detection still frequently
‘lacked an established definition’. Definitions such as
‘any abnormal movement with respect to ADL’7 omit
the key feature of falling, i.e. finding oneself heading
unexpectedly down to the ground and allow researchers
inappropriately to label ‘experimental’, ‘active’ or
‘intentional’ actions as ‘falls’.

Some8 describe simulations performed by volunteers
as ‘experimental falls’, some9 as ‘falls’. The use of ‘per-
form’ in the sentence ‘eight healthy adult subjects were
arranged to perform . . . two kinds (of) fall activities
(active and passive)’10 means neither activity was falling.

Researchers have developed algorithms capable of
discriminating simulations they deemed ‘intentional
falls’ from other activities.11–13 As participants had
thrown themselves to the ground, no algorithm actually
detected falls (despite the papers’ titles). Clinically,
people who present in such circumstances differ
from people who have fallen. Researchers found that
144 people who had thrown themselves from a height
intentionally tended to be older and to have descended
from a greater height than 8992 people who presented
at hospital having fallen from a height; a greater pro-
portion were female and they were more likely
die before reaching hospital or during treatment than

the fallers.14 For various reasons, some hospital inpa-
tients intentionally drop (or throw themselves) to the
floor. Defining their planned actions (neither sudden
nor unintentional) is a challenge when monitoring
falls in hospital: Staggs et al.15 suggested categorising
situations in which ‘a patient aged 5 years or older falls
on purpose’ as ‘intentional fall events’, a term that
researchers studying simulations could adopt.

Researchers need not add adjectives to the word fall,
if they define falling appropriately. ‘Accidental’, ‘Real’,
‘Real-world’ and ‘Unintentional’ falls are simply falls.
In the current paper, I call any events that meet Clark
et al.’s definition1 ‘falls’ and any intentional descents to
the floor ‘simulations’.

The circumstances of falling: The reality

The circumstances of falling have attracted consider-
able interest among researchers. While an individual’s
risk factors for falling (such as age and function) are
constant, no one falls constantly: the interaction
between their behaviour and their environment triggers
an individual to lose their balance where and when they
do. To prevent falls and their consequences, clinicians
need to understand how and why someone has fallen
previously. They may do this by taking a ‘fall history’
to elucidate the circumstances surrounding a fall, which
will encompass:

In reality, these elements happen together: fallers
may be engaged in a task when, without warning,
they are unable to stop themselves hitting the unforgiv-
ing ground. Actors awaiting instructions to simulate
‘falling’ onto a laboratory crash mat are going to
behave very differently in actively making movements
and striving for positions that fallers do their best to
avoid. Fallers’ own accounts often emphasise a bewil-
dering lack of control that is impossible to fake:

Trying to open the back car door, my balance went and

I was on the floor16

I turned with my body but my legs wouldn’t move17

Tripped walking to car; (landed) face downwards, in

sprawl; fractured nose, damaged hand17

Before balance loss Loss of balance After balance loss

1. Faller’s location

2. Fall-related activity

i.e. what the faller was

doing or attempting

3. Suspected cause

i.e. why the faller fell

there and then

4. Landing

(direction; contact)

5. Injuries sustained

6. Help needed

(to get up,

and/or healthcare)
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Healthy, active adults. Even among healthy, active adults,
a proportion fall, sustaining injury (including, hip frac-
tures: the most serious injuries predominantly sustained
through falling). One quarter of 431 ‘relatively healthy’
elderly Norwegians interviewed had fallen in the previ-
ous six months; 55/104 fallers (53%) were injured and
15 fallers (14%) sustained fractures (including seven
hips) during their last fall.18 Half of 96 ‘healthy,
active’ elderly Australian women tracked for a year
(using falls diaries and monthly phone calls) fell;
44/47 fallers (94%) were injured and nine fallers
(19%) sustained fractures (including two hips).19

In both studies, most falls were outdoors (often in the
street), most during walking, and most attributed to
external causes (rather than impaired function), com-
monly tripping (followed by steps and slipping).

A longitudinal study on aging20 illustrates how the
frequency and circumstances of falling change.
Researchers analysed the two-year fall histories of 292
young (20–45 years), 616 middle-aged (46–65 years)
and 589 older people, 94% of who rated their health
as good or excellent. With age, the proportion falling
rose from 19% to 21%, then 35%, and the proportion
falling at home rose from 1% to 4%, then 10%. Young
people tended to fall walking, running or during sport;
middle-aged people walking, during sport or on steps
and older people walking, on steps or during transfers.
With age, the proportion injured falling rose from 13%
(commonly wrists/hands, knees and ankles) to 15%
(commonly knees), then 25% (commonly head and
knees), and the proportion sustaining fractures rose
from 1% to 2%, then 5%. Fall detection sensors are,
however, more likely to contribute to managing the
risks associated with falling among less healthy popu-
lations than these.

Vulnerable populations. Some groups fall more frequently
than do healthy, active adults – and under different
circumstances. Two-thirds of 1172 falls (67%) by 328
older adults at high risk of falling happened at home.21

The most common fall-related activity was walking
(27%, followed by standing up, steps, reaching, turning
and bending), caused by ‘loss of balance’ (32%), trip-
ping (29%) and slipping. Falling forward was common
(42%), followed by sideways, backwards into sitting
and backwards into lying.

The more fallers differ from the volunteers faking
falling, the less realistic the simulations. People with
cognitive impairments are particularly vulnerable:
some expose themselves to risks and cannot manage
the consequences. Common ‘behavioural factors’ in
falls by people with intellectual disabilities22 include
distraction (e.g. forgetting a step), rushing (individuals
‘losing balance through their own momentum’)
and unsafe behaviours (e.g. leaning on inappropriate

support, performing tasks when unwell and careless-
ness with or avoidance of mobility aids). Wandering,
delirium and symptoms of urinary tract infection are
commonly associated with falls among people with
dementia.23 Two-thirds of 229 falls occurred inpati-
ents’ own rooms on a psychogeriatric ward in
Sweden. Falls when standing or walking (46%) and
from the bed or chair (42%) were common but
people had fallen sitting down, toileting, in conflict
with others and climbing over bed rails. Of 276 falls
by Japanese nursing homes residents with dementia,24

most occurred in people’s bedrooms: one-third (32%)
caused minor injuries (frequently to the head) and
nine (3%) caused fractures.

Fallers with physical impairments also fall in circum-
stances difficult to simulate. Some people with impaired
mobility use walking aids (sticks or frames) to reduce
pain during weight bearing, improve balance control or
to compensate for generalised frailty. However, the
risk of falling associated with walking aids (through
tripping over them or them impeding balance control)
that frequently hospitalises a ‘highly vulnerable popu-
lation’ may be under-recognised.25 For example:

I can’t get out of the habit of rushing and the next

minute, I only took two steps and got my foot caught

in the trolley, hit the ground and cracked my jaw16

Data on people aged 65 and older treated in US emer-
gency departments often implicates walking aids in
falls. In one study, 60% of 3932 injuries identified
occurred at home and 16% in nursing homes.25

Frequently, tripping while walking led to falling but
in some cases, the aid caught an obstacle and the user
fell. Some people with Parkinson’s slow down and
shorten their stride when using a walking aid for the
first time,26 immediate gait changes that ‘may predis-
pose individuals . . . to instability and falls’.

People with a neurological condition: For example,

Parkinson’s. The differing circumstances in which
people with Parkinson’s and stroke fall show that
some features show a tendency toward disease specifi-
city. Stack and Ashburn27 interviewed 55 people with
Parkinson’s (mean age 72) a mean four years after their
diagnoses, most of whom (47, 85%) had fallen and/or
nearly fallen in the previous year. Using similar ques-
tions, Hyndman et al.28 interviewed 21 people with
stroke (mean age 69), half of whom (a mean 51
months post-stroke) had fallen once in the previous
year, half of whom (mean 22 months post-stroke) had
fallen repeatedly. In both studies, falls happened most
frequently at home, notably in bedrooms, living rooms
and gardens but the fall-related activities and suspected
causes differed. People with Parkinson’s fell turning,
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reaching or carrying, largely after tripping, whereas
people with stroke fell walking, turning or transferring
to or from sitting, largely after losing their balance,
inattention or dragging their feet. The former com-
monly fell forwards (‘I feel I’m going forwards and
I stagger forwards’); the latter commonly fell sideways
(with 12 falls (24%) causing minor injury and three
(6%) causing clavicle, pelvis, rib and thumb fractures).
A later study17 echoed these findings: among 124 people
with Parkinson’s, 80% of 639 falls had happened at
home (in bedrooms, living rooms, kitchens or gardens).
Over half (55%) followed:

. Tripping when ambulant: 13%

. Freezing, festination and retropulsion (standing or
ambulant): 11%

. Balance lost:
� Bending or reaching from standing: 9%
� During transfers: 8%
� When walking: 7%
� When washing or dressing: 7%

Stack and Roberts29 focused on the circumstances
surrounding the minority of falls among people with
Parkinson’s happening away from home. The 249 falls
that 136 people (median age 72; median years since
diagnosis eight) described frequently followed trips,
inattention or freezing, or happened when they were
attempting to turn or hurry. Most falls (58%) were
forwards; one quarter (26%) caused minor injuries;
3% caused fractures or dislocations. The circumstances
of falling differed with fall frequency. The 19 (14%)
who fell only once commonly fell walking (e.g. missing
their footing) or when transferring to or from sitting.
Repeat fallers felt ‘shaken’ and sought medical advice
after falling. The 31 most frequent fallers (at least
monthly: a median 18 falls at home and six elsewhere)
commonly fell backward, in shops and after a collapse.

You cannot fake any of this. Researchers need to consider
tailoring fall detection to specific people and events, as
it is unlikely any single algorithm could detect the
whole spectrum of falls: researchers trying to detect
‘fainting’ events,30 conceded that other events such as
tripping and slipping would appear very different.

Falls happen for different reasons, with different out-
comes, in different settings. Fallers from vulnerable
groups have physical and cognitive impairments no
actor could fake: for example, a faller with
Parkinson’s fell (when frozen) while their ‘feet felt as
if they were glued to the ground’.27 At the other end of
the spectrum, people fall during strenuous activities:
50 community-dwelling people (aged 60 or older) fell
91 times (hurrying (31%), inattentive, slipping or trip-
ping) when walking on level or uneven ground (24%

each), hurrying to complete work, gardening or carry-
ing something heavy or bulky.31 Throwing oneself
to the ground from a stationary start would poorly
simulate these falls, let alone the loss of leg sensation
that preceded three, or the 13 injurious landings
that necessitated intervention. To summarise, an actor
cannot fake:

Some argue that automatic fall-detection has had
limited success ‘in the wild’ because focusing on accel-
erations overlooks potential changes in the faller’s
orientation7 or because elderly people fall more slowly
than the simulations studied.32 Observing falls would
confirm that fallers often change orientation, crashing
to the ground. Falls can be fatal, confusing, embarrass-
ing and painful:

Not sure (what happened); turned quickly opening kit-

chen door and lost balance; (landed) heavily on side,

banged head; cut head, arm and shoulder17

The pavement went like that, and then you had a step,

and then you had the front door with a very high

threshold and although I had a handle on the door,

as I said, my hands were full so I just went flying16

Investigating falls (and fallers) like these would elimin-
ate some of the need for speculation and allow
researchers to design and test sensors and algorithms
appropriately.

Simulated falls

Actors are nothing like fallers. Simulators have tended to
be much younger (typically in their 20 s and 30 s), heal-
thier and higher functioning than most fallers. While
the gulf between fallers and actors is probably why
algorithms trained on simulations function poorly ‘in
the wild’, it is also noteworthy that the sample sizes
have been very small: the 16 sample sizes below
ranged from 1 to 21 (median n¼ 10). Even if the

The faller

(Age; Function)

Before

balance loss

(Environment;

Activity)

Loss of

balance

(Sensation;

Control)

After

balance loss

(Landing; Injury)

j j j j

People with and

without

physical and/

or cognitive

impairments

move (e.g.

turn)

differently

Few falls are from

stable, station-

ary positions;

none occur on

command,

under con-

trolled

conditions

Active and pas-

sive move-

ment differs;

e.g. you

cannot fake

collapse,

freezing or

inattention

Injuries arise from

unwanted

impact; control

throughout (to

guarantee a

safe landing) is

not falling
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participants had been elderly people with impairments
falling in reality, so few would not represent the wide
spectrum of fallers.

Simulations (active movements with cushioned landings) are

nothing like falls. Elderly people’s falls differ from
younger people’s simulations in the acceleration sig-
nals8 and acceleration and jerk39 generated.
Researchers acknowledge that the ‘movement of
younger subjects is bound to differ from that of the
elderly population’30 but persist in asking simulators
to fake falling in different ways and in different direc-
tions (e.g. stand beside a mattress, ‘relax’ and ‘fall to
the sides, back, and front’ to simulate fainting30) – but
intentional descent is not falling. Drawing on the litera-
ture to identify ‘common types of fall’7 does not make a
simulation a fall, and no amount of acting skill or
‘training’ by an ‘expert’ makes a performance realistic:

. A geriatrician instructed stuntmen to simulate ‘real-
istic falls’33

. Nurses ‘trained’ simulators10

. Volunteers took advice from a ‘medical expert in
order to mimic elderly’35

. Simulators had to ‘mimic realistic falling’, supervised
by physical education professional38

. Simulators were asked to ‘fall back as if you were a
frail old person’39

. Researchers sought ‘expert opinion’ to identify falls
for simulation11

Actors moving intentionally (in control of their
movements) are not going to land like a faller, particu-
larly on to a crash mat installed to meet ethical
requirements.7,11,30,33,37–38

Ethics: Research and publishing. Of course, researchers
must prioritise participant safety during studies. Some
justify their choice of younger simulators by arguing
that asking elderly people to simulate falling is inappro-
priate,7 unfeasibly ‘risky’35 or ‘ethically questionable’.40

Most cite the risk of injury, either when landing a simu-
lation30,34 or by landing on a behind-the-ear logger
‘during an unintentional fall’.11 However, if we know
that simulations and falls differ (so studying one reveals
little about the other), is it appropriate to ask anyone to
take risks for minimal scientific advance, at best?
Whether it is appropriate to attach a logger that could
cause injury if fallen upon to a faller’s head is debatable.

Furthermore, if a team has only studied simulations,
is publishing a paper with ‘falls’ in its title misleading?
Quite appropriately, some write about ‘Detecting
Simulated Falls’41 or ‘Fall Activity Detection’10 while
those who studied falls,8,39 include ‘falls’ in paper
titles. However, ‘fall detection’ is in the title of every
other paper listed above, though the research was all on
simulations.12,13,32,33,35,37 Without having studied falls,
authors write about distinguishing falls from daily
Activities of Daily Living (ADL)7,32,38 and claim pre-
impact fall detection is feasible.9,30,34,36

Simulation in clinical research

Simulation is appropriate in certain situations: it offers
some advantages over reality and, sometimes, may be
the only possibility. If a device is valid (adequately
matching reality) and researchers monitor the intended
and unintended effects of its use, it can simulate symp-
toms or be subject to significant intentional ‘injury’
(unlike a volunteer). For example:

Authors Simulators (ages in years)

Kangas et al.8 20 Middle-aged (mean 48)

Also compared 5 ‘real-life accidental falls’ (3 older people, median age 91)

Kangas et al.12 3 Healthy volunteers (median 42)

Leone et al.33 13 Professional stuntmen (30 to 40)

Lim et al.13 6 Healthy volunteers (20 to 50)

Su et al.9 3 Professional stunt actors (mean 32)

Medrano et al.7 10 Young and middle

aged volunteers

(20 to 42;

mean 31)

Wu and Xue34 10 Young adults (19 to 43)

Gjoreski et al.35 11 Young, healthy (24 to 33)

Aziz et al.36 10 Healthy students (22 to 32

Yuwono et al.37 8 Healthy volunteers (19 to 28)

Bourke et al.38 10 Healthy, young (mean 24)

Klenk et al.39 18 Healthy students (mean 24)

Also compared 5 ‘real-world backward falls’ (4 women, mean age 69, with

supranuclear palsy)

Nyan et al.30 21 Young, healthy (mean 23)

Liang et al.10 8 Healthy adults (not stated)

Li and Stankovic32 3 Graduate students (not stated)

Lindemann et al.11 1 Young, healthy gymnast (not stated)

How accurately does a simulation glove reflect function?42 Gloves simulating

rheumatoid arthritis in the hands made volunteers (mean age 38)

generate less power and complete tasks more slowly – but were not

‘a fully accurate match’ of patients’ (mean age 56) reduced function.

With accurately simulated impairment, healthy people could test aids

that might exacerbate real stiffness and pain.

The simulation of hallucinations43 Educators have used simulated hallucin-

ations to increase empathy towards people with schizophrenia, as it

would be unacceptable to induce actual hallucinations, but a review

indicates they must use them cautiously. Simulated hallucinations do

tend to increase empathy but also the desire for distance from people

experiencing real symptoms.

Simulating the Mechanics of Human Falls44 A device simulating hip impact

with the floor on falling could help test protective garments.

Estimation, simulation, and experimentation45 A dummy simulated head

deceleration and impact following a fall from bed.
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Approaches to simulation in falls research

Fall detection. Simulations offer fall detection researchers
no advantage over studying actual events: the inad-
equacy of algorithms stems from simulators and their
safe controlled actions differing significantly from fall-
ers and falls, particularly pre-impact. Recent systematic
reviews (on fall detection studies since 1998) describe
the insufficient evidence-base for commercially available
devices6 and state that creating highly accurate unobtru-
sive devices, subject to more ‘real-world testing’, remains
a challenge.46 For example, algorithms developed from
simulations generated up to 85 false alarms per day in one
faller’s home.47 The proportion of false alarms among
events detected ‘in the wild’ remains high: In a 10-day
study,10 ceiling mounted radar in an elderly person’s
living room detected 16 false alarms alongside 13 falls.

Although simulation is not the only way to train
sensors to identify fall risk, it has been the dominant
approach in recent years, generating a body of litera-
ture on ‘detecting simulated falling’. Papers include
processes and terminology with which clinical research-
ers will be relatively unfamiliar, so I conclude this sec-
tion with a summary for non-experts.

Sensing devices vary considerably; some are wear-
able, some are not, and every type has strengths and
limitations. Radar can sense motion.10 Doppler radar
uses the Doppler Effect to produce velocity data about
an object by bouncing a radio wave off a target (e.g. a
falling human) and analysing how the object’s motion
has altered the frequency of the returned signal.
The faller’s motion creates frequency change between
the signals sent and received by the radar but so do
other motions; signal processing is necessary to screen
out the ‘non-fall activities’10 such as ADL during which
falls commonly occur. Others33 have captured data
using camera-based systems.

Researchers have explored whether accelerometers
(e.g. embedded in smartphones7) can detect actions
that indicate someone is falling. An accelerometer is a
device that measures acceleration due to free fall.
At rest on a surface, it measures acceleration due to
Earth’s gravity of 9.81m/s2 (or 1 g), whereas in free
fall (at 9.81m/s2) it will measure zero. Others48 cap-
tured data using gyroscope-based wearable devices.
Gyroscopes measure angular velocity, the change in
rotational angle per unit of time, i.e. degrees per
second. Inertial measurement units contain accelerom-
eters (detecting rate of acceleration) and gyroscopes
(detecting rotational changes in pitch, roll and yaw):
some include a magnetometer, to provide orientation
(as in a compass) and to compensate for drift.

To test whether a device can detect an event (a fall or
simulation), researchers need to develop an algorithm:
a method by which a computer program can distinguish
the event from all other surrounding activity, such as

ADL. Raw signals from sensors require processing to
remove ‘noise’ before an algorithm is applied.
Researchers have developed algorithms using the
‘simple threshold method’11 or more sophisticated
‘machine learning methods’.36–37 In the former, the
sensor data indicates a fall if a parameter’s value (accel-
eration, angular velocity or combinations from both)
exceeds a certain threshold. For example, an algorithm
(for an accelerometer behind a volunteer’s ear11) recog-
nised an ‘intentional fall’ if acceleration of the head
towards the ground exceeded 2 g; velocity of all spatial
components pre-impact exceeded 0.7m/s (at impact
head velocity became zero) and acceleration of all spa-
tial components exceeded 6 g (a value never achieved
during ADL). In ‘machine learning methods’,36,37 with
‘potentially better detection rates’,49 various types of
event and ADL patterns are trained by a learning algo-
rithm, then an event is classified as either an event or
ADL by applying it to an evaluation algorithm.
Algorithms can detect events other than falls. Work on
detecting chair rises50 illustrates a problem common to
fall research: better detection rates under controlled con-
ditions (fully attending to a protocol) than in the wild
when additional movements introduce complexity and
‘larger variance’. Stepping right after rising impeded
the algorithm’s ability to estimate maximum acceleration
and jerk (rate of change in acceleration).

Fall assessment. Though actors cannot fake falling, indi-
viduals who have fallen or nearly fallen can simulate
previous experiences, to a point. Connell and Wolf51

used reconstruction to investigate ‘how personal factors
affect safety during routine environmental use’. They
asked 15 ‘relatively healthy’ community-dwelling indi-
viduals (aged 70–81 years) to describe and re-enact 19
incidents ‘to the point they felt comfortable doing so’,
and identified seven patterns:

. Excessive environmental demands (e.g. trip over an
untypically high door threshold)

. Collisions in the dark (e.g. with furniture en route to
the bathroom at night)

. Failing to avoid temporary hazards (e.g. tripping
over cable that is usually elsewhere)

. Preoccupation with temporary conditions (e.g. back-
ing into forgotten hazard, carrying a box)

. Frictional variations between shoes and floor (e.g.
soles prevented intended pivoting)

. Inappropriate environmental use (e.g. washing foot
in sink while watching TV in next room)

. Habitual environmental use (e.g. adjusting clothing
before sitting on the toilet)

This type of simulation informs researchers
and clinicians about the interaction between

6 Journal of Rehabilitation and Assistive Technologies Engineering



environmental conditions and the user’s behaviour
therein. Understanding the circumstances preceding
the loss of balance helps to prevent further similar
events. However, the approach stops short of the
point at which the individual lost their balance: by
definition, one cannot intentionally fall and it
would be ethically inappropriate to induce a fall.
For example, people fall leaning on support that
gives way:22 researchers could simulate this experi-
mentally using support that participants were
unaware was unsound.

Sensors could help researchers, clinicians and fallers
understand falls and near-misses (‘occasions on which
individuals felt that they were going to fall but did not
actually do so’27) throughout the whole event, from
before balance loss to after landing. Deploying sensors
in research might revolutionise what we know about
falls and fallers.

Studying real falls and real fallers

Schwickert et al.6 highlighted the ‘substantial lack of
real fall recordings’ in 96 articles, proceedings and
reports published between 1998 and 2012. Few
researchers have published acceleration data on a
falls by older people and their sensors have yet to
reveal the mechanisms underlying the falls captured.49

Relying on self-reporting has drawbacks, as ‘without
witnessing an event or having video to review, clin-
icians . . . can only glean what happened from someone’s
recollection’:52

. Fallers have little (if any) warning to act on before
balance is lost

. During the rapid descent, attention (if any) is dir-
ected towards damage limitation

. Landing may leave little (if any) evidence of the
cause or effects of falling

. Insights (if any) are likely to fade over time

Pijnappels et al.53 recruited 12 young (20–34 years)
and 11 older (65–72 years) volunteers to a study on the
kinematics and ground reactions forces of the support
limb during falls and successful recoveries after trip-
ping. An obstacle suddenly appearing from the floor
tripped the volunteers during a proportion of walking
trials. Seven of the older group would have hit the floor
had not a ceiling-mounted safety harness prevented
them. These events are still not falls. Researchers
have acknowledged that elderly people’s falls may
differ from simulations, for example, there being a
greater decrease in velocity at impact11 but few have
reported sensor data on falls and fewer still have com-
pared data from falls and simulations. We need to
observe, record and study real events.

Real falls

Successfully recording a significant number of real falls
requires sensors to be on the right people. Researchers
have observed one group who fell approximately 17
times per hour.54 Rather than limit themselves to exam-
ining ‘periodic gait over a straight, uniform path’, they
observed and recorded the spontaneous activity of 136
study participants in a laboratory and 15 in their
homes. They used handheld cameras in both settings,
supplemented by fixed cameras in the laboratory. By so
doing, the authors, who wanted to understand how
infants naturally learn to walk, found that 12- to
19-month olds put in immense practice, averaging
2368 steps and 17 falls an hour.

Successfully recording falls requires sensors to be in
the right location for the right length of time. Video
cameras successfully recorded 25 falls by 17 elderly resi-
dents, in the entrance hall of a care facility, over 15
months.55 Most occurred during walking (17, 68%);
four in standing (16%); two rising (8%) and two in sit-
ting (8%). In all but three cases, images were sufficiently
clear to reveal attempted saving reactions, including arm
extension (14 cases), stepping (10 cases), change in walk-
ing pace (3 cases) and grabbing (2 cases). Researchers41

have, however, turned to studying simulations after rec-
ording only four falls on a stroke unit, despite monitor-
ing 15 inpatients at high risk of falling (mean age 67) over
309 patient days (a mean 18 days per participant).
Clearly, 18 days was insufficiently long: someone falling
every 18 days would fall 20 times per year – and that is
very unusual. Unfortunately, the authors did not report
on any of the circumstances surrounding the four falls
recorded, let alone on the data from the bi-axial accel-
erometer participants wore. Others have omitted to
describe the events they detected, e.g.:

. Eight elderly inpatients at risk of falling (ages 75-plus)
wore accelerometers for a mean 21 days (168 days in
total) that detected eight ‘falling events’56

. Doppler radar detected 13 falls in 10 days in an eld-
erly person’s living room10

Klenk et al.39 reported on acceleration and jerk
during five backward falls by elderly people, selected
from 20 falls that they recorded when they monitored
29 patients for 48 h: we urge more researchers to collect
and report ‘real-world’ falls data in this way (though we
disagree with the argument that this might help develop
‘more realistic simulations’). We do agree that ‘real-life
acceleration data are needed to study fall mechanisms’:8

Kangas et al. provided data on five falls (after six
months testing wireless sensors with 16 residents of
Scandinavian elderly care units).

It is possible to record real falls – and the longer the
sensors are in the right position and the higher the
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participant’s risk of falling, the more likely one is to
achieve success. Clinicians on the team can identify fre-
quent fallers to recruit; engineers can describe more of
the events they capture.

Can we automatically detect ‘real’ falls? Researchers
acknowledge the need to establish whether their
algorithms recognise falls as well as simulations: testing
13 fall detection algorithms on a set of 29 falls, the effi-
cacy was much lower in the ‘real-world’ than when the
designers had tested them experimentally.47 In a recent
review of fall detection systems for older people,46 only
7% of the 57 reports on wearable systems (and none of
the 35 reports on non-wearable systems) included
monitoring in a ‘real-world setting’:

. A healthy, active 83-year-old woman (at low risk of
falling) monitored for a day did not fall11

. Two groups of five elderly people each wore a wear-
able system 8h per day for two weeks: during 833 h
monitoring, no one fell.57 Authors concluded devel-
opment was required as 42 false alarms triggered but
only nine transmitted to a caretaker site.

. Ten elderly people each wore a waist-worn acceler-
ometer for 3–7 h at home: during 52 h monitoring,
no one fell.58 Applying different algorithms, the
false-positives detected (e.g. bicycling or lying
down quickly) ranged between 1 and 45 per day.

. A system detected eight ‘falling events’ and 30 ‘alarm
release events’ when eight elderly inpatients (at risk
of falling) were monitored for a mean 21 days each,
168 days in total.56

There is clearly not yet a body of literature to sup-
port automatic fall detection, partly because most
papers are about detecting simulations and partly
because researchers who have ventured into ‘the wild’
have recorded very few falls. Of the studies above, only
one56 detected any falls; another10 recorded 13 falls
(along with 16 false alarms when adjusting a chair’s
height; standing up quickly and bending to pick up
an object). Balancing sensitivity and specificity in the
automatic detection of falls is important: failure to
detect a fall (by a system with high specificity) is poten-
tially more dangerous and expensive than a false alarm
mistaken for a fall (by a highly sensitive system). For
this reason, some researchers59,60 are considering cost-
sensitivity analysis rather than accuracy per se, in trying
to understood the costs associated with both false
alarms and missed alarms.

Real fallers

Being able to detect that someone has fallen, if
they need but cannot summon help themselves, is an

admirable aim. It is an aim that might well be met using
sensors and algorithms when researchers turn their full
attention from simulations to falls. In doing so,
researchers need to spend more time with people at
high risk of falling – and one way to do that is to recruit
people who have already fallen repeatedly to partici-
pate in studies in their own homes. Regardless of the
many challenges (technical and practical) associated
with moving outside the laboratory, and ever cognisant
of the ethical balance between risk and reward, appro-
priately skilled multidisciplinary research teams should
be able to include fallers in well run studies that address
the questions most worth asking. Studying a few rele-
vant participants is arguably better value than studying
a greater number of healthy volunteers, stuntmen, stu-
dents and gymnasts. Clinical researchers identifying,
recruiting and supporting people at risk of falling facili-
tate non-clinical colleagues’ work; more of the fall
detection literature needs multidisciplinary authorship.
Sensors on fallers when they fall could provide novel
and highly informative data – over and above simply
that someone is on the floor. Perhaps more exciting
than the possibility of using sensors to detect a fall
after it has happened, is the possibility of using sensors
‘in the wild’ to detecting a changing risk of falling
(enabling timely intervention to prevent falls). If
researchers found ways of detecting ‘near-misses’,
they could monitor their frequency and alert people
at risk of falling to any increase. Every argument
for studying falls, not simulations, applies equally to
the study of near-misses. Studying faked near-misses
would generate no more useful knowledge than study-
ing faked falls but one could argue that it is less ethic-
ally problematic to induce genuine near-misses than
genuine falls.

As the pressing issue in healthcare is not simply
detecting falls but preventing them, it is appropriate
to study and monitor near-misses, aiming to prolong
the time to the first fall. Near-misses may be a precursor
of future falls.61,62 Interviews with 586 community-
dwelling elderly people revealed that a history of two
or more stumbles in the past year predicted falling in
the following year.58 In six-month long ‘Fall Diaries’,
Lindholm et al.63 asked 141 people with Parkinson’s
(mean age 68 and years since diagnosis 2) ‘Were you
close to falling but managed to brace yourself at the last
moment (e.g. grab someone, an object or the wall?)’
A history of ‘near falls’ (31% reported ‘near falls’;
32% reported falls; 18% reported both) predicted a
fall within six months.

Connell and Wolf51 did not consider a fall a pre-
requisite for studying environmental and behavioural
factors contributing to balance loss or fall avoidance:
they included near falls and falls ‘to increase the
number of incidents available for study’. Of the 452
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events Lindholm et al.63 reported, one-third were falls
and two-thirds ‘near falls’. In 246min of video of five
people with Parkinson’s at high risk of falling moving
around their homes, participants appeared at imminent
risk of falling 227 times,52 protecting their balance
approximately every 65 s, particularly when:

. Transferring to/from chairs

. Walking (through open spaces and around
furniture)

. Turning (in standing and walking)

. Stepping onto, off, or over obstacles/steps

. Performing tasks in standing (e.g. conversing,
cooking)

If researchers used more of their resources to study
real fallers tackling these types of real activities at
home, and less resource studying healthy volunteers
throwing themselves to the ground in a laboratory,
they would learn where to position sensors optimally
to identify potential, impending and actual balance
loss. Sipp and Rowley48 used a gyroscope-based wear-
able device to measure postural sway during ADL and
just before falling. Having observed an interesting
signal pattern in postural position data even when a
subject appeared stable (well before they took protect-
ive action), they went on challenge participant’s balance
by distracting them while they stood on a balance
beam: only 14/40 trials caused the participants to
touch a support bar. In the remainder, patterns of pos-
tural position data appeared to distinguish six more
stable trials from 20 that showed more variation and
might constitute the onset of instability. If researchers
could do something similar ‘in the wild’, we would pro-
gress towards the goal of automatically detecting an
increase of risk of falling when there is still time to do
something about it.

Someone’s ability to recover their balance is likely to
be related to their health, function (and diagnosis) and
to diminish over time, so eventually people with a high
risk of falling have fewer near-misses and more falls; as
a study participant told Stack and Ashburn,27 ‘When I
nearly go - I’ve gone’. As such, algorithms intended to
detect near-misses may need to be trained on specific
groups of fallers and they will need to be able to detect
more subtle features than those that indicate falls to
accelerometers (i.e. rapid acceleration to the ground
followed by dramatic impact and stillness). The chal-
lenge of detecting near-misses is probably greater than
that of detecting falls.

Databases. We echo the call for ‘a large, shared real fall
database’;47 it is still lacking, and many aspects of
research (not only sensor-based fall detection) would
benefit. Individuals with ‘limited insight into their

own fall risk’, such as those with intellectual disability22

or those who lose consciousness during or after falling
cannot provide a history, and falls frequently occur
without witnesses: in one study, two-thirds happened
while participants were alone.31 Even in hospitals and
care homes witnesses observe a minority of falls, for
example:

. Witnesses observed 14% of falls in care homes24

. Witnesses observed 9% of night falls and 26% of
day falls on a ward23

Consequently, research, clinical practice and facility
design will rely on supposition or retrospective self-
report until sensors revolutionise our understanding
of how and why people fall.

Medrano et al.7 have made their database of simula-
tions, and Doorly and Gilchrist62 have made their data-
base of 10 modelled falls available to other researchers.
The latter presented the clinical, physical and mechan-
ical details of falls that caused traumatic brain lesions.
They analysed and described non-fatal falls that left
people aged from 11 to 87 (median 76) with focal
head injuries, and accompanied each case with time
profiles of linear and angular velocities, predicted
using multibody dynamics modelling simulations. For
example, they describe a 76-year-old woman who prob-
ably fell backwards from her doorstep, striking her
head (over the occipital bone) against a wall and was
admitted, confused, to hospital.

While a large database of falls is not yet available,
researchers who want to see examples of people falling
need look no further than the internet: people have
posted plentiful examples of genuine falling, although
the fallers are rarely frail or elderly. Although sports-
people and those under the influence of alcohol fall in
limited (and unusual) situations, what happens to their
bodies after balance is lost, as they try to prevent the
fall and on landing is more genuine than any simula-
tion. Several television programs owe their success to
the number of falls people have captured on video or
camera phones. That such examples often make (sober)
viewers wince or look away is evidence (was any
needed) of how calamitous a real fall is – and how
very unlike a faking simulation.
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