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Abstract

In this article, some Gronwall-type integral inequalities with impulses on time scales
are investigated. Our results extend some known dynamic inequalities on time scales,
unify and extend some continuous inequalities and their corresponding discrete
analogues. Some applications of the main results are given in the end of this article.
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Introduction
The theory of time scales, which has recently received a lot of attention, was initiated

by Hilger [1] in his Ph.D. thesis in 1988 to contain both difference and differential cal-

culus in a consistent way. Since then many authors have investigated the dynamic

equations, the calculus of variations and the optimal control problem on time scales

(see [2-11]). At the same time, a few papers have studied the theory of integral

inequalities on time scales (see [12-14]).

In this article, we study some Gronwall-type integral inequalities on time scales,

which extend some known dynamic inequalities on time scales, unify and extend some

continuous inequalities and their corresponding discrete analogues. It is helpful in our

result to study dynamic systems and optimal control problem on time scales.

Preliminaries
For convenience, we present some important theorem on time scales in this section.

The approach is based on the ideas in [9] and will be of fundamental importance in

following results.

A time scale T is a nonempty closed subset of R. The two most popular examples are

T = R and T = Z. Define the forward and backward jump operators σ ,ρ : T → T by

σ (t) = inf{s ∈ T|s > t}, ρ(t) = sup{s ∈ T|s < t}, t ∈ T,

where, in this definition, we write sup ∅ = infT ≡ a and inf∅ = supT ≡ b. A point

t ∈ T is said to be left-dense, left-scattered, right-dense, right-scattered if r(t) = t, r (t)

< t, s (t) = t, s (t) > t, respectively. The forward (backward) graininess

μ : T → [0, +∞)(ν : T → [0, +∞)) is defined by μ(t) = s(t) - t(v(t) = t - r(t)). Define
PClrd(T,R)(PCrrd(T,R)) = {x : T → R|x, PClrd(T,R)(PCrrd(T,R)) = {x : T → R|x is con-

tinuous at right-dense point t ∈ T \ �, x exists right limit at t Î Λ or left-dense point
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||x||PC = max
{
sup
t∈T

||x(t+)||, sup
t∈T

||x(t−)||
}
., x is left (right) continuous and exists right

(left) limit at t Î Λ}. Endowed with norm

||x||PC = max
{
sup
t∈T

||x(t+)||, sup
t∈T

||x(t−)||
}
.

{
PClrd(T,X), || · ||PC

}
and

{
PCrrd(T,X), || · ||PC

}
are Banach spaces.

Theorem 2.1. (1) Let f ∈ L1(T,R). Then

F(t) =
∫

[a,t)

f (τ )�τ , t ∈ T

implies F ∈ Crd(T,R)is Δ-differentiable Δ-a.e. on Tand

F(t) − F(s) =
∫
[s,t)

f (τ )�τ for s, t ∈ T.

(2) If f and g are Δ-differentiable Δ-a.e. on T, then∫
[s,t)

[
f�(τ )g(τ ) + f σ (τ )g�(τ )

]
�τ = f (t)g(t) − f (s)g(s) for s, t ∈ T.

The exponential function ep on time scale plays a very important role for discussing

dynamic equations on time scales. Define �1(T) =
{
p ∈ L1loc(T,R)|1 + μ(t)p(t) �= 0

}
. For

any p, q ∈ �1(T), define p ⊕ q = p + q + μpq, �p = − p
1+μp, p � q = p−q

1+μq. Further, we

can show that p ⊕ q, p � q,�p ∈ �1(T). Define the generalized exponential function as

follows:

ep(t, s) = exp

⎧⎪⎨
⎪⎩
∫
[s,t)

ξμ(τ)(p(τ ))�τ

⎫⎪⎬
⎪⎭ .

Theorem 2.2. Assume that p, q ∈ �1(T), then the following hold:

(1) e0(t, s) ≡ 1, ep(t, t) ≡ 1, ep(t, s)ep(s, r) = ep(t, r), ep(s(t), s) = [1 + μ(t)p(t)]ep(t, s);

(2) ep(t, s) = 1
ep(s,t)

= e�p(s, t), ep(t, s)eq(t, s) = ep⊕q(t, s),
ep(t,s)
eq(t,s)

= ep�q(t, s);

(3) ep(·, s) ∈ Crd(T,R), (ep(·, s))
Δ = p(·)ep(·, s),ep(s, ·))

Δ = -p(·)ep(s, s(·) Δ-a.e. on T.

Main results
In this section, we deal with Gronwall-type integral inequalities with impulses on time

scales. For convenience, we always assume that f ∈ L1 (T,R), pi, qi ∈ L1 (T,R+) with R+

= [0, +∞), 0 <li < 1 (i = 1, 2, 3, 4), a ≥ 0, bk ≥ 0 (k = 1, 2, · · ·, n), xt = sup
a≤s≤t

|x(s)|,
xτb sup

τ≤s≤b
|x(s)| in the section.

Theorem A. (1) If x ∈ Crd (T,R)satisfies the following inequality

x�(t) ≤ p1(t)x(t) + f (t) � − a.e. onT
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then

x(t) ≤ ep1(t, a)x(a) +
∫

[a,t)

ep
1
(t, σ (τ ))f (τ )�τ for all t ∈ T.

(2) If x ∈ PClrd (T,R+)satisfies the following inequality

x(t) ≤ α +
∫

[a,t)

p1(τ )x(τ )�τ +
∑
tk<t

βkx (tk) , ∀t ∈ T,

then

x (t) ≤ α
∏
tk<t

(1 + βk) ep1(t, a), ∀t ∈ T.

(3) If x ∈ PClrd (T,R+)satisfies the following inequality

x(t) ≤ α +
∫

[a,t)

p1(τ )x(τ )�τ +
∫

[a,t)

q1(τ )xλ1(σ (τ ))�τ +
∑
tk<t

βkx(tk), ∀t ∈ T,

then there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

(4) If x ∈ PClrd (T,R+)satisfies the following inequality

x(t) ≤ α +
∫

[a,t)

p1(τ )x(τ )�τ +
∫

[a,t)

p2(τ )xτ�τ +
∫

[a,t)

q1(τ )xλ1(σ (τ ))�τ

+
∫

[a,t)

q2(τ )x
λ2
σ (τ)�τ +

∑
tk<t

βkx (tk) , ∀t ∈ T,

then there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

(5) If x ∈ PClrd (T,R+)satisfies the following inequality

x(t) ≤
∫

[a,t)

p1(τ )x(τ )�τ +
∫

[a,t)

p2(τ )xτ�τ +
∫

[a,t)

q1(τ )xλ1(σ (τ ))�τ +
∫

[a,t)

q2(τ )x
λ2
σ (τ)�τ

+ α +
∫

[a,b)

q3(τ )xλ3(τ )�τ +
∫

[a,b)

q4(τ )x
λ4
σ (τ)�τ +

∑
tk<t

βkx (tk) , ∀t ∈ T,

then there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

Proof. (1) Note that p1 ∈ L1(T,R+) implies p1 ∈ �1(T) and 1 + μ(t)p1(t) > 0 for all

t ∈ T. Now

[x(t)e�p1 (t, a)]
� =

[
x�(t) − p1(t)x(t)

]
e�p1(σ (t), a) � − a.e. on T.
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Therefore,

x(t)e�p1 (t, a)−x(a) =
∫

[a,t)

[
x�(τ ) − p1(τ )x(τ )

]
e�p1 (σ (τ ), a)�τ ≤

∫
[a,t)

f (τ )e�p1(σ (τ ), a)�τ ,

that is,

x(t) ≤ ep1(t, a)x(a) +
∫

[a,t)

ep1(t, σ (τ ))f (τ )�τ for all t ∈ T.

(2) Define

y(t) = α +
∫

[a,t)

p1(τ )x(τ )�τ +
∑
tk<t

βkx(tk), ∀t ∈ T.

By Theorem 2.1, y is Δ-differential Δ-a.e. on T and{
y�(t) = p1(t)x(t) ≤ p1(t)y(t), t �= tk,
y(a) = α, y(tk+) = (1 + βk)y(tk).

For t Î [a, t1], it is obvious to

y(t) ≤ αep1 (t, a).

Further, we have

y(t) ≤ y(ti+) ep1(t, ti) ≤ α(1+βi)
∏
tk<ti

(1+βk) ep1(ti, a)ep1 (t, ti) = α
∏
tk<t

(1+βk) ep1(t, a), ∀t ∈ (ti, ti+1].

Thus,

x(t) ≤ α
∏
tk<t

(1 + βk) ep(t, a), ∀t ∈ T.

(3) Setting

y(t) = α +
∫

[a,t)

p1(τ )x(τ )�τ +
∫

[a,t)

g1(τ )xλ1(σ (τ ))�τ +
∑
tk<t

βkx(tk),

then{
y�(t) = p1(t)x(t) + g1(t)xλ1(σ (t)) ≤ p1(t)y(t) + g1(t)yλ1(σ (t)) � − a.e. on T, t �= tk,
y(a) = α, y (tk+) = y (tk) + βkx(tk) = (1 + βk)y(tk).

Using the conclusion (1), we have

y(t) ≤ α
∏
tk<t

(1 + βk)ep1(t, a) +
∏
tk<t

(2 + βk)
∫

[a,t)

ep1(t, σ (τ ))g1(τ )y
λ1(σ (τ ))�τ

≤
∏
tk<t

(2 + βk)

⎡
⎢⎣αep1 (t, a) +

∫
[a,t)

ep1(t, σ (τ ))g1(τ )y
λ1(σ (τ ))�τ

⎤
⎥⎦ .
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For t ∈ T, let

h(t) = αep1(b, a) + ep1(b, a)
∫

[a,t)

g1(τ )yλ1(σ (τ ))�τ + ep1(b, a)
∫

[a,b)

g1(τ )yλ1(σ (τ ))�τ ,

then h is monotone increasing function and h(b) = 2h(a) − αep1 (b, a),

h�(t) = ep1(b, a)g1(t)y
λ1(σ (t)) ≤

n∏
k=1

(2 + βk)λ1ep1(b, a)g1(t)q
λ1(t), ∀t ∈ T.

Δ-integrating from a to t, we obtain

h1−λ1 (t) − h1−λ1(a) ≤ ρ

∫
[a,t)

g1(τ )�τ , ∀t ∈ T,

where

ρ = (1 − λ1)ep1 (b, a)
n∏

k=1

(2 + βk)λ1 .

Now, we observe that

(
2h(a) − αep1(b, a)

)1−λ1 − h1−λ1 (a) ≤ ρ

∫
[a,b)

g1(τ )�τ .

Letting

�(z) =
(
2z − αep1 (b, a)

)1−λ1 − z1−λ1 ,

then � ∈ C
([

αep1 (b,a)
2 , +∞

)
,R
)
and �

(
αep1 (b,a)

2

)
= −

(
αep1 (b,a)

2

)1−λ1

< 0,

lim
z→+∞ �(z) = lim

z→+∞
�(z)
z1−λ1

z1−λ1 = lim
z→+∞

[(
2 − αep1 (b,a)

z

)1−λ1 − 1
]
z1−λ1 = +∞.

Using the proof by contraction, one can show that there exists a constant M > 0

such that q(a) <M. Thus,

x(t) ≤ y(t) ≤ h(a) ≤ M , ∀t ∈ T.

(4) Setting l = max{l1, l2},

z(t) =
{
1, x(t) < 1,
x(t), x(t) ≥ 1,

p(t) = p1(t) + p2(t), g(t) = g1(t) + g2(t), ∀t ∈ T,

we have

x(t) ≤ α +
∫

[a,t)

p(τ )zτ�τ +
∫

[a,t)

g(τ )zλσ (τ)�τ +
∑
tk<t

βkztk , ∀t ∈ T.

Furthermore,

zt ≤ α +
∫

[a,t)

p(τ )zτ �τ +
∫

[a,t)

g(τ )zλσ (τ)�τ +
∑
tk<t

βkztk , ∀t ∈ T,
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By the conclusion (3), there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

(5) Setting l = max{l1, l2, l3, l4},

y(t) =
{
1, xt < 1,
xt, xt ≥ 1,

p(t) = p1(t) + p2(t), g(t) =
4∑
i=1

gi(t), ∀t ∈ T.

we have

y(t) ≤ α +
∫

[a,t)

p(τ )y(τ )�τ +
∫

[a,b)

g(τ )yλ(τ )�τ +
∑
tk<t

βky(tk).

By the conclusions (3) and (4), we can show that the conclusion (5) is true. The

proof is completed. □
In Theorem A, we give some Gronwall-type generalized integral inequalities on time

scales. Next, we give some backward Gronwall-type generalized integral inequalities on

time scales which can not be directly obtained from Gronwall inequalities.

Theorem B. (1) If x ∈ Crd(T,R+) satisfies the following inequality

x(t) ≤ f (t) +
∫

[t,b)

p1(τ )xσ (τ )�τ ,

then

x(t) ≤ f (t) +
∫

[t,b)

ep1(τ , t)p1(τ )f
σ (τ )�τ for t ∈ T.

(2) If x ∈ PCrrd(T,R+)satisfies the following inequality

x(t) ≤ α +
∫

[t,b)

p1(τ )xσ (τ )�τ +
∑
tk>t

βkx(tk)

then

x(t) ≤ α
∏
tk>t

(1 + βk)ep1(b, t), ∀t ∈ T.

(3) If x ∈ PCrrd(T,R+)satisfies the following inequality

x(t) ≤ α +
∫

[t,b)

p1(τ )xλ1(τ )�τ +
∫

[t,b)

g1(τ )xσ (τ )�τ ,

then there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.
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(4) If x ∈ PCrrd(T,R+)satisfies the following inequality

x(t) ≤ α +
∫

[t,b)

p1(τ )xλ1(τ )�τ +
∫

[t,b)

p2(τ )xλ2
τb

�τ +
∫

[t,b)

g1(τ )x(σ (τ ))�τ

+
∫

[t,b)

g2(τ )xσ (τ)b�τ +
∑
tk>t

βkx(tk), ∀t ∈ T,

then there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

(5) If x ∈ PCrrd(T,R+)satisfies the following inequality

x(t) ≤
∫

[t,b)

p1(τ )xλ1(τ )�τ +
∫

[t,b)

p2(τ )xλ2
τb

�τ +
∫

[t,b)

g1(τ )xσ (τ )�τ +
∫

[t,b)

g2(τ )xσ (τ)b�τ

+ α +
∫

[a,b)

g3(τ )xλ3(τ )�τ +
∫

[a,b)

g4(τ )x
λ4
σ (τ)b

�τ +
∑
tk>t

βkx(tk),

then there is a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

Proof. (1) Define

y(t) =
∫

[t,b)

p1(τ )xσ (τ )�τ for t ∈ T.

Then y(b) = 0 and

y�(t) = −p1(t)xσ (t) ≥ −p1(t)yσ (t) − p1(t)f σ (t) � − a.e. on T.

Note that,

[y(t)ep1 (t, b)]
� =

[
y�(t) + p1(t)yσ (t)

]
ep1 (t, b) � − a.e. on T,

therefore,

−y(t)ep1 (t, b) ≥ −
∫

[t,b)

p1(τ )f σ (τ )ep1(τ , b)�τ .

Moreover, we obtain

x(t) ≤ f (t) +
∫

[t,b)

ep1 (τ , t)p1(τ )f
σ (τ )�τ for t ∈ T.

(2) Setting

y(t) = α +
∫

[t,b)

p1(τ )xσ (τ )�τ +
∑
tk>t

βkx(tk), ∀t ∈ T.
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then y is Δ-differential Δ-a.e. on T and⎧⎨
⎩
y�(t) = −p1(t)xσ (t) ≥ −p1(t)yσ (t), t �= tk,
y (tk−) = y (tk) + βkx(tk) ≤ (1 + βk)y(tk),
y(b) = α.

For t Î [tn, b], by the conclusion (1) we have

y(t) ≤ αep1(b, t).

When t Î (tn, tn+1], By Theorem 2.2 and the conclusion (1) we also obtain

y(t) ≤ y(tn−)ep1(tn, t) ≤ α(1 + βn)ep1 (b, t).

Thus,

x(t) ≤ α
∏
tk>t

(1 + βk)ep1(b, t), ∀t ∈ T.

(3) Setting g = (a + 1)(b + 1), b = ∫[a,b) eg(τ, a)g(τ)Δτ, then

x(t) ≤ α +
∫

[t,b)

p1(τ )xλ1(τ )�τ + α

∫
[t,b)

eg1(τ , t)g1(τ )�τ +
∫

[t,b)

eg1 (τ , t)g1(τ )
∫

[τ ,b)

p1(ν)xλ1(ν)�ν�τ

≤ γ + γ

∫
[a,b)

p1(τ )xλ1(τ )�τ .

Letting

h(t) = γ + γ

∫
[t,b)

p1(τ )xλ(τ )�τ + γ

∫
[a,b)

p1(τ )xλ1(τ )�τ ,

then h is monotone descending function and

h�(t) ≥ −γ p1(t)hλ(t).

Δ-integrating from t to b, we obtain

h1−λ1 (t) − h1−λ1 (b) ≤ (1 − λ1)γ
∫

[t,b)

p1(τ )�τ .

Therefore,

(
2h(b) − γ

)1−λ1 − h1−λ1 (b) ≤ (1 − λ1)γ
∫

[a,b)

p1(τ )�τ .

Using the method of the conclusion (3) in Theorem A, one can show that there is a

constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

(4) For t ∈ T, define

z(t) =
{
1, x(t) < 1,
x(t), x(t) ≥ 1,
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we have

x(t) ≤ α +
∫

[t,b)

p(τ )zτb�τ +
∫

[t,b)

g(τ )zλσ (τ)b�τ +
∑
tk>t

βkztkb , ∀t ∈ T,

where l = max{l1, l2}, p(t) = p1(t) + p2(t)g(t) = g1(t) + g2(t). Hence

ztb ≤ α +
∫

[t,b)

p(τ )zτb�τ +
∫

[t,b)

g(τ )zλσ (τ)b�τ +
∑
tk>t

βkztkb , ∀t ∈ T,

By the conclusion (3), there exists a constant M > 0 such that

x(t) ≤ M , ∀t ∈ T.

(5) Setting l = max{l1, l2, l3, l4},

y(t) =
{
1, xt < 1,
xt, xt ≥ 1,

p(t) = p1(t) + p2(t), g(t) =
4∑
i=1

gi(t), ∀t ∈ T.

then we have

y(t) ≤ α +
∫

[t,b)

p(τ )y(τ )�τ +
∫

[a,b)

g(τ )yλ(τ )�τ +
∑
tk>t

βky(tk).

Further, we also can prove that the conclusion (5) is hold. This completes the proof.

Remark 3.1: (1) If T = R, then the inequality established in Theorem A reduces to the

inequality established by Peng and Wei in [15].

(2) Using our main results, we can obtain many dynamic inequalities for some pecu-

liar time scales. Due to limited space, their statements are omitted here.

Application
In this section, we present some applications of Theorems A and B to investigate cer-

tain properties of solutions of the following impulsive dynamic integral equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x�(t) + p(t)xσ (t) = f
(
t, x(t), xσ (t), (Sx)(t), (Wx)(t)

)
, t /∈ �,

(Sx)(t) =
∫

[a,t)
k(t, τ )s

(
τ , x(τ ), xσ (τ )

)
�τ , t ∈ T,

(Wx)(t) =
∫

[a,b)
m(t, τ )w

(
τ , x(τ ), xσ (τ )

)
�τ , t ∈ T

x (tk+) = x (tk) + Jk (x (tk)) , tk ∈ �,
x(a) = x0,

(4:1)

where p ∈ �1(T).

Definition 4.1: A function x ∈ PClrd(T,R) is said to be a weak solution of (4.1), if x

satisfies the impulsive integral equation

x(t) = e�p(t, a)x0+
∫

[a,t)

e�p(t, τ )f (τ , x(τ ), xσ (τ ), (Sx)(τ ), (Wx)(τ ))�τ+
∑
tk<t

e�p(t, tk)Jk(x(tk)), t ∈ T.

Suppose that:

[F] (1) k, m ∈ Crd(T × T,R), the functions f : T × R × R × R × R → R,

w : T × R × R → R, w : T × R × R → R are measurable in t ∈ T and locally Lipschitz

continuous, that is, for any r > 0, there exists a constant L(r) > 0, for all xi, yi, zi, wi Î
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X, satisfying ||xi||, ||yi||, ||zi||, ||wi|| ≤ r (i = 1, 2), we have

‖ f (t, x1, y1, z1,w1) − f (t, x2, y2, z2,w2) ‖ ≤ L(ρ)(‖ x1 − x2 ‖ + ‖ y1 − y2 ‖ + ‖ z1 − z2 ‖ + ‖ w1 − w2 ‖),
‖ s(t, x1, y1) − s(t, x2, y2) ‖ ≤ L(ρ)

(‖ x1 − x2 ‖ + ‖ y1 − y2 ‖) ,
‖ w(t, x1, y1) − w(t, x2, y2) ‖ ≤ L(ρ)

(‖ x1 − x2 ‖ + ‖ y1 − y2 ‖) .
(2) There are constants 0 <li < 0 (i = 1, · · ·, 4) and function q1, q2, q3 ∈ L1 (T,R+)

such that

|f (t, x, y,w, z)| ≤ q1(t)
(
1 + |x| + |y|λ1 + |w| + |z|) ,∀x, y,w, z ∈ R, t ∈ T,

|s(t, x, y)| ≤ q2(t)
(
1 + |x| + |y|λ2

)
,∀x, y ∈ R, t ∈ T,

|w(t, x, y)| ≤ q3(t)
(
1 + |x|λ3 + |y|λ4

)
,∀x, y ∈ R, t ∈ T.

(3) There are constants bk ≥ 0 such that the mapping Jk : R ® R (k = 12 · · · n) satis-

fies

‖ Jk(x) − Jk(y) ‖ ≤ βk ‖ x − y ‖, ∀x, y ∈ X.

Theorem C. Under assumption [F], if p ∈ �1(T), then the system (4.1) has a weak

solution x ∈ PClrd(T,R).

Proof. Define the operator H on PClrd(T,R) given by

(Hx)(t) =
∫

[a,t)

e�p(t, τ )f (τ , x(τ ), xσ (τ ), (Sx)(τ ), (Wx)(τ ))�τ + e�p(t, a)x0+
∑
tk<t

e�p(t, tk)Jk(x(tk)).

We can first prove that H : PClrd(T,R) → PClrd(T,R) is continuous and compact.

Let x ∈ ϒ ≡ {
x ∈ PClrd(T,R)|x = δ(Hx), δ ∈ [0, 1]

}
. When δ ≠ 0, set y = 1

δ
x, if not y

= 0. Note that

|y(t)| ≤ M

[
|x0|+ ‖ q1‖L1 (1+ ‖ k ‖‖ q2‖L1 + ‖ m ‖‖ q3‖L1 ) +

n∑
k=1

|Jk(0)|
]

+Mδ

∫
[a,t)

q1(τ )|y(τ )|�τ +Mδ ‖ k ‖‖ q2‖L1
∫

[a,t)

q1(τ )|yτ |�τ

+Mδ

∫
[a,t)

q1(τ )|yσ (τ )|λ1�τ +Mδ ‖ k ‖‖ q2‖L1
∫

[a,t)

q1(τ )|yσ (τ)|λ2�τ ,

+Mδ ‖ m ‖‖ q1‖L1
∫

[a,b)

q3(τ )|y(τ )|λ3�τ

+Mδ ‖ m ‖‖ q1‖L1
∫

[a,b)

q3(τ )|yσ (τ )|λ4�τ +M
∑
tk<t

βk|y(tk)|.

By Gronwall inequality (5) in Theorem A, there is a constant M > 0 such that

|y(t)| ≤ M, ∀t ∈ T.

It follows by Leray-Schauder fixed point theorem, H has a fixed point in PCrd(T,R),

that is, the impulsive integro-differential equation (4.1) has a weak solution

x ∈ PCrd(T,R). □
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For the following backward problem{
ϕ�(t) + p(t)ϕσ (t) = w(t,ϕ(t),ϕσ (t)), a ≤ t < b,
ϕ(b) = ϕ1,

(4:2)

we introduce the following assumption:

[W] (1) The function w : T × R × R → R is Δ-measurable in t ∈ T and locally

Lipschitz continuous, i.e. for all �1, �2, ψ1, ψ2 Î R, satisfying |�1|, |�2|, |ψ1|, |ψ2| ≤ r,
we have

|w(t,ϕ1,ψ1) − w(t,ϕ2,ψ2)| ≤ L(ρ)(|ϕ1 − ϕ2| + |ψ1 − ψ2|) for all t ∈ T.

(2) There exist a constant 0 <l < 1 and a function q ∈ L1(T, [0, +∞)) such that

|w(t,ϕ,ψ)| ≤ q(t)(1 + |ϕ|λ + |ψ |) for all ϕ,ψ ∈ R.

We can prove the following result.

Theorem D. Let p ∈ �1(T). Under the assumption [W], the backward problem of the

nonlinear dynamical equation (4.2) has a unique weak solution ϕ ∈ Crd(T,R).
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