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Abstract

The aim of this article is to give an answer to an interesting question proposed in
Zhou. At the end of his article, he remarked that it was of great interest to extend
his results to certain Banach spaces. So in this article, we extend the demiclosedness
principle from Hilbert spaces to Banach spaces. A strong convergence theorem for
asymptotical pseudo-contractions in Banach spaces is established. The approaches
are based on the extended demiclosedness principle, and the generalized projective
operator, and the hybrid method in mathematical programming. Our results extend
the previous known results from Hilbert spaces to Banach spaces.
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1 Introduction
Zhou [1] proposed an interesting problem at the end of his article. He remarked that it

was of great interest to extend his results to certain Banach spaces. Thus, this article

essentially pursues two goals.

• The first purpose of this article is to extend the demiclosedness principle from Hil-

bert spaces to Banach spaces.

• The main aim is to establish a strong convergence theorem for asymptotical

pseudo-contractions in Banach spaces. The obtained theorem extends the main result

in Zhou [1].

In 1972, Goebel and Kirk [2] introduced the concept of asymptotically nonexpansive

mappings in the Hilbert space. Nineteen years later, the class of asymptotical pseudo-

contraction was introduced by Schu [3]. It is well known that asymptotical nonexpan-

sive mappings form a subclass of asymptotical pseudo-contractions.

Let H be a real Hilbert space with inner product 〈·,·〉, C be a nonempty closed convex

subset of H, T be a mapping from C into itself, {kn} be a positive real sequence with

kn ® 1. T is said to be an asymptotical nonexpansive mapping, if the following

inequality holds
∥∥Tnx − Tny

∥∥ ≤ kn
∥∥x − y

∥∥ ,
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for all x, y Î C and all n ≥ 1. T is called an asymptotical pseudo-contraction if the

following inequality holds

〈
Tnx − Tny, x − y

〉 ≤ kn
∥∥x − y

∥∥2,
for all x, y Î C and all n ≥ 1.

Further, Schu proved the following convergence theorem in a Hilbert space.

Theorem 1.1 [3]Let H be a Hilbert space; � ≠ K ⊂ H closed bounded convex; L > 0;T :

K ® K completely continuous, uniformly L-Lipschitzian and asymptotically pseudo-con-

tractive with sequence {kn} ⊂ [1, ∞); qn = 2kn- 1 for all n ≥ 1 ;
∑∞

n=1
(q2n − 1) < ∞; {αn},

{bn} ⊂ [0, 1]; ε ≤ an ≤ bn ≤ b for all n ≥ 1, some ε >0 and some

b ∈ (0, L−2[
√
1 + L2 − 1]); x1 Î K; for all n ≥ 1, define xn+1 = (1 - an)xn + anT

nyn, yn =

(1 - bn)xn + bnTnxn. Then {xn} converges strongly to some fixed points of T.

Recently, Zhou [1] extended Schu’s results by establishing a fixed point theorem for

asymptotically pseudo-contraction without any compact assumption on the mappings.

By modifying the algorithm used in Theorem 1.2, Schu successfully proved a strong

convergence theorem without any compact assumptions.

Theorem 1.2 [1]Let C be a bounded and closed convex subset of a real Hilbert space

H. Let T : C ® C be a uniformly L-Lipschitzian and asymptotical pseudo-contraction

with a fixed point. Assume the control sequence {an} is chosen so that an Î [a, b] for

some a, b Î
(
0,

1
1 + L

)
. Let {xn} be a sequence generated by the following manner

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = (1 − αn)xn + αn + αnT
nxn,

Cn =
{
z ∈ C : αn

[
1 − (1 + L)αn

] ∥∥xn − Tnxn
∥∥2 ≤ 〈

xn − z, (yn − Tnyn)
〉
+ (kn − 1)(diamC)2

}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0,}
xn+1 = PCn∩Qnx,n = 0, 1, 2, . . . .

(1)

Then the sequence {xn} generated by (1) converges strongly to PF(T)x, where PF(T)
denotes the metric projection from H onto F(T), a closed convex subset of H.

However, all results above are obtained for Hilbert spaces. Motivated by the above

mentioned studies, in this article, we first give the concepts of asymptotical pseudo-

contractions in Banach spaces. Then, we prove the demiclosedness principle in Banach

space. Based on our extended demiclosedness principle, we establish a strong theorem

for asymptotical pseudo-contractions in Banach spaces. Therefore, we extend the main

results of Zhou (see [1]) from Hilbert spaces to Banach spaces. Further, some other

results are also improved (see [4,5]).

2 Preliminaries
This section contains some definitions and lemmas which will be used in the proofs of

our main results in the following section.

Throughout this article, let E be a real Banach space and E* be the dual of E. The

normalized duality mapping J : E → 2E∗ is defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖ ∥∥f∥∥ , ‖x‖ =

∥∥f∥∥}
, ∀x ∈ E,
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where 〈·,·〉 denotes the duality pairing. It is well known (see e.g., [6]) that the operator

J is well defined and J is identity mapping if and only if E is a Hilbert space. But in

general, J is nonlinear and multiple-valued. So, We have the following definition.

Definition 2.1 The normalized duality mapping J of a Banach space E is said to be

weakly sequential continuous, if∀{xn} ⊂ E, and xn ⇀ x, then there exist j(xn) Î J(xn), j(x)

Î J(x) such that j(xn)
·

⇀ j(x), where we denote weak convergence and weak star conver-

gence by ⇀ and ·
⇀respectively.

Naturally, the concept of asymptotical pseudocontraction can be extended from Hil-

bert spaces to Banach spaces.

Definition 2.2 Let C be a nonempty closed convex subset of E and let T be a map-

ping from C into itself. T is said to be an asymptotical pseudocontraction in Banach

spaces if there exists a sequence {kn} with kn ® 1 and j(x - y) Î J(x - y) for which the

following inequality holds

〈
Tnx − Tny, j(x − y)

〉 ≤ kn
∥∥x − y

∥∥2,

for all x, y Î C and all n ≥ 1.

Definition 2.3 [1]A mapping T : C ® C is said to be uniform L-Lipschitzian if there

exists some L >0 such that
∥∥Tnx − Tny

∥∥ ≤ L
∥∥x − y

∥∥
for all x, y Î C and for all n ≥ 1.

A Banach space E is said to be strictly convex if

∥∥x + y
∥∥

2
< 1 for ||x|| = ||y|| = 1 and x ≠

y; it is also said to be uniformly convex if limn®∞, ||xn - yn|| = 0 for any two sequences

{xn}, {yn} in E such that ||xn|| = ||yn|| = 1 and limn→∞

∥∥xn + yn
∥∥

2
= 1. Let U = {x Î E : ||x||

= 1} be the unit sphere of E, then the Banach space E is said to be smooth provided

limt→0

∥∥x + ty
∥∥ − ‖x‖
t

exists for each x, y Î U. It is also said to be uniformly smooth if the

limit is attainted uniformly for each x, y Î U. It is well known that if E is reflexive and

smooth, then the duality mapping J is single valued. It is also known that if E is uniformly

smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E. A

Banach space E is said to have Kadec-Klee property if a sequence {xn} of E satisfies that xn
⇀ x Î E and ||xn|| ® ||x||, then xn ® x. It is known that if E is uniformly convex, then E

has the Kadec-Klee property. Some more properties of the duality mapping have been

given in [6,7].

Definition 2.4 [8]Let E be a reflexive and smooth Banach space. The function F :

E×E ® R is said to be a Lyapunov function defined by

φ(y, x) =
∥∥y∥∥2 − 2

〈
y, Jx

〉
+ ‖x‖2

for all x, y Î E.

Obviously, we have

(1) (||x|| - || y ||)2 ≤ �(y, x) ≤ (||y||2 + ||x||2);

(2) �(x, y) = � (x, z) + �(z, y) + 2〈x-z, Jz - Jx〉;

(3) �(x, y) = 〈x, Jx - Jy〉 + 〈y - x, Jy〉 ≤ ||x|| ||Jx - Jy|| + ||y - x|| ||y||,
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for all x, y, z Î E.

Lemma 2.1 [8]Let E be a uniformly convex and smooth Banach space, and let {yn},

{zn} be two sequences of E. If � (yn, zn) ® 0 and either {yn} or {zn} is bounded, then yn-

zn® 0.

Lemma 2.2 If E is a strictly convex, reflexive, and smooth Banach space, then for x, y

Î E, �(x, y) = 0 if and only if x = y.

Proof. It is sufficient to show that if �(x, y) = 0 then x = y. From (1), we have ||x|| =

||y||. This implies 〈y, Jx〉 = ||y||2 = ||Jx||2. From the definition of J, we have Jx = Jy.

Since J is one-to-one, we have x = y.

Definition 2.5 Let C be a closed convex subset of E. Suppose that E is reflexive,

strictly convex, and smooth. Then, for any x Î E, there exists a point x0 Î C such that

� (x0, x) = minyÎC�(y, x). The mapping PC : E ® C defined by PCx = x0 is called the

generalized projection [7,8].

The following are well-known results.

Lemma 2.3 [9]Let C be a closed convex subset of a smooth Banach space E and x Î
E. Then, x0 = PC x if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0

for all y Î C.

Lemma 2.4 [10]Let E be a reflexive, strictly convex, and smooth Banach space and let

C be a closed convex subset of E and x Î E. Then �(y, PCx) + �(PCx, x) ≤ �(y, x) for all

y Î C.

3 Main results
Theorem 3.1 (Demiclosedness principle) Let E be a reflexive smooth Banach space

with a weakly sequential continuous duality mapping J. Let C be a nonempty bounded

and closed convex subset of E and T : C ® C be a uniformly L-Lipschitzian and

asymptotical pseudo-contraction. Then I-T is demiclosed at zero, where I is the identical

mapping.

Proof. Assume that {xn} ⊂ C with xn ⇀ x and xn - Txn ® 0 as n ® ∞; we plan to

show that x Î C and x = Tx. Since C is a closed convex subset of E, C is weakly

closed, and hence x Î C. So, it is sufficient to show that x = Tx. To this end, we

choose α ∈
(
0,

1
1 + L

)
and define ym = (1 - a)x + aTmx for arbitrary but fixed m ≥ 1.

We first show that for fixed m ≥ 1,xn - Tmxn ® 0, as n ® ∞. In fact, in view of the

uniform L-Lipschitz condition of T, we have
∥∥xn − Tmxn

∥∥ ≤ ‖xn − Txn‖+
∥∥Txn − T2xn

∥∥+· · ·+∥∥Tm−1xn − Tmxn
∥∥ ≤ mL ‖xn − Txn‖ → 0,

as n ® ∞.

We next estimate 〈J(x - ym), (I - T
m)ym〉. By using the definition of T, we have

〈
J(x − ym), (I − Tm)ym

〉
=

〈
J(x − ym) − J(xn − ym), (I − Tm)ym

〉
+

〈
J(xn − ym), (I − Tm)ym

〉
=

〈
J(x − ym) − J(xn − ym), (I − Tm)ym

〉
+

〈
J(xn − ym), (I − Tm)xn

〉
+

〈
J(xn − ym), (I − Tm)ym − (I − Tm)xn

〉
≤ 〈

J(x − ym) − J(xn − ym), (I − Tm)ym)
〉
+

〈
J(xn − ym), (I − Tm)xn

〉
+ (km − 1)

∥∥ym − x
∥∥2.
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Since xn ⇀ x by our assumption and xn - Txn ® 0 as n ® ∞, by xn - Tmxn ® 0, as

n ® ∞ and since J is a weakly sequential continuous duality mapping, it follows that
〈
J(x − ym), (I − Tm)ym

〉 ≤ (km − 1)(diamC)2,

as n ® ∞.

Further, using the uniform L-Lipschitz condition of T and the definition of ym, we

have

〈
J(x − ym), (I − Tm)x − (I − Tm)ym

〉 ≤ (1 + L)
∥∥x − ym

∥∥2 ≤ (1 + L)α2
∥∥x − Tmx

∥∥2.
At this point, by the facts above, we have

∥∥x − Tmx
∥∥2 =

〈
J(x − Tmx), x − Tmx

〉
=
1
α

〈
J(x − ym), x − Tmx

〉

=
1
α

〈
J(x − ym), x − Tmx − (ym − Tmym)

〉
+
1
α

〈
J(x − ym), ym − Tmym

〉

≤ α(1 + L)
∥∥x − Tmx

∥∥2 + 1
α

〈
J(x − ym), ym − Tmym

〉

≤ α(1 + L)
∥∥x − Tmx

∥∥2 + 1
α
(km − 1)(diamC)2

which implies that

α[1 − α(1 + L)]
∥∥x − Tmx

∥∥2 ≤ (km − 1)(diamC)2

for all m ≥ 1.

Letting m ® ∞, km ® 1 yields that Tm x ® x, and hence Tm+1x ® Tx as m ® ∞,

since T : C ® C is continuous. Consequently, we have x = Tx, completing the proof of

Theorem 3.1.

Remark 3.1 Theorem 3.1 is useful in Banach spaces and a novel result which will

play a very key role for establishing the strong convergence theorem of fixed points of

asymptotical pseudo-contractions in this article.

Theorem 3.2 Let E be a uniformly convex and uniformly smooth Banach space with

a weakly sequential continuous convex duality mapping J. Let C be a nonempty

bounded and closed convex subset of E, and let T : C ® C be a uniform L-Lipschitzian,

convex and asymptotical pseudo-contraction with F(T) nonempty. Assume the control

sequence {an} is chosen so that an Î [a, b] for some a, b ∈
(
1 +

1
1 + L

)
. The sequence

{xn} is given in the following manner
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,
yn = (1 − αn)xn + αnTnxn,
Hn = {z ∈ C : αn

[
1 − (1 + L)αn

] ‖xn − Tnxn‖2,
≤ 〈

J(xn − yn) − J(z − yn), (yn − Tnyn)
〉
+ (kn − 1)(diamC)2},

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = PHn∩Wnx,n = 0, 1, 2, . . . .

(2)

Then the sequence {xn} converges strongly to PF(T)x, where PF(T) is the generalized pro-

jection from E onto F (T).

Proof. We divide the proof into seven steps.

Step 1. PF(T) is well defined for every x Î C.
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Since T is uniform L-Lipschitzian continuous and convex, we know F(T) is closed

and convex. Moreover, F(T) is nonempty by our assumption. Therefore, PF(T) is well

defined for every x Î C.

Step 2 Show that Hn and Wn are closed and convex for all n ≥ 0.

From the definitions of Wn and Hn, it is obvious that Wn is closed and convex and

Hn is closed for each n ≥ 0. Hn is convex for each n ≥ 0, which follows from the con-

vexity of J. We omit the details.

Step 3. Show that F(T) ⊂ Hn∩ Wn for all n ≥ 0.

We first prove F(T) ⊂ Hn. Let u Î F and let n ≥ 0. Then, using (2), the uniform L-

Lipschitz continuity of T and the asymptotical pseudo-contractiveness of T, we have

∥∥xn − Tnxn
∥∥2 =

〈
J(xn − Tnxn), xn − Tnxn

〉
=

1
αn

〈
J(xn − yn), xn − Tnxn

〉

=
1
αn

〈
J(xn − yn), xn − Tnxn − (yn − Tnyn)

〉
+

1
αn

〈
J(xn − yn), yn − Tnyn

〉

≤ αn(1 + L)
∥∥x − Tmx

∥∥2
+

1
αn

〈
J(xn − yn) − J(p − yn), yn − Tnyn

〉

+
1
αn

〈
J(p − yn), yn − Tnyn − (p − Tnp)

〉

≤ αn(1 + L)
∥∥xn − Tnxn

∥∥2 + 1
αn

(kn − 1)(diamC)2

+
1
αn

〈
J(xn − yn) − J(p − yn), yn − Tnyn

〉
,

which implies that

αn[1−αn(1+L)]
∥∥xn − Tnxn

∥∥2 ≤ (kn−1)(diamC)2+
〈
J(xn − yn) − J(p − yn), yn − Tnyn

〉
,

and which shows that u Î Hn for all n ≥ 0. This proves that F(T) ⊂ Hn for all n ≥ 0.

Next we prove F(T) ⊂ Wn for all n ≥ 0 by induction. For n = 0, we have F(T) ⊂ C =

W0. Assume that F(T) ⊂ Wn. Since xn+1 is the projection of x onto Hn ∩ Wn, by

Lemma 2.3, we have

〈xn+1 − z, Jx − Jxn+1〉 ≥ 0,

for any z Î Hn ∩ Wn. As F(T) ⊂ Hn ∩ Wn by the induction assumption, the last

inequality holds, in particular, for all u Î F(T). This together with the definition of

Wn+1 implies that F(T) ⊂ Wn+1. Hence, F(T) ⊂ Hn ∩ Wn for all n ≥ 0.

Step 4. ||xn+1 - xn|| ® 0 as n® ∞.

In view of (2) and Lemma 2.3, we have xn = PWnx, which means that for any z Î Wn,

�(xn, x) ≤ � (z, x). Since xn+1 Î Wn and u Î F(T) ⊂ Wn, we obtain

φ(xn, x) ≤ φ(xn+1, x)andφ(xn, x) ≤ φ(u, x),

for all n ≥ 0. Consequently, limn®∞ � (xn, x) exists and {xn} is bounded. By using

Lemma 2.4, we have

φ(xn+1, xn) ≤ φ(xn+1, x) − φ(xn, xn) → 0,

as n® ∞. By using Lemma 2.1, we obtain ||xn+1 - xn|| ® 0 as n ® ∞.

Step 5. ||xn - Tnxn|| ® 0 as n ® ∞.
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It follows from step 4 that ||xn+1 - xn|| ® 0 as n ® ∞. Since xn+1 ⊂ Hn, noting that

{an} is chosen so that an Î [a, b] for some a, b ∈
(
1 +

1
1 + L

)
, {yn} and {Tnyn} are

bounded and J is a weakly sequential continuous duality mapping, from the definition

of Hn, we have

αn[1 − αn(1 + L)]
∥∥xn − Tnxn

∥∥2 ≤ (kn − 1)(diamC)2 +
〈
J(xn − yn) − J(p − yn), yn − Tnyn

〉
≤ (kn − 1)(diamC)2 +

∥∥J(xn − yn) − J(p − yn)
∥∥ ∥∥yn − Tnyn

∥∥ → 0,

as n ® ∞.

Step 6. ||xn - Txn|| ® 0, as n ® ∞.

Observing that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ +
∥∥xn+1 − Tn+1xn+1

∥∥ +
∥∥Tn+1xn+1 − Tn+1xn

∥∥∥∥Tn+1xn − Txn
∥∥

≤ ‖xn − xn+1‖ +
∥∥xn+1 − Tn+1xn+1

∥∥ + L ‖xn − xn+1‖ + L
∥∥Tnxn − xn

∥∥
≤ (1 + L) ‖xn − xn+1‖ +

∥∥xn+1 − Tn+1xn+1
∥∥ + L

∥∥Tnxn − xn
∥∥

and using steps 4 and 5, we reach the desired conclusion.

Step 7. xn ® PF(T)x, as n ® ∞.

From the result of step 6, we know that if {xnk} is a subsequence of {xn} such that

{xnk} ⇀ x̂εC, then by the Theorem 3.1, we obtain x̂ ∈ F(T). So we assume {xnk} be a

subsequence of {xn} such that {xnk} ⇀ x̂ ∈ F(T) and ω = PF(T). For any n ≥ 1, from
xn+1 = PHn∩Wn

x and ω Î F(T) ⊂ Hn ∩ Wn, we have � (xn+1, x) ≤ � (ω, x).

On the other hand, from the weak lower semicontinuity of the norm, we have

φ(x̂, x) =
∥∥x̂∥∥2 − 2

〈
x̂, Jx

〉
+ ‖x‖2

≤ lim inf
n→∞

(∥∥xnk∥∥2 − 2
〈∥∥xnk∥∥2, Jx

〉
+ ‖x‖2

)

= lim inf
n→∞ φ(xnk , x) ≤ lim sup

n→∞
φ(xnk , x) ≤ φ(ω, x).

From the definition of PF(T), we obtain x̂ = ω and hence limn→∞φ(xnk , x) = φ(ω, x).

So we have limk→∞
∥∥xnk∥∥ = ‖ω‖. Using the Kadec-klee property of E, we obtain that

{xnk} converges strongly to PF(T)x. Since {xnk} is an arbitrary weakly convergent

sequence of {xn}, we can conclude that {xn} converges strongly to PF(T)x.

Remark 3.2 Theorem 3.2 extends the main results of Zhou (see [1]) from Hilbert

spaces to Banach spaces and improves some other results (see [4,5]). Moreover, our

method used in this article can be applied to other mappings, such as k-strict pseudo-

contractions (see [11]) for some k Î [0, 1) in Banach spaces. It should be pointed out

that our extended demiclosed-ness principle plays a key role in the proof.
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