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Abstract
Hahn introduced the difference operator Dq,ωf (t) = (f (qt +ω) – f (t))/(t(q – 1) +ω) in
1949, where 0 < q < 1 and ω > 0 are fixed real numbers. This operator extends the
classical difference operator �ω f (t) = (f (t +ω) – f (t))/ω as well as the Jackson
q-difference operator Dqf (t) = (f (qt) – f (t))/(t(q – 1)).
In this paper, we study the theory of abstract linear Hahn difference equations of

the form

A0(t)Dn
q,ωx(t) + A1(t)Dn–1

q,ω x(t) + · · · + An(t)x(t) = B(t),

where B and Ai are mappings from an interval I into a Banach algebra X, i = 1, . . . ,n.
We define the abstract exponential functions and the abstract trigonometric
(hyperbolic) functions. We prove they are solutions of first and second order Hahn
difference equations, respectively. Also, we obtain an integral equation corresponding
to the second order linear Hahn difference equations which is known as the Volterra
integral equation. Finally, we present the analogs of the variation of parameter
technique and the annihilator method for the non-homogeneous case.

MSC: 39A13; 39A70
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1 Introduction and preliminaries
Hahn introduced his difference operator, which is defined by

Dq,ωf (t) =

{
f (qt+ω)–f (t)

t(q–)+ω
, if t �= θ ,

f ′(θ ), if t = θ ,

where  < q <  and ω >  are fixed real numbers, θ = ω/( – q); see [, ]. This opera-
tor unifies and generalizes two well-known difference operators. The first is the Jackson
q-difference operator defined by

Dqf (t) =
f (qt) – f (t)

t(q – )
, t �= .

Here f is supposed to be defined on a q-geometric set A ⊂ R for which qt ∈ A whenever
t ∈ A; see [–]. The second operator is the forward difference operator

�ω f (t) =
f (t + ω) – f (t)

ω
;
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see [–]. Hahn’s operator was applied and used in a lot of fields, especially in the con-
struction of families of orthogonal polynomials and in investigating some approximation
problems. For more details, see [–]. Contrary to the q-difference operator and the for-
ward difference operator, the Hahn difference operator did not generate any interest until
Annaby et al. gave a rigorous analysis of the calculus associated with Dq,ω in []. There-
after, Hamza and Ahmed proved the existence and uniqueness of solutions of Hahn dif-
ference equations and studied the theory of linear Hahn difference equations; see [, ].

This article is devoted to the study of the theory of Hahn difference equations in Banach
algebras. We define the abstract exponential functions and the abstract trigonometric (hy-
perbolic) functions. We prove they are solutions of first and second order Hahn difference
equations, respectively. Every choice of the Banach algebra gives a wide class of Hahn dif-
ference equations. For instance, this study allows us to consider equations with solutions
with values in the Banach algebra B(X), the Banach space of all bounded linear operators
from a Banach space X into itself. As special cases, our study includes finite and infinite
systems of Hahn difference equations.

In our study we need the function h(t) = qt + ω, which is normally taken to be defined
on an interval I , which contains the number θ . The sequence

hk(t) = qkt + ω[k]q, t ∈ I,

is the kth order iteration of h(t), which uniformly converges to θ on I , and [k]q is defined
by

[k]q =
 – qk

 – q
.

Throughout this paper, X is a Banach space, X is a Banach algebra with a norm ‖ ‖, and
I is an interval including θ . Now, we will introduce some basic definitions and theorems
that will be needed in our study.

Definition . Assume that f : I → X is a function and let a, b ∈ I . The q,ω-integral of f
from a to b is defined by

∫ b

a
f (t) dq,ωt =

∫ b

θ

f (t) dq,ωt –
∫ a

θ

f (t) dq,ωt,

where

∫ x

θ

f (t) dq,ωt =
(
x( – q) – ω

) ∞∑
k=

qkf
(
hk(x)

)
, x ∈ I,

provided that the series converges at x = a and x = b.

Definition . For certain z ∈C, the q,ω-exponential functions ez(t) and Ez(t) are defined
by

ez(t) =
∞∑

k=

(z(t( – q) – ω))k

(q; q)k
=

∏∞
k=( – zqk(t( – q) – ω))

(.)
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and

Ez(t) =
∞∑

k=

q 
 k(k–)(z(t( – q) – ω))k

(q; q)k
=

∞∏
k=

(
 + zqk(t( – q) – ω

))
, (.)

where ez(t) and Ez(t) are the solutions of the first order Hahn difference problems

Dq,ωy(t) = zy(t), y(θ ) = , (.)

and

Dq,ωy(t) = –zy(qt + ω), y(θ ) = , z, t ∈C, (.)

respectively; see []. For a fixed z ∈ C, (.) converges for all t ∈ C, defining an entire
function of order zero. For the proofs of the equalities in (.) and (.), see Section . in
[] and []. Also, we can prove these equalities using the method of successive approx-
imation; see Section . Here the q-shifted factorial (b; q)n for a complex number b and
n ∈N is defined to be

(b; q)n =

{∏n
j=( – bqj–), if n ∈N,

, if n = .

By replacing the complex fixed number z by a complex function p(t) which is continuous
at θ in (.), we obtain the exponential functions ep(t) and Ep(t),

ep(t) =
∏∞

k=( – p(hk(t))qk(t( – q) – ω))
, (.)

Ep(t) =
∞∏

k=

(
 + p

(
hk(t)

)
qk(t( – q) – ω

))
, (.)

whenever the two products are convergent to a nonzero number for every t ∈ I ; see []. It
is worth noting that the two products are convergent since

∑∞
k= |p(hk(t))|qk(t( – q) – ω)

is convergent; see [].

The following lemma gives the q, ω derivative of sum, product, and quotients of q,ω-
differentiable functions, with values in X.

Lemma . Let A : I →X and B : I → X be q,ω-differentiable at t ∈ I . Then:
(i) Dq,ω(A + B)(t) = Dq,ωA(t) + Dq,ωB(t),

(ii) Dq,ω(AB)(t) = Dq,ω(A(t))B(h(t)) + A(t)Dq,ωB(t) = Dq,ω(A(t))B(t) + A(h(t))Dq,ωB(t),
(iii) for any constant c ∈X, Dq,ω(cA)(t) = cDq,ω(A(t)),
(iv) Dq,ω(A–)(t) = –(A(h(t)))–(Dq,ωA(t))(A(t))– provided that for every t ∈ I , (A(t))–

exists,
(v) Dq,ω(AB–)(t) = Dq,ωA(t)(B(h(t)))– – A(t)(B(h(t)))–Dq,ωB(t)(B(t))– provided that

for every t ∈ I , (B(t))– exists.

The following theorem is important and will be used later on.
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Theorem . [] Assume f : I →R is continuous at θ . Then the following statements are
true.

(i) {f ((sqk) + ω[k]q)}k∈N converges uniformly to f (θ ) on I .
(ii)

∑∞
k= qk|f (sqk + ω[k]q)| is uniformly convergent on I and consequently f is

q,ω-integrable over I .
(iii) Define

F(x) :=
∫ x

θ

f (t) dq,ωt, x ∈ I.

Then F is continuous at θ . Furthermore, Dq,ωF(x) exists for every x ∈ I and

Dq,ωF(x) = f (x).

Conversely,

∫ b

a
Dq,ωf (t) dq,ωt = f (b) – f (a) for all a, b ∈ I.

This paper is organized as follows:
In Section , we introduce some existence and uniqueness results from []. At the end

of this section, we apply these results to obtain the required conditions for the existence
and uniqueness of solutions of linear Hahn difference equations

A(t)Dn
q,ωx(t) + A(t)Dn–

q,ω x(t) + · · · + An(t)x(t) = B(t),

Di–
q,ωx(θ ) = yi ∈ X, i = , . . . , n,

where Ai, B : I →X. In Section , we present the Hahn Wronskian in Banach algebras. We
establish its properties. It is an effective tool to determine whether the set of solutions is a
fundamental set or not. Finally we give Liouville’s formula for Hahn difference equations
of the second order. In Section , we define the abstract exponential functions. We prove
they are the solutions of the first order linear Hahn difference equations. At the end of this
section, we establish their properties. Section  is devoted to the abstract trigonometric
(hyperbolic) functions. We prove that they are solutions of second order linear Hahn dif-
ference equations. Some of their properties are established. In Section , we exhibit the
variation of parameters method and the annihilator method for non-homogeneous Hahn
difference equations.

2 Existence and uniqueness results
Inspired by the work of Hamza and Ahmed [, ], we can obtain the required conditions
for the existence and uniqueness of solutions of linear Hahn difference equations of the
form

A(t)Dn
q,ωx(t) + A(t)Dn–

q,ω x(t) + · · · + An(t)x(t) = B(t),
Di–

q,ωx(θ ) = yi ∈X, i = , . . . , n,

}
(.)

where Ai : I →X, i = , , . . . , n, and B : I →X.
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As usual, we denote

S(x, b) =
{

x ∈ X : ‖x – x‖ ≤ b
}

and

R = [θ , θ + a] × S(x, b),

where a, b are fixed positive numbers.
First, we mention the following results from [], which will be needed to establish the

main results of this section.

Theorem . Assume that f : R → X satisfies the following conditions:
(i) f (t, x) is continuous at t = θ for every x ∈ S(x, b).

(ii) There is a positive constant V such that the Lipschitz condition
‖f (t, x) – f (t, y)‖ ≤ V‖x – y‖ for all x, y ∈ X is satisfied.

Then there is h >  such that the following Cauchy problem:

Dq,ωx(t) = f (t, x),
x(θ ) = x,

}
(.)

has a unique solution x(t) on [θ , θ + h].

As a direct consequence of Theorem ., they proved the following result.

Corollary . Let I be an interval containing θ , fi(t, x, x, . . . , xn) : I ×∏n
i= Si(yi, bi) → X

such that the following conditions are satisfied:
(i) For xi ∈ Si(yi, bi),  ≤ i ≤ n, fi(t, x, x, . . . , xn) is continuous at t = θ .

(ii) There is a positive constant V such that, for t ∈ I , xi, x′
i ∈ Si(yi, bi),  ≤ i ≤ n, the

following Lipschitz condition is satisfied:

∥∥fi(t, x, x, . . . , xn) – fi
(
t, x′

, x′
, . . . , x′

n
)∥∥≤ V

n∑
i=

∥∥xi – x′
i
∥∥.

Then there exists a unique solution of the initial value problem

Dq,ωxi(t) = fi(t, x(t), x(t), . . . , xn(t)),  ≤ i ≤ n, t ∈ I,
xi(θ ) = yi ∈ X.

}
(.)

The Cauchy problem

Dn
q,ωx(t) = f (t, x(t), Dq,ωx(t), . . . , Dn–

q,ω x(t)),
Di–

q,ωx(θ ) = yi,  ≤ i ≤ n,

}
(.)

is equivalent to the first order system (.) in the sense that {φi(t)}n
i= is a solution of (.)

if and only if φ(t) is a solution of (.). Here,

fi(t, x, . . . , xn) =

{
xi+,  ≤ i ≤ n – ,
f (t, x, . . . , xn), i = n.
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As a consequence of the above results, they deduced the following theorem.

Theorem . Let f (t, x, . . . , xn) be a function defined on I ×∏n
i= Si(yi, bi) such that the

following conditions are satisfied:
(i) For any values of xr ∈ Sr(yr , br), f is continuous at t = θ .

(ii) f satisfies Lipschitz condition

∥∥f (t, x, . . . , xn) – f
(
t, x′

, . . . , x′
n
)∥∥≤ V

n∑
i=

∥∥xi – x′
i
∥∥ ∀xr , x′

r ∈ Sr(yr , br), t ∈ I,

where V > .
Then the Cauchy problem (.) has a unique solution which is valid on [θ , θ + h].

Now, we are ready to establish the required conditions for the existence and uniqueness
of solutions of the Cauchy problem (.).

Theorem . Assume that Aj : I → X,  ≤ j ≤ n, and B : I → X satisfy the following con-
ditions:

(i) Aj(t),  ≤ j ≤ n and B(t) are continuous at θ and A(t) is invertible, t ∈ I .
(ii) A–

 (t)Aj(t) is bounded on I .
Then, for any elements yr , equation (.) has a unique solution on a closed subinterval

J ⊂ I containing θ .

Theorem . is called a local existence theorem because it guarantees the existence of a
solution x(t) defined for t ∈ I which is ‘close to’ the initial point θ . On the other hand, a use-
ful result which is concerned with global results was given in [], which means that the
solution exists on the entire interval I = [θ , θ + a]. One can see that a Lipschitz condition
of f satisfied on a strip

S = [θ , θ + a] × X

rather than on the rectangle R which is given in the beginning of this section implies the
existence and uniqueness of the solutions on the entire interval I = [θ , θ + a]; see [].

This can be stated in the next two theorems.

Theorem . Let f be continuous on the strip S and suppose there exists a constant V > 
such that ‖f (t, x) – f (t, y)‖ ≤ V‖x – y‖ for all (t, x), (t, y) ∈ S. Then the successive approxi-
mations given in

φ(t) = x,
φk+(t) = x +

∫ t
θ

f (s,φk(s)) dq,ωs, k ≥ ,

}
(.)

exist on the entire interval [θ , θ + a] and converge there uniformly to the unique solution
of (.).

Theorem . Let f be continuous on the half-plane

[θ ,∞) × X.
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Assume that f satisfies a Lipschitz condition

∥∥f (t, x) – f (t, y)
∥∥≤ Lθ ,a‖x – y‖

on each strip

Sθ ,a =
{

(t, x) ∈ I × X : t ∈ [θ , θ + a],‖x‖ < ∞},
where Lθ ,a is a constant that may depend on θ and a. Then the initial value problem (.)
has a unique solution that exists on the whole half-line [θ ,∞).

3 Fundamental set of solutions and Hahn Wronskian in Banach algebras
In this section, we consider the homogeneous linear Hahn difference equation in a Banach
algebra,

A(t)Dn
q,ωx(t) + A(t)Dn–

q,ω x(t) + · · · + An(t)x(t) = . (.)

The coefficients Aj(t) ∈X,  ≤ j ≤ n are assumed to satisfy the conditions of Theorem ..
Here X is a commutative Banach algebra with a unit element e. We present the Hahn
Wronskian in Banach algebras. We establish its properties. We determine whether the
set of solutions is a fundamental set or not according to the Wronskian being invertible
or not. Finally we give Liouville’s formula for Hahn difference equations of the second
order.

Definition . X is called a Banach algebra with unit e if:
(i) X is a Banach space.

(ii) There is a multiplication X×X →X that has the following properties:

(xy)z = x(yz), (x + y)z = xz + yz, x(y + z) = xy + xz;

c(xy) = (cx)y = x(cy)

for all x, y, z ∈ X, c ∈C. Moreover, there is a unit element e, i.e.

ex = xe = x for all x ∈X.

(iii) ‖e‖ = .
(iv) ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ X.

Lemma . If x(t) and x(t) are two solutions of equation (.), then cx(t) + cx(t) is
also a solution where c and c are constants in X.

Definition . We say that the solutions ψ(t), . . . ,ψn(t) are linearly independent if

n∑
j=

xjψj = , then xj =  for every j = , , . . . , n.
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As usual [ψ(t), . . . ,ψn(t)] is called a fundamental set of solutions of equation (.) if they
are linearly independent and every solution ψ(t) has the representation

ψ(t) =
n∑

j=

xjψj(t), xj ∈X.

Definition . A matrix B ∈ Mn×n(X) is said to have an inverse C ∈ Mn×n(X) if

BC = CB = I ,

where

I =

⎡
⎢⎢⎢⎢⎣
e  · · · 
 e · · · 
...

...
. . .

...
  · · · e

⎤
⎥⎥⎥⎥⎦ .

We follow the proof of [] to get the following result.

Theorem . Let bij ∈ X, i, j ∈ {, . . . , n}, and for each j, ψj(t) is the unique solution of
equation (.) which satisfies the initial conditions

Di–
q,ωψj(θ ) = bij, i, j = , . . . , n.

Then {ψj(t)}n
j= is a fundamental set of equation (.) if and only if the matrix [bij] is invert-

ible.

Theorem . Let ψ(t) be any solution of equation (.) and {ψj,  ≤ j ≤ n} forms a funda-
mental set for equation (.) valid in J . Then there are unique constants cj ∈X such that

ψ(t) = cψ(t) + · · · + cnψn(t) ∀t ∈ J . (.)

Now we define the abstract Hahn Wronskian and prove some of its properties. In the
rest of this section, unless we mention otherwise, X is a commutative Banach algebra with
a unit e.

Definition . We define the q,ω-Wronskian of the functions x, . . . , xn : I →X, by

Wq,ω(x, . . . , xn)(t) =

∣∣∣∣∣∣∣∣∣∣

x(t) · · · xn(t)
Dq,ωx(t) · · · Dq,ωxn(t)

...
. . .

...
Dn–

q,ω x(t) · · · Dn–
q,ω xn(t)

∣∣∣∣∣∣∣∣∣∣
provided that x, . . . , xn are q,ω-differentiable functions n –  times.

We write Wq,ω instead of Wq,ω(x, . . . , xn) unless there is ambiguity.
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Lemma . Let x(t), x(t), . . . , xn(t) : I → X be q,ω-differentiable n times. Then, for any
t ∈ I , t �= θ ,

Dq,ωW q,ω(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x(h(t)) · · · xn(h(t))
Dq,ωx(h(t)) · · · Dq,ωxn(h(t))

...
. . .

...
Dn–

q,ω x(h(t)) · · · Dn–
q,ω xn(h(t))

Dn
q,ωx(t) · · · Dn

q,ωxn(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (.)

Proof See []. �

In the rest of this section, J is a closed subinterval of the interval I containing θ .

Theorem . If x, . . . , xn are solutions of equation (.) in J , then their q,ω-Wronskian
satisfies the first order Hahn difference equation

Dq,ωWq,ω(t) = –R(t)Wq,ω(t) ∀t ∈ J\{θ}, (.)

where R(t) =
∑n–

k=(t – h(t))kA–
 (t)Ak+(t).

Theorem . The q,ω-Wronskian of any set of solutions {ψi(t)}n
i=, valid in J , is given by

Wq,ω(t) =

[ ∞∏
k=

(
e + qk(t( – q) – ω

)
R
(
hk(t)

))]–

Wq,ω(θ ), t ∈ J , (.)

provided that the product has an inverse.

An interesting result which can be deduced directly from Theorems . and . is the
following.

Corollary . Assume that the product in (.) has an inverse. Let {ψi}n
i= be a set of so-

lutions of equation (.) in J . Then Wq,ω(t) has two possibilities:
(i) Wq,ω(t) is invertible in J if and only if {ψi}n

i= is a fundamental set of equation (.)
valid in J .

(ii) Wq,ω(t) is not invertible in J if and only if {ψi}n
i= is not a fundamental set of

equation (.).

4 Abstract exponential functions and first order linear Hahn difference
equations

Let A : I →X be continuous at θ . We define the exponential functions eA(t) and EA(t) by

eA(t) =

[ ∞∏
k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))]–

(.)

and

EA(t) =
∞∏

k=

(
e + A

(
hk(t)

)
qk(t( – q) – ω

))
, (.)
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provided that the products in (.) and (.) are convergent and the first product has an
inverse. Our aim in this section is to prove that eA(t) and E–A(t) are the unique solutions
of the first order Hahn difference equations

Dq,ωx(t) = A(t)x(t), x(θ ) = e

and

Dq,ωx(t) = –A(t)x(qt + ω), x(θ ) = e,

respectively.
We need the following lemma.

Lemma . Let X be a Banach algebra with a unit e and {Bk}∞k= ⊆ X. If
∑∞

k= ‖Bk‖ is
convergent, then

∏∞
k=(e + Bk) converges to an element P ∈X. Moreover, if P has an inverse

and (e + Bk) is invertible for every k, then P– =
∏∞

k=(e + Bk)–.

Proof Assume
∑∞

k= ‖Bk‖ is convergent to a number M.
Let B̃N be the sequence of partial products. One can see that

B̃N =
((

 + ‖B‖
) · · · ( + ‖BN‖))≤ e(‖B‖+···+‖BN ‖)

and

 ≤ B̃N ≤ eM.

Hence
∏∞

k=( + ‖Bk‖) is convergent. This implies that
∑∞

k= ‖Bk‖ is convergent; see [].
We define the two sequences Pj and P̃j by

PJ =
J∏

k=

(e + Bk) and P̃J =
J∏

k=

(
 + ‖Bk‖

)
.

For M, N ∈N, one can see that

‖PM – PN‖ ≤ ‖P̃M – P̃N‖.

Thus the convergence of the sequence P̃N implies the convergence of the sequence of PN .
Assume that PN → P as N → ∞.

This leads to the desired result. The mapping g : I → I, where I = {P ∈ X : P– exists},
defined by g(P) = P–, is continuous.

Since

lim
N→∞ PN = P

we have

(PN )– =

( N∏
k=

(e + Bk)

)–

=
N∏

k=

(e + Bk)– → P–,

which completes our proof. �
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It is worth noting that the products in (.) and (.) are convergent, by Lemma .,
since

∞∑
k=

∥∥A
(
hk(t)

)∥∥qk(t( – q) – ω
)

is convergent. In the rest of the paper, we assume that

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))
has an inverse, k ∈ Z

≥. Consequently, again by Lemma . we have

[ ∞∏
k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))]–

=
∞∏

k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))–.

We will need the following lemma in the next theorem.

Lemma . Assume that

A(t)A
(
hk(t)

)
= A
(
hk(t)

)
A(t), k = , , . . . . (.)

Then A and E–A commute.

Proof Assume that (.) holds. Then

A(t)
(
e + A

(
hk(t)

)
qk(t( – q) – ω

))
= A(t) + A(t)A

(
hk(t)

)
qk(t( – q) – ω

)
=
(
e + A

(
hk(t)

)
qk(t( – q) – ω

))
A(t).

Consequently,

A(t)

[ n∏
k=

(
e + A

(
hk(t)

)
qk(t( – q) – ω

))]
=

[ n∏
k=

(
e + A

(
hk(t)

)
qk(t( – q) – ω

))]
A(t).

From the continuity of A(t), we conclude that

A(t)

[ ∞∏
k=

(
e + A

(
hk(t)

)
qk(t( – q) – ω

))]
=

[ ∞∏
k=

(
e + A

(
hk(t)

)
qk(t( – q) – ω

))]
A(t).

Therefore, A(t)E–A(t) = E–A(t)A(t). �

Theorem . Assume A(t) and A(hk(t)) commute for every k. The q,ω-exponential func-
tions eA(t) and E–A(t) are the unique solutions of the initial value problems

Dq,ωx(t) = A(t)x(t), x(θ ) = e (.)

and

Dq,ωx(t) = –A(t)x(qt + ω), x(θ ) = e. (.)
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Proof First, eA(t) is a solution of equation (.). Indeed, we have, for t �= θ ,

Dq,ωeA(t) =


h(t) – t

[ ∞∏
k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))–

–
∞∏

k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))–
]

=


h(t) – t

[ ∞∏
k=

(
e – A(t)

(
t( – q) – ω

))(
e – A

(
hk(t)

)
qk(t( – q) – ω

))–

–
∞∏

k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))–
]

=


h(t) – t
(
e – A(t)

(
t( – q) – ω

)
– e
) ∞∏

k=

(
e – A

(
hk(t)

)
qk(t( – q) – ω

))–

=
–A(t)(t( – q) – ω)

h(t) – t
eA(t)

= A(t)eA(t).

Second, we see that eA(t) is unique. If x(t) is another solution, then we have

Dq,ω
(
e–

A (t)x(t)
)

= Dq,ω
(
E–A(t)

)
x(t) + E–A

(
h(t)
)
Dq,ω

(
x(t)
)

= –A(t)E–A
(
h(t)
)
x(t) + E–A

(
h(t)
)
A(t)x(t)

= .

Hence, e–
A (t)x(t) is constant, which implies e–

A (t)x(t) = e–
A (θ )x(θ ) = e. Thus, x(t) = eA(t).

Similarly, we can see that E–A(t) is a unique solution of equation (.). �

In the following, we derive the solution of the first order non-homogeneous Hahn dif-
ference equations of the form

Dq,ωx(t) = A(t)x(t) + f (t), x(θ ) = xθ , t ∈ I, xθ ∈ X. (.)

Theorem . Assume that f : I → X is continuous at θ , and t, τ ∈ I , t > τ . Then the solu-
tion of equation (.) has the form

x(t) = eA(t)
(

xθ +
∫ t

θ

E–A(qτ + ω)f (τ ) dq,ωτ

)
. (.)

Proof The function x(t) given in (.) solves equation (.). Indeed, we have

Dq,ωx(t) = A(t)eA(t)xθ + A(t)eA(t)
(∫ t

θ

E–A(qτ + ω)f (τ ) dq,ωτ

)

+ eA
(
h(t)
)
E–A(qt + ω)f (t)

= A(t)x(t) + f (t). �
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We prove some useful properties of the exponential function eA(t).
We define ξ (t) by

ξ (t) = h(t) – t = t(q – ) + ω.

Theorem . Assume that A : I → X, and B : I → X are continuous at θ . The following
properties are true.

(i) e–
A (t) = e–A(e+ξA)– (t).

(ii) eA(t)eB(t) = eA+B+ξAB(t), where eA(t) and B(t) commute.
(iii) eA(t)e–

B (t) = e(A–B)(e+ξB)– (t), where eA(t), (e + ξB)–, and B(t) are pairwise
commutative.

Proof (i) From equations (.) and (.) we have e–
A (t) = E–A(t). Then

Dq,ω
(
E–A(t)

)
= –AE–A

(
h(t)
)

= –A(e + ξA)–E–A(t)

= –A(e + ξA)–e–
A (t).

Then by Theorem ., (i) is true.
(ii) Let Y (t) = eA(t)eB(t) and eA(t), B(t) commute. Then

Dq,ω
(
eA(t)eB(t)

)
= AeA(t)(e + ξB)eB(t) + eA(t)BeB(t)

= AeA(t)eB(t) + ξABeA(t)eB(t) + BeA(t)eB(t)

= (A + B + ξAB)eA(t)eB(t).

Therefore by Theorem ., (ii) is true.
(iii) Let Y (t) = eA(t)e–

B (t) and suppose that eA(t), (e + ξB)–, B(t) are pairwise commuta-
tive. Hence,

Dq,ω
(
eA(t)e–

B (t)
)

= AeA(t)e–
B
(
h(t)
)

– eA(t)Be–
B
(
h(t)
)

= AeA(t)(e + ξB)–e–
B (t) – BeA(t)(e + ξB)–Be–

B (t)

= (A – B)(e + ξB)–eA(t)e–
B (t).

Again by Theorem ., (iii) is true. �

From now on, we define eA(t, τ ) by

eA(t, τ ) = eA(t)e–
A (τ ).

Theorem . The following statements are true:
(i) eA(θ ) = e and e(t) = e.

(ii) Dq,ω(e–
A (t)) = –e–

A (h(t))Dq,ω(eA(t))e–
A (t) = –e–

A (h(t))A(t) = (e + ξA(t))–A(t)e–
A (t),

where eA(h(t)), eA(t), (e + ξA(t))–, and A(t) are pairwise commutative.
(iii) eA(t, τ ) = e–

A (τ , t).
(iv) eA(t, s)eA(s, τ ) = eA(t, τ ).
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Proof (i) is straightforward.
(ii) Let eA(h(t)), eA(t), (e+ ξA(t))–, and A(t) be pairwise commutative. We can see easily

that Dq,ω(eA(t)e–
A (t)) = . Hence

Dq,ωeA(t)e–
A (t) + eA

(
h(t)
)
Dq,ωe–

A (t) = .

Then

eA
(
h(t)
)
Dq,ωe–

A (t) = –Dq,ωeA(t)e–
A (t).

This implies that

Dq,ω
(
e–

A (t)
)

= – e–
A
(
h(t)
)
Dq,ωeA(t)e–

A (t)

= –e–
A
(
h(t)
)
A(t)eA(t)e–

A (t)

= –e–
A (t)

(
e + ξA(t)

)–A(t)

= –E–A(t)
(
e + ξA(t)

)–A(t).

So,

Dq,ω
(
e–

A (t)
)

= –E–A(t)
(
e + ξA(t)

)–A(t).

Since

e–
A
(
h(t)
)

= e–
A (t) + ξ (t)Dq,ωe–

A (t),

we have

e–
A
(
h(t)
)
A(t) = e–

A (t)A(t) – ξ (t)A(t)e–
A
(
h(t)
)
A(t)

=
[
e – ξ (t)A(t)

(
e + ξA(t)

)–]e–
A (t)A(t)

=
(
e + ξA(t)

)–e–
A (t)A(t)

= –Dq,ωe–
A (t).

(iii) We have

X(t) = eA(t, τ )eA(τ , t) = eA(t)e–
A (τ )eA(τ )e–

A (t) = e.

This implies

eA(t, τ ) = e–
A (τ , t).

(iv) Let X(t) = eA(t, s)eA(s, τ ). So we conclude that

X(t) = eA(t, s)eA(s, τ )eA(t)e–
A (s)eA(s)e–

A (τ )eA(t)e–
A (τ ) = eA(t, τ ). �
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In the next lemma we assume X = L(X), the space of all bounded linear operators from
a Banach space X into itself, with identity operator IX . Now let A∗(t) : X∗ → X∗, where X∗

is the dual of X, be the adjoint operator of A(t) ∈ L(X), t ∈ I defined by

(
A∗(t)f

)
(x) = f

(
A(t)x

)
for all f ∈ X∗ and x ∈ X.

Lemma .
(i) Dq,ω(A∗) = (Dq,ωA)∗.

(ii) e–
A (t) = e∗

–A∗(I+ξA∗)– (t).

Proof (i) Since A is Dq,ω differentiable at t ∈ I , we have

Dq,ω
(
A∗)(t) =

(
A(h(t)) – A(t)

h(t) – t

)∗

= (Dq,ωA)∗(t).

(ii) Putting X(t) = (e–
A (t))∗, we obtain

Dq,ωX(t) =
(
Dq,ωe–

A (t)
)∗

=
(
–e–

A
(
h(t)
)
Dq,ωeA(t)e–

A (t)
)∗

=
(
–A∗(I + ξA∗)–eA∗ (t)

)
= –A∗(I + ξA∗)–X(t),

and at t = θ , we have X(θ ) = (e–
A (θ ))∗ = IX . Hence, X(t) is the solution of the IVP

Dq,ωX(t) = –A∗(I + ξA∗)–X(t), X(θ ) = IX ,

which exactly is X(t) = e–A∗(I+ξA∗)– (t). Therefore, e–
A (t) = e∗

–A∗(I+ξA∗)– (t). �

Now, we return to the first order equation (.), when A(t) = z ∈ X, t ∈ I . The unique
solution of the Hahn difference equation

Dq,ωx(t) = zx(t), x(θ ) = e,

where z ∈ X is

x(t) = ez(t) =

[ ∞∏
k=

(
e – zqk(t( – q) – ω

))]–

.

In the following theorem, we deduce the summation expansion of ez(t).

Theorem . Let z ∈X. The exponential function ez(t) is given by

ez(t) =
∞∑

k=

(z(t( – q) – ω))k

(q; q)k
.
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Proof Using the successive approximations (.) with x = e,

xk+(t) = x + z
∫ t

θ

xk(s) dq,ωs.

We prove by induction on n that

xn+(t) = e

n+∑
k=

(z(t( – q) – ω))k

(q; q)k
. (.)

At n = ,

L.H.S. = x(t) = e + ze(t – θ )

=
(
e +

z(t( – q) – ω)
(q; q)

)

=
∑

k=

(z(t( – q) – ω))k

(q; q)k

= R.H.S.

Assume that (.) holds for n = m.
We want to prove

xm+(t) =
m+∑
k=

(z(t( – q) – ω))k

(q; q)k
,

L.H.S. = e + z
∫ t

θ

(
e + z(t – θ ) +

z(t – θ )

( – q)
+ · · · +

zm(t – θ )m

( – q) · · · ( – qm)

)
dq,ωs

= e + z(t – θ ) +
z(t – θ )

( – q)
+

z(t – θ )

( – q)( – q)
+ · · ·

+
zm+(t – θ )m

( – q) · · · ( – qm)

∞∑
k=

qk(tqk + ω[k]q – θ
)m

= e + z(t – θ ) +
z(t – θ )

( – q)
+

z(t – θ )

( – q)( – q)

+ · · · +
zm+(t – θ )m+

( – q) · · · ( – qm)

∞∑
k=

qk(m+)

=
m+∑
k=

(z(t( – q) – ω))k

(q; q)k

= R.H.S.

Therefore,

xn+(t) =
n+∑
k=

(z(t( – q) – ω))k+

(q; q)k+
,

which leads directly to our desired result by taking n → ∞. �
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In the following theorem we can obtain a summation expansion of eA(t) for a general
mapping A : I → X. Similarly, we use the successive approximation method to prove this
theorem.

Theorem . Let A : I → X be continuous at θ . The exponential functions eA(t) can be
written as follows:

eA(t) = e +
∫ t

θ

A(s) dq,ωs +
∫ t

θ

A(s)
∫ s

θ

A(s) dq,ωs dq,ωs

+ · · · +
∫ t

θ

A(s)
∫ s

θ

A(s) · · ·
∫ si–

θ

A(si) dq,ωsi · · · dq,ωs dq,ωs · · · . (.)

5 Abstract trigonometric functions and second order linear Hahn difference
equations

Let A : I → X be continuous at θ . We define the abstract trigonometric and hyperbolic
functions and we study some of their properties.

Definition . We define the abstract trigonometric functions by

sinA(t) =
eiA(t) – e–iA(t)

i
(.)

and

cosA(t) =
eiA(t) + e–iA(t)


, (.)

and we define the functions SinA(t) and CosA(t) by

SinA(t) =
EiA(t) – E–iA(t)

i
(.)

and

CosA(t) =
EiA(t) + E–iA(t)


. (.)

The following formulas can be proved easily:
(i) cosA(t) + i sinA(t) = eiA(t),

(ii) sinA(t) SinA(t) + cosA(t) CosA(t) = ,
(iii) sinA(t) CosA(t) – cosA(t) SinA(t) = ,
(iv) sin

A(t) + cos
A(t) = eiA(t)e–iA(t),

(v) Sin
A(t) + Cos

A(t) = EiA(t)E–iA(t).
Simple computations show that

Dq,ω sinA(t) = A cosA(t), Dq,ω cosA(t) = –A sinA(t)

and

Dq,ω SinA(t) = A CosA(qt + ω), Dq,ω CosA(t) = –A SinA(qt + ω).
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The next theorem shows that the trigonometric functions satisfy second order Hahn
difference equations.

Theorem . The functions sinA(t), cosA(t), SinA(t), and CosA(t) satisfy the following sec-
ond order Hahn difference equations, respectively:

D
q,ωy(t) – A(qt + ω)A(t)y(t) = Dq,ωA(t) cosA(t), Dq,ωy(θ ) = e, y(θ ) = ; (.)

D
q,ωy(t) + A(qt + ω)A(t)y(t) = –Dq,ωA(t) sinA(t), Dq,ωy(θ ) = , y(θ ) = e; (.)

D
q,ωy(t) – A(qt + ω)y

(
qt + (q + )ω

)
= Dq,ωA(t) CosA(qt + ω),

Dq,ωy(θ ) = e, y(θ ) = ;
(.)

and

D
q,ωy(t) + A(qt + ω)y

(
qt + (q + )ω

)
= –Dq,ωA(t) SinA(qt + ω),

Dq,ωy(θ ) = , y(θ ) = e.
(.)

Definition . We define the abstract hyperbolic functions by

sinhA(t) =
eA(t) – e–A(t)


, (.)

coshA(t) =
eA(t) + e–A(t)


, (.)

SinhA(t) =
EA(t) – E–A(t)


, (.)

and

CoshA(t) =
EA(t) + E–A(t)


. (.)

The following formulas can be proved easily:
(i) coshA(t) + sinhA(t) = eA(t),

(ii) coshA(t) – sinhA(t) = e–A(t),
(iii) coshA(t) CoshA(t) – sinhA(t) SinhA(t) = ,
(iv) sinhA(t) CoshA(t) – coshA(t) SinhA(t) = ,
(v) cosh

A(t) – sinh
A(t) = eA(t)e–A(t),

(vi) Cosh
A(t) – Sinh

A(t) = EA(t)E–A(t).
As we did before we obtain the following identities:

Dq,ω sinhA(t) = A coshA(t), Dq,ω coshA(t) = A sinhA(t)

and

Dq,ω SinhA(t) = A CoshA(qt + ω), Dq,ω CoshA(t) = A SinhA(qt + ω).

The following theorem shows that the abstract hyperbolic functions satisfy the second
order Hahn difference equations.
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Theorem . The functions sinhA(t), coshA(t), SinhA(t), and CoshA(t) satisfy the following
second order Hahn difference equations:

D
q,ωy(t) – A(qt + ω)A(t)y(t) = Dq,ωA(t) coshA(t), Dq,ωy(θ ) = e, y(θ ) = ; (.)

D
q,ωy(t) – A(qt + ω)A(t)y(t) = Dq,ωA(t) sinhA(t), Dq,ωy(θ ) = , y(θ ) = e; (.)

D
q,ωy(t) – A(qt + ω)A(t)y

(
qt + (q + )ω

)
= Dq,ωA(t) CoshA(qt + ω),

Dq,ωy(θ ) = e, y(θ ) = ;
(.)

D
q,ωy(t) – A(qt + ω)A(t)y

(
qt + (q + )ω

)
= Dq,ωA(t) SinhA(qt + ω),

Dq,ωy(θ ) = , y(θ ) = e,
(.)

respectively.

In the following theorem, [a, b] is a closed interval containing θ and A : [a, b] → X is
continuous at θ .

Theorem . Any solution ψ of the equation

D
q,ωx(t) + A(t)x(t) = , t ∈ [a, b],

satisfies the following relation:

ψ(t) = c(b – t) + c(t – a) +
b – t
b – a

∫ t

a
(τ – a)A

(
τ – ω

q

)
ψ

(
τ – ω

q

)
dq,ωτ

+
t – a
b – a

∫ b

t
(b – τ )A

(
τ – ω

q

)
ψ

(
τ – ω

q

)
dq,ωτ .

Proof By direct computations, we get

Dq,ωψ(t) = –c + c –


b – a

∫ h(t)

a
(τ – a)A

(
τ – ω

q

)
ψ

(
τ – ω

q

)
dq,ωτ

–


b – a

∫ b

h(t)
(b – τ )A

(
τ – ω

q

)
ψ

(
τ – ω

q

)
dq,ωτ .

Then

D
q,ωψ(t) = –


b – a

(
h(t) – a

)
A
(

h(t) – ω

q

)
ψ

(
h(t) – ω

q

)

–


b – a
(
b – h(t)

)
A
(

h(t) – ω

q

)
ψ

(
h(t) – ω

q

)

= –A(t)ψ(t). �

Example . The second order Hahn difference equation

D
q,ωx(t) – A

(
h(t)
)
A(t)x(t) = Dq,ωA(t) sinA(t), t ∈ I, Dq,ωx(θ ) = , x(θ ) = e,
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has the solution x(t) = cosA(t), which can be written in the form

x(t) =
I


[ ∞∑
k=

(( + (–i)k)c(t( – q) – ω))k

(q; q)k

]
.

6 Non-homogeneous Hahn difference equations
In this section, we consider the non-homogeneous difference equation of the form

ADn
q,ωx(t) + ADn–

q,ω x(t) + · · · + Anx(t) = B(t), (.)

where Aj : I → X,  ≤ j ≤ n, and X is a commutative Banach algebra containing a unit
element e and Aj are coefficients that satisfy the conditions of Theorem .. We study this
equation and find the general solution of the non-homogeneous Hahn difference equation
(.). As in the theory of differential equations, one can see that if ψ(t) and ψ(t) are
two solutions of (.), then ψ(t) – ψ(t) is a solution of the corresponding homogeneous
equation (.). Based on the above-mentioned note and Theorem ., we get the following:
if ψ(t),ψ(t), . . . ,ψn(t) form a fundamental set for (.) and ψ(t) is a solution of equation
(.), then, for any solution of equation (.), there are unique constants c, . . . , cn ∈X such
that

ψ(t) = cψ(t) + · · · + cnψn(t) + ψ(t). (.)

Therefore, if we can find any particular solution ψ(t) of equation (.), then (.) gives
a general formula for all solutions of equation (.).

6.1 Method of variation of parameters
The method of variation of parameters is a method that helps us to obtain a particular
solution. This solution takes the form

ψ(t) =
n∑

j=

cj(t)ψj(t). (.)

To determine the functions cr(t), we have to operate by Dq,ω after replacing i = n in

Di–
q,ωψ(t) =

n∑
j=

cj(t)Di–
q,ωψj(t),  ≤ i ≤ n, (.)

provided that

n∑
j=

Dq,ωcj(t)Di–
q,ωψj

(
h(t)
)

= ,  ≤ i ≤ n – . (.)

We obtain

Dn
q,ωψ(t) =

n∑
j=

(
cj(t)Dn

q,ωψj(t) + Dq,ωcj(t)Dn–
q,ω ψj

(
h(t)
))

. (.)
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Since ψ(t) satisfies equation (.). It follows that

A(t)Dn
q,ωψ(t) + A(t)Dn–

q,ω ψ(t) + · · · + An(t)ψ(t) = B(t). (.)

Substitute by (.) and (.) in (.) and in view of equation (.), we obtain

n∑
j=

Dq,ωcj(t)Dn–
q,ω ψj

(
h(t)
)

= A–
 (t)B(t). (.)

Equation (.) with (.) yields the following system:

Dq,ωc(t)ψ(h(t)) + · · · + Dq,ωcn(t)ψn(h(t)) = ,
. . . ,
Dq,ωc(t)Dn–

q,ω ψ(h(t)) + · · · + Dq,ωcn(t)Dn–
q,ω ψn(h(t)) = ,

Dq,ωc(t)Dn–
q,ω ψ(h(t)) + · · · + Dq,ωcn(t)Dn–

q,ω ψn(h(t)) = A–
 (t)B(t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(.)

Consequently,

Dq,ωcr(t) = W r
q,ω
(
h(t)
)
W –

q,ω
(
h(t)
)× A–

 (t)B(t), t ∈ I,

where  ≤ r ≤ n and W r
q,ω(h(t)) is the determinant obtained from Wq,ω(h(t)) by replacing

the rth column by (, . . . , , e). It follows that

cr(t) =
∫ t

θ

W r
q,ω
(
h(τ )

)
W –

q,ω
(
h(τ )

)× A–
 (t)B(t) dq,ωτ , r = , . . . , n.

Example . We calculate the Hahn Wronskian for the following Hahn difference equa-
tion:

D
q,ωx(t) – D

q,ωx(t) + Dq,ωx(t) – x(t) = , (.)

where x(t) ∈X commutative Banach algebra

The functions x(t) = ee(t), x(t) = ee(t) and x(t) = ee(t) are solutions of equation
(.), with the initial conditions x(θ ) = e, Dq,ωx(θ ) = e, and D

q,ωx(θ ) = e, x(θ ) = e,
Dq,ωx(θ ) = e, and D

q,ωx(θ ) = e, and for the third solution x(θ ) = e, Dq,ωx(θ ) = e, and
D

q,ωx(θ ) = e, respectively.
Here, R(t) = (–eξ  + eξ – e), where ξ = h(t) – t.
The Wronskian at the initial point θ ,

Wq,ω(θ ) =

∣∣∣∣∣∣∣
ee(θ ) ee(θ ) ee(θ )
ee(θ ) ee(θ ) ee(θ )
ee(θ ) ee(θ ) ee(θ )

∣∣∣∣∣∣∣
= e.

Finally, from equation (.) we get

Wq,ω(t) = e

[ ∞∏
k=

(
– – qk(t( – q) – ω

) + qk(t( – q) – ω
) – qk(t( – q) – ω

))]–

.
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Example . Consider the equation

D
q,ωx(t) + A

(
h(t)
)
A(t)x(t) = B(t), (.)

where A(h(t)), A(t) ∈ X, are invertible. cosA(t) and sinA(t) are the solutions of the corre-
sponding homogeneous equation of (.).

Consequently,

Wq,ω(ψ,ψ)
(
h(t)
)

=

∣∣∣∣∣ cosA(h(t)) sinA(h(t))
–A(h(t)) sinA(h(t)) A(h(t)) cosA(h(t))

∣∣∣∣∣
= A
(
h(t)
)(

cos
A
(
h(t)
)

+ sin
A
(
h(t)
))

= A
(
h(t)
)
eiA
(
h(t)
)
e–iA
(
h(t)
)
.

Hence,

W –
q,ω(ψ,ψ)

(
h(t)
)

= A–(h(t)
)
e–

–iA
(
h(t)
)
e–

iA
(
h(t)
)
.

Also, we have

W
(
h(t)
)

=

∣∣∣∣∣ sinA(h(t))
 A(h(t)) cosA(h(t))

∣∣∣∣∣ = – sinA
(
h(t)
)

and

W
(
h(t)
)

=

∣∣∣∣∣ cosA(h(t)) 
–A(h(t)) sinA(h(t)) 

∣∣∣∣∣ = cosA
(
h(t)
)
.

We get

ψ(t) = cosA(t)
∫ t

θ

–B(τ ) sinA
(
h(τ )

)
A–(h(τ )

)
e–

–iA
(
h(τ )

)
e–

iA
(
h(τ )

)
dq,ωτ

+ sinA(t)
∫ t

θ

B(τ ) cosA
(
h(τ )

)
A–(h(τ )

)
e–

–iA
(
h(τ )

)
e–

iA
(
h(τ )

)
dq,ωτ

=
– cosA(t)

i

∫ t

θ

B(τ )A–(h(τ )
)(

eiA
(
h(τ )

)
– e–iA

(
h(τ )

))
× e–

–iA
(
h(τ )

)
e–

iA
(
h(τ )

)
dq,ωτ

+
sinA(t)



∫ t

θ

B(τ )A–(h(τ )
)(

eiA
(
h(τ )

)
+ e–iA

(
h(τ )

))
× e–

–iA
(
h(τ )

)
e–

iA
(
h(τ )

)
dq,ωτ ,

i.e.,

ψ(t) = – cosA(t)
∫ t

θ

B(τ )A–(h(τ )
)

SinA
(
h(τ )

)
dq,ωτ

+ sinA(t)
∫ t

θ

B(τ )A–(h(τ )
)

CosA
(
h(τ )

)
dq,ωτ .
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It follows that every solution of equation (.) has the form

ψ(t) = c cosA(t) + c sinA(t)

– cosA(t)
∫ t

θ

B(τ )A–(h(τ )
)

SinA
(
h(τ )

)
dq,ωτ

+ sinA(t)
∫ t

θ

B(τ )A–(h(τ )
)

CosA
(
h(τ )

)
dq,ωτ .

6.2 Annihilator method
The annihilator method is based on annihilating the non-homogeneous part by applying
a special differential operator. It is very easy to apply if we have found this operator, but a
lot of cases cannot be solved by it.

Definition . We say that f : I →X can be annihilated provided if we can find an oper-
ator of the form

L(D) = An(t)Dn
q,ω + An–(t)Dn–

q,ω + · · · + A(t)

such that

L(D)f (t) = , t ∈ I,

where Ai(t),  ≤ i ≤ n, are elements in X, not all zero.

Example . Since (Dq,ω – A(t))eA(t) = , Dq,ω – A(t) is an annihilator of eA(t).

Example . The operator D
q,ω is the annihilator of tx, since

D
q,ωxt = xD

q,ω(t + qt + ω)

= xDq,ω( + q)

= .

Table  indicates a list of some functions and their annihilators.

Example . We solve the following equation by using the annihilator method:

D
q,ωx(t) – Dq,ωx(t) + x(t) = ee(t). (.)

Table 1 Some functions and their annihilators

Function Annihilator

x ∈ X Dq,ω

xtn Dn+1
q,ω

eA(t) Dq,ω – A(t)
cosq,ω(A, t) D2

q,ω + A2

sinq,ω(A, t) D2
q,ω + A2
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Equation (.) can be rewritten in the form

(Dq,ω – e)(Dq,ω – e)x(t) = ee(t).

Multiplying both sides by the annihilator Dq,ω – e, we see that if x(t) is a solution of (.),
then x(t) satisfies

(Dq,ω – e)(Dq,ω – e)(Dq,ω – e)x(t) = .

Hence,

x(t) = cee(t) + cee(t) + cee(t).

In the following example we will assume that X = L(X), the space of all bounded linear
operators from a Banach space X into itself.

Example . Consider the following q,ω-difference equations:

Dq,ωX(t) = A(t)X(t) and X(θ ) = IX (.)

and

Dq,ωx(t) = A(t)x(t) and x(θ ) = xθ ∈ X, (.)

where {A(t)} ⊆ L(X) satisfies A(t)A(hk(t)) = A(hk(t))A(t).
By Theorem ., equation (.) has the unique solution

X(t) = eA(t).

Consequently equation (.) has the unique solution

x(t) = eA(t)xθ .

As a special case, if A(t) is the constant operator A(t) = zIX , where z ∈C, then the unique
solution of equation (.) will be

X(t) = ez(t)IX ,

where

ez(t) =

( ∞∏
k=

(
 – zqk(t( – q) – ω

)))–

,

and the solution of equation (.) will be

x(t) = ez(t)xθ .
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