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1 Introduction
In this work, we set out to investigate an apparently simple question concerning the theory
of oscillatory solutions of ordinary second-order linear homogeneous differential equa-

tions: It is well known that such equations in the form
y'+By +Cy=0, (1)

where primes denote derivatives with respect to the independent variable x and B and C
are constant coefficients, admit oscillatory solutions y(x) only if the discriminant D = B —
4C < 0, but the same discriminant is not a predictor of oscillatory behavior in cases where
the coefficients are functions of x. The question then is why this criterion for oscillatory

behavior fails in the general case of equations of the form

¥ +bx)y +c(x)y =0, (2)
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and whether the corresponding discriminant function d(x) = b?(x) — 4c(x) carries any in-
formation at all about the nature of the solutions of equation (2).

Our analysis, like many of the classical investigations of the past [1-12] (see also the
reviews of Wong [12] and Agarwal et al. [13]), begins by transforming equations (1) and
(2) to their canonical forms in which the first derivative terms are eliminated. Equation (1)

then becomes
U +Qu=0, 3)
where y(x) = u(x) exp(—%Bx), and the constant coefficient

D B?
Q:—Z:C—Z. (4)

Equation (2) becomes

u’ +q(x)u =0, (5)

where y(x) = u(x) exp(—% [ b(x) dx), and the coefficient

4 2

2 ’
) = =2 ) +20/9] = ety - 20 2,

(6)
A comparison between the two canonical forms reveals why the properties of the well-
known damped and simple harmonic oscillators (equations (1) and (3)) do not carry over
to the case of nonconstant coefficients (equations (2) and (5)): The former transformation
to the canonical form effectively ‘folds’ the damping coefficient B into the new constant
term Q, where the negative term —B?/4 clearly opposes the natural internal oscillatory
term C > 0 of equation (1). On the other hand, the latter transformation to the canonical
form folds into g(x) the derivative term —&'(x)/2 in addition to the pure-damping negative
term —b%(x)/4. The term —&'(x)/2 sometimes acts as damping (when &’ > 0), whereas other
times it enhances the internal oscillatory term c¢(x) > 0 (when &’ < 0). Therefore, the func-
tion b(x) does not represent pure damping as in the case of the constant coefficient B in the
first derivative term of equation (1). This is also the reason that in the past the canonical
form has been proven inadequate in predicting the oscillatory behavior of the solutions of
equation (2) since the transformation to this form does not fold a pure-damping term into
the coefficient g(x) of equation (5) (for examples, see Section 2.3 in [13] and Section XI.1
in [14]).

It is rather obvious that the above difficulties with the term —b'(x)/2 do not materialize
in cases where b(x) is constant since then »’ = 0 and the canonical coefficient g(x) is not
‘contaminated’ by the term —b’(x)/2. This observation shows us how to circumvent the
difficulties associated with &' (x): Equations of the form (2) should be cast to their canonical
form, and then this form should be cast into a new form in which the coefficient of the
first derivative is constant. Then, another transformation to the canonical form will fold
a constant-damping term into the g(x) term of equation (5) that will clearly oppose any
oscillatory tendency without introducing contamination from &'(x). Once the competition
between oscillation and damping has been established in that new g(x) term, a criterion
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for oscillatory solutions could presumably be found by using that final canonical form of
equation (2) and Sturm’s [8] comparison theorem. We analyze this procedure in Section 2
below, where we establish a program for deriving a criterion for oscillatory solutions for
equation (5). Then, in Sections 3-5, we apply this methodology to some well-known and
commonly used equations in applied mathematics and mathematical physics [15-17], and
we predict the precise intervals of oscillations of their solutions. Finally, in Section 6, we
summarize and discuss our results.

2 A program for detecting oscillatory solutions
2.1 Cauchy-Euler equation
The Cauchy-Euler equation

B, C
Y'Y+ 5y=0, @)

where B and C are constants, shows that a criterion for oscillatory solutions can be easily
established when a given differential equation can be transformed to a form that contains

constant coefficients. By applying the Euler transformation
x = exp(t), (8)
this equation takes the form of a damped harmonic oscillator with constant coefficients
y+B-1)y+Cy=0, )

where dots denote derivatives with respect to ¢, and oscillatory solutions appear when
the discriminant D = (B — 1)2 — 4C < 0. This conclusion is well known from the theory of
second-order differential equations with constant coefficients. It can also be obtained by
casting equation (9) to its canonical form and then by applying Sturm’s [8] comparison
theorem.

The case of the Cauchy-Euler equation indicates that the first step in establishing a crite-
rion for oscillatory solutions must be an attempt to transform an equation of the form (5)
to another form in which all the coefficients are constant. We show in Section 2.2 that such
a task cannot be accomplished by a transformation of the dependent variable u(x) because
then the constant damping of the first derivative term cannot be folded into the coefficient
of the final canonical form. Then we show in Section 2.3 that the task can be carried out
successfully by a transformation of the independent variable x but only for some specific
equations that are generalized forms of the Cauchy-Euler equation. Therefore, equation
(7) is not merely a simple case that can be handled with ease; on the contrary, it is a rep-
resentative of the one and only one type of differential equation that can be transformed
to a damped harmonic oscillator with constant coefficients in all of its terms.

When the above step fails (for equations that do not have the symmetries of equation
(7)), it is still possible to transform a given equation to a form in which only the first deriva-
tive term has a constant coefficient. Then this constant damping can be folded into the co-
efficient of the final canonical form where it will oppose oscillatory tendencies. We show

in Section 2.4 how this step is carried out and how the criterion for oscillatory solutions



Christodoulou et al. Advances in Difference Equations (2016) 2016:48 Page 4 of 23

then emerges. In what follows, we always begin with the canonical form (5) since all or-
dinary second-order linear homogeneous differential equations can be initially cast into
this form. We note however that if a given equation is already in canonical form, then one
may not assume that the damping has already been folded into g(x); as equation (6) shows,
the given g(x) may already be contaminated by the —5/(x)/2 term, which may not be act-
ing as pure damping. It is for this reason that the above-discussed oscillation-detection
program must still be carried out in its entirety for a given equation of the form (5) so
that a constant-damping term will be created, and then it will be explicitly folded into the
original g(x) term. This procedure will ensure that every effort has been made for pure
damping to oppose the natural tendency for oscillatory behavior that the given g(x) term

may possess.

2.2 The transformation of the dependent variable fails

The substitution u(x) = v(x)z(x) into equation (5) gives
2V/ V//
7'+ —7 + |:— + q(x):|z =0. (10)
v v

In this equation, we can choose the function v(x) freely. The requirement that the coeffi-

cient of z' should be a constant k leads to v(x) = exp(%kx), and then equation (10) becomes
k2
7'+ k7 + |:Z + q(x):|z =0. (11)

We see now that the constant damping k of the 2z’ term cannot be folded into the coeffi-
cient g(x) of the final canonical form. The constant k drops out of the discriminant d(x)
of equation (11):

kZ
d(x) = k* - 4[2 + q(x)} = —4q(x), 12)

and g(x) reverts back to the original g(x):

d(x)

40 = -5 = () (13)

Therefore, our program cannot be carried out by a transformation of the original function

u(x) in equation (5), and we turn next to transformations of the independent variable x.

2.3 Transformations of the independent variable
The substitution x = f(¢) into equation (5) gives

i —?it +f2q(x)u =0, (14)

where dots denote derivatives with respect to ¢. In this equation, we can choose the func-

tion f(¢) freely. The requirement that the coefficient of i should be a constant —k leads to
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a solution of the equation f - kf =0 of the form f(t) = ¢; + ¢y exp(kt), where ¢; and ¢, are
arbitrary constants, and then equation (14) can be written as

it — kit + k*(x — ¢1)q(x)u = 0. (15)
Its canonical form is
W+ gx)w =0, (16)

where u(t) = w(t) exp(%kt) and

g(x) = K [(x -a)’q(x) - ﬂ a7)

The above solution for x = f(¢) is a generalization of the classical Euler transformation
x = exp(t) and inserts into equations (15) and (17) the two arbitrary constants k and c;.
The constant k? acts as a scale factor in the coefficient §(x) of the canonical form. As the
transformation x = f(¢) changes the x-scale of the original equation, k rescales accordingly
the ‘oscillation’ frequency \/M The constant c; is more interesting: It represents a ‘hori-
zontal’ shift of the independent variable x. By an appropriate choice of ¢;, the shifted term
(x — ¢1)? in equation (17) is capable of eliminating any one regular singular point that the
original given term g(x) may contain. Furthermore, the coefficient g(x) ends up being a
constant, and equations (15) and (16) end up having constant coefficients only in cases
where g(x) contains precisely one regular singular point at x = ¢;, that is, when

1
(x—c1)?’

q(x) x (18)
and the original equation (5) is of the Cauchy-Euler type.? In any other case, the coefficient
of u(¢) in equation (15) cannot be a constant. Such cases are analyzed in Section 2.4.

The results described indicate that differential equations of the Cauchy-Euler type
should always be transformed to a form with constant coefficients before an investiga-
tion of oscillatory behavior in their solutions is carried out. At the same time, there exist
differential equations that can be transformed to the Cauchy-Euler type, and the entire
procedure that leads to constant coefficients must then be applied to them as well. We
provide a related example in Section 3.3, where we study the Riemann-Weber [18] equa-
tions, a long-standing counterexample to the discovery of a robust criterion for oscillatory
solutions by considering the g(x) term alone of a differential equation given in the canon-
ical form (5).

2.4 Constant damping and the criterion for oscillatory solutions

The differential equations that we study can all be cast in the canonical form (5), and
this form can always be recast in the form (15) with constant damping, but in the most
commonly occurring cases, the coefficient of u(¢) will not be constant. For such equations,
we can still fold the constant damping & into the coefficient (17) of the canonical form (16),
where it will be allowed to oppose internal oscillatory tendencies. The resulting equation

W+ k2 |:(x —1)?q(x) - %]w =0, (19)
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can then be used to establish a criterion for oscillatory solutions despite the dependence
of the coefficient of w(t) on x(¢). Applying Sturm’s [8] comparison theorem, a comparison

of equation (19) to the simple harmonic oscillator
y+ey=0, (20)

where the constant € — 0, shows that oscillatory solutions occur in equation (19) and

therefore also in equation (5) in intervals of x where

1

> 74(x—cl)2' (21)

q(x)

This criterion provides ‘to within €’ a necessary and sufficient condition for oscillations in
the solutions of equation (5) (see also [12] and [19]). A surprising element is the presence
of the arbitrary constant c;. As we have mentioned, this constant is useful in eliminat-
ing regular singularities from the coefficient of equation (19), in which case the search for
oscillatory solutions circumvents any pole that may be embedded in the g(x) term of an
equation given in the canonical form (5). For many equations of applied mathematics, sin-
gularities in their coefficients occur at x = 0, in which case we set ¢; = 0, and the criterion

takes the form

1
q(x) > yyoR (22)

The validity of this criterion for oscillatory solutions is confirmed in Section 3 for several
complicated cases of differential equations with known oscillatory characteristics.

Our investigation is not however limited only to the conventional definition of oscil-
lation as a sequence of infinitely many zeros in the solution of a differential equation. In
what follows, we define oscillatory behavior as the appearance of successive critical points
of the same kind (maxima, or minima, or inflection points) in the graph of a solution.
This definition allows us to study oscillations in solutions with a finite number of zeros
or no zeros (Section 3.4) and in solutions defined in finite domains (Section 5), as well as
some characteristic high-frequency oscillations that tend to occur in the vicinity of x = 0
(Section 3.1 and Section 4.3).

3 Confirmations of the criterion
3.1 Bessel equation and equations transformed to the Bessel type
The canonical form of Bessel’s differential equation [16] is

. 1-4n?
u + 1+ 2 u=0. (23)

A nontrivial application of Sturm’s comparison and separation theorems shows that the
solutions (the Bessel functions) oscillate for all |x| > |#| (Theorem 9.3 in [20]). The same
result is also obtained by the criterion (22) with g(x) = 1 + (1 — 4n2)/(4x?) that leads to the
inequality x? > n2. More importantly, having established the criterion for oscillations of

the Bessel functions, we can now confirm the validity of inequality (22) for a large family
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of differential equations that can be cast to the Bessel type. These are the equations of the
form

U +x"'u=0, (24)

where n # 0,-2 is a constant, and they can be transformed to a Bessel equation of order
m = 1/(n + 2) with independent variable £ = 2mx/®”, The condition || > |m| for the

Bessel equation then predicts oscillatory solutions in equation (24) for
1
x n+2 S - 25
|| 2 (25)

The same result can also be obtained, quite easily, by using g(x) = " into the criterion
(22). The agreement between the two derivations of the criterion confirms the validity of
inequality (22).

Equation (25) indicates that there exist two distinct regions of the parameter n (sepa-
rated by the n = -2 case) in which the solutions exhibit different oscillatory characters.
The above analysis is not applicable for # = -2, but in this case the original equation (24)
is a Cauchy-Euler equation (equation (7) with B = 0 and C = 1) that was discussed in Sec-
tion 2.1. For n > -2, then m = 1/(n + 2) > 0, and equation (25) can be written as

x> (i)m (26)

so oscillations occur in two semi-infinite intervals on the x-axis. On the other hand, for
n < -2, then m < 0, and equation (25) can be written as

1#] < (i)m 27)

so oscillations occur only in a finite interval around x = 0. This distinct behavior of the two
types of solutions has been verified by numerical integrations of equation (24). The same
dual behavior has also been observed in the solutions of a more complicated differential
equation that is discussed in Section 4.3.

3.2 Modified Bessel equation
The canonical form of the modified Bessel differential equation [16] is

_ 2
u”+(1 il —1)u=0. (28)

42

It is well known that its particular solutions, the modified Bessel functions, are nonoscil-
latory. The same result is also obtained by the criterion (22) with g(x) = (1 — 4#n?)/(4x?) -1,
which leads to x? + #? < 0, an inequality that is not satisfied for any values of x and .

3.3 Riemann-Weber equations
An interesting family of extensions of the Cauchy-Euler equation, known as the Riemann-
Weber [18] equations, have long served as a counterexample to finding a robust criterion
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for oscillatory solutions by examining the coefficient g(x) alone (see [12—14, 19]). The first
few members of this family are:

u”+ﬁ2u:0, (29)
x
1/1 "
"+ —=(>+—=—Ju=0, 30
e <4+ln2x>u (30)
and
111 1 1
u”+—|:—+T<—+ ZM ):|u:0, (31)
%24 In*x\4 In*(Inx)

where w is a constant. Subsequent members of the family can be written down by using

the recursion formula

11

qn(x) = — [— + qn_l(lnx)} (32)
x| 4

for the coefficient of u(x). By applying a sequence of successive Euler transformations of

the form (8) and by returning to the canonical form in each iteration, every equation in

this family can be cast into a simple harmonic oscillator of the form

1
et |- w=0, (33)

where the subscript ss denotes the second derivative with respect to the final independent
variable s. This final canonical form implies that the criterion for oscillatory solutions is
> 1/4 for all members of the family, a result that has also been produced from a variety
of more complicated calculations [13, 14]. With the exception of the canonical Cauchy-
Euler equation (29) that does not contain logarithms, this criterion cannot be obtained by
considering the given Riemann-Weber [18] equations or any of their intermediate forms
during the iterative procedure that reduces them to the form (33). This underlines the
need for transforming a given equation to the simplest possible form before a criterion for
oscillatory solutions can be established.

3.4 Wong-Willett equations with oscillatory coefficients
Wong [12] and Willett [9] have studied the oscillatory properties of the equation

., asin(yx)
W+ ——u
x

=0 (x>0), (34)

where « and y are nonzero constants. The criterion for oscillatory solutions is |a/y| >
1/+/2 (see also Section 2.2 in [13]) and relies on the oscillatory nature of sin(yx) that is
included in the coefficient of u(x). When the inequality is not satisfied, the solutions do
not oscillate in the sense that they do not possess an infinite number of zeros along the
x-axis.

On the other hand, the final canonical form of equation (34) is

W+ [ocx sin(yx) — i}w =0, (35)
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u” +a sin(y x)u/x = 0, = 1000, y = 100, u(0)=0, u’(0)=1
200 T T T T T T

150 b

100 B

50 b

~100 4

~150 - 4

-200 b

_250 I I I I I I I I I

Figure 1 The numerical solution of equation (34) with & = 1,000, y = 100, and boundary conditions
u(0)=0andu’(0)=1.

where x = exp(¢) and u(t) = w(t) exp(¢/2); if we take o > 0, then inequality (22) predicts that
oscillations will appear in the solutions for sin(yx) > 1/(4ax). This condition is satisfied
periodically over repeated intervals in x, and it implies an additional type of oscillation
that rides on top of the large-scale oscillation predicted about the x-axis by Wong [12] and
Willett [9].

Figure 1 shows the numerical solution of equation (34) with « = 1,000, y =100, and
boundary conditions #(0) = 0 and #'(0) = 1. Both types of oscillations are clearly visible.
Figure 2 shows another numerical solution with « = 10, y = 20, and the same set of bound-
ary conditions. For these choices of the constants, the Wong-Willett criterion is not sat-
isfied, and the solution does not oscillate about the x-axis. The oscillations predicted by
inequality (22) are however still visible, confirming the validity of criterion (22). We note
that, because of the steep monotonic rise of the solution, the oscillations are manifested
as a sequence of inflection points rather than as a sequence of extrema. This interesting
behavior is discussed further in Section 5.1.

Wong [12] and Willett [9] have also studied several other differential equations with
oscillatory coefficients. We note two equations that are extensions of equation (34):

(a) Wong [12] studied the equation

,  asin(yx)

u +Tu=0 (x> 0), (36)
where @, y, and k are nonzero constants. He found that, for k > 1, the solutions are
nonoscillatory in the sense that they do not possess infinitely many zeros. In contrast,
if we consider « > 0, then the criterion (22) predicts oscillations for sin(yx) > x*2/(4a).
For k = 2, this condition reduces to sin(yx) > 1/(4«), and then, for 0 < o < 1/4, the so-
lutions are predicted to be nonoscillatory by our definition as well. But for o > 1/4, our
criterion predicts oscillations over repeated intervals in x. Such oscillations can be seen in
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u” + 0 sin(y x)u/x = 0, o = 10, y = 20, u(0)=0, u'(0)=1
1.6 T T T T T

Zosf R

0.4r B

0.2r B

Figure 2 The numerical solution of equation (34) with &« = 10, y = 20, and boundary conditions
u(0)=0and u’(0)=1.

u” +osin(y x)u/xk =0, =100, y=10, k = 2, u(0)=0, u’(0)=1
250 T T T T T T T

Figure 3 The numerical solution of equation (36) with & = 100, y =10, k = 2, and boundary
conditions u(0) =0 and uv’(0) = 1.

Figure 3, which shows the numerical solution of equation (36) with « =100, y =10, k=2,
and boundary conditions #(0) = 0 and #/(0) = 1. The solution clearly oscillates for x < 4,
and then, as it runs away to infinity, it exhibits a sequence of inflection points that give it

a distinct oscillatory character.
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u” + fousin(y x)/x + A /xz]u =0, =100, y=10, A = =50, u(0)=0, u'(0)=1
7 T T T T T T

Figure 4 The numerical solution of equation (37) with & =100, y =10, A =-50, and boundary
conditions u(0) =0and v’(0) = 1.

(b) Willett [9] studied the equation

S |:a sin(yx) s %]u ~0 (x>0), (37)
x x
where «, y, and X are nonzero constants. In conjunction with a result obtained by Wong
[12] for a special case, Willett found that, for A < 1/4—(a/y)?/2, the solutions are nonoscil-
latory in the sense that they do not possess infinitely many zeros. On the other hand, if
we consider « > 0, then the criterion (22) predicts oscillations for sin(yx) > (1 —41)/(4ax),
a condition that can be easily satisfied in successive intervals for large values of x, irre-
spective of the value of A. An example of such oscillations can be seen in Figure 4, which
shows the numerical solution of equation (37) with « =100, y =10, A = -50, and bound-
ary conditions #(0) = 0 and #/(0) = 1. For these values of the constants, the solution does

not oscillate about the x-axis, but the oscillations predicted by the criterion (22) are clearly
visible.

4 Applications of the criterion in semiinfinite domains

In this section, we apply inequality (22) to equations that are known empirically to exhibit

oscillatory solutions over semi-infinite intervals in the variable x.

4.1 First form of the parabolic cylinder equation
We call the equation

2
u + (% —n)u:O, (38)
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u” + (/4 —nu=0,n=9,u(0)=1, w(0)=0
2 T T T

Figure 5 The numerical solution of equation (38) with n =9 and boundary conditions u(0) = 1 and
u'(0)=0.

where 7 is a constant [15], the first form of the parabolic cylinder differential equation. Its
final canonical form is

W+[x2<xzz—n>—i]w=0, (39)

where x = exp(¢) and u(£) = w(t) exp(¢/2). According to equation (22), the intervals over
which the solutions may oscillate are given by the solutions of the algebraic inequality

xt—dnx® -1 0. (40)

For x >> 1, this condition can be approximated by x*> — 4% > 0 and, for # > 0, the crite-
rion then is |x| > 2/n. Equation (40) has only two real roots, so oscillations occur only
in the two semiinfinite intervals specified by this approximate criterion. Figure 5 shows
the numerical solution of equation (38) with # = 9 and boundary conditions #(0) = 1 and
#/(0) = 0. Clearly, the oscillations set in for |x| > 6, as predicted by the above approxima-
tion.

4.2 Airy equation
The Airy differential equation [15]

u —xu=0, (41)

has g(x) = —x. According to equation (22), its solutions oscillate for

1\13
X< —(Z) =-0.63. (42)
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This result is significant in that it shows that oscillations set in over a semi-infinite interval
in x that does not include a finite region on the left of x = 0. This corrects the empirical

notion that the Airy functions oscillate for all negative values of x.

4.3 A complicated canonical form

Although complicated, the canonical form

u=0, (43)

u’ + |:(n +1)2 k32K — nn+2) 2):|

4x?
where k # 0 and # are constants, admits a simple analytic solution
u(x) = "% sin(ks"*"). (44)

For n = —1, equation (43) reduces to a Cauchy-Euler equation with g(x) = 1/(4x?) and
nonoscillatory solutions. For # > —1, the sine term in equation (44) is clearly oscillatory all
the way to infinity, whereas for n < -1, some high-frequency oscillations are restricted to
a small but finite region around x = 0 owing to the particular dependence of the argument
of the sine on a positive power of (1/x).

This varied behavior of the solutions (44) can be easily deduced from criterion (22) as
well. After some algebra, we find that the solutions are oscillatory for

|| > (45)

20kl

For n > —1, this inequality can be written as

1\ 1
|x|><m> ’ (46)

which predicts oscillations in two distinct semiinfinite intervals on the x-axis.> On the

other hand, for n < -1, equation (45) can be written as

1\t
|x|<<m> ’ (47)

which predicts oscillations over a finite interval around x = 0.

5 Oscillatory solutions in finite domains
In this section, we apply inequality (22) to equations that are known empirically to exhibit

oscillatory solutions over finite intervals in the variable x.

5.1 Second form of the parabolic cylinder equation
We call the equation

" xz
u' — Z+n u=0, (48)
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u” - (@/4 +nu =0, n=-9, u(0)=1, w(0)=0
2 T T T

ot 4

X 3+ 4

5+ 4

—6F 4

Figure 6 The numerical solution of equation (48) with n = -9 and boundary conditions u(0) = 1 and
u'(0)=0.

where 7 is a constant [15], the second form of the parabolic cylinder differential equation.
Its final canonical form is

1'4'/—|:x2<%2+n>+%:|w=0, (49)

where x = exp(¢) and u(£) = w(t) exp(¢/2). According to equation (22), the intervals over
which the solutions may oscillate are given by the solutions of the algebraic inequality

x* +4nx® +1<0. (50)

For x > 1, this condition can be approximated by x2 + 4x < 0, and, for # < 0, the criterion
then is |x| < 24/=n. Therefore, oscillations are restricted only in a finite interval in . Fig-
ure 6 shows the numerical solution of equation (48) with # = -9 and boundary conditions
u(0) =1 and #'(0) = 0. Clearly, the oscillations set in for |x| < 6, as predicted by the above
approximation.

Equation (50) has four real roots, so it predicts also a small region of no oscillation
around x = 0. This region is too narrow (its size is &~ 1//=# for n < 1) for a break in os-
cillation to be observed in Figure 6. The nonoscillatory part of the solution around x = 0
(l¢| <1/6 for n = -9) is effectively squeezed by the two larger oscillatory regions on either
side of x = 0. Nevertheless, the finite extent of these regions raises the question of how one
can define oscillatory behavior in finite domains.

We have defined in Section 2.4 oscillatory behavior as the appearance of successive crit-
ical points of the same kind (maxima, or minima, or inflection points as in Figure 2) in the
graph of a solution of a differential equation. In addition, for oscillation in a finite interval
[x1,%2], we expect to see at least one full ‘cycle’ in the open interval (x1, x;), that is, at least
two critical points of the same kind. As a result of this definition, low-order polynomial
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Yy’ -2xy’ + 2Ly =0, A =4, y(0)=1, y'(0)=0
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—4 -3 -2 -1 0 1 2 3 4

Figure 7 The numerical solution of equation (51) with A =4 and boundary conditions y(0) = 1 and
y'(0)=0.

solutions of degree n < 2 are not oscillatory in any interval, but higher-order polynomial
solutions will be called oscillatory in [x;, 5] if two or more critical points of the same kind
do appear in (x1, ). Some borderline cases with just two such critical points are described
in Sections 5.2, 5.4, and 5.5.

5.2 Hermite equation
The Hermite differential equation [21]

¥y —2xy +2)y =0, (51)
where A > 0 is a constant, is first transformed to its canonical form
u' —[x* =21+ 1)]u=0, (52)

where y(x) = u(x) exp(x?/2). Equation (52) is similar to the second form of the parabolic
cylinder differential equation (48), which was analyzed in Section 5.1; therefore, the os-
cillatory characteristics of the Hermite solutions are expected to be similar to those de-
scribed in Section 5.1. Applying the criterion (22) to g(x) = (24 + 1) — x? of equation (52),
we find that the intervals over which the solutions of the Hermite equation may oscillate
are given by the solutions of the algebraic inequality

1
a—(2r+ DA%+ 2< 0. (53)

For x > 1, this condition can be approximated by x> < 21 + 1, and the criterion then is |x| <
V2 + 1. Therefore, oscillations occur in a finite interval in x. Figure 7 shows the numerical
solution of equation (51) with A = 4 and boundary conditions y(0) = 1 and y'(0) = 0. Clearly,
an oscillation occurs for |x| < 3, as predicted by the above approximation.
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Equation (53) also predicts a region of no oscillation around x = 0, but this region is too
narrow for a break in oscillation to be observed in Figure 7. We call this solution (a poly-
nomial of degree A = 4) oscillatory because, according to the definition given at the end
of Section 5.1, a full ‘cycle’ (two minima) can be seen in the open interval (-3, 3). In fact,
numerical integrations using the same boundary conditions show that the lowest-order
Hermite solution that exhibits such an oscillation has A = 3; for A < 2, the predicted region
for oscillation, |x| < /2x + 1, does not host two critical points of the same kind, and we
call such solutions nonoscillatory. We note however that the A = 3 oscillatory case is a bor-
derline case; for different choices of boundary conditions (e.g., for y(0) = 0 and y'(0) = 1),
numerical integrations produce solutions that are nonoscillatory. This demonstrates the
heavy influence of the adopted boundary conditions to the low-order polynomial solu-

tions.

5.3 CDOS equation
An equation studied by Chuaqui et al. [22] (hereafter CDOS) provides an example of os-
cillatory solutions defined over a small finite interval. The CDOS equation is

C

"
+ —_—
(1-x2)2

u=0 (jx<1), (54)
where C > 0 is a constant. Its solutions are known to be oscillatory for C > 1, a critical
value that is not singled out in the form of equation (54).
Equation (54) can be transformed to a simple harmonic oscillator as follows: The trans-

formation

x = tanh(z), (55)
leads to the equation

it + 2tanh(t)it + Cu =0, (56)
where dots denote derivatives with respect to ¢, and the canonical form of this equation is

w+(C-1)w=0, (57)

where u(t) = w(t) sech(f). Alternatively, the substitution of

t
X = tanh<%), (58)

into equation (54) leads to the equation

i+ itanh(i)it +u=0 (59)
N JC o

where dots denote derivatives with respect to the new ¢, and the canonical form of this
equation is

w=0, (60)

W+
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where u(t) = w(t) sech(t/+/C). It is now obvious that the solutions are oscillatory for C > 1.
This example shows that the oscillation-detection program must be carried out in its en-
tirety. The criterion for oscillatory solutions cannot be obtained by considering equation
(54) or the intermediate forms that lead to equations (57) or (60) (see also Section 3.3).

5.4 Chebyshev equation
The Chebyshev equation [21], written in the form of equation (2), is

2

11 X / n
V- om0 (<), (61)

where # is a constant. It can be transformed to a simple harmonic oscillator by the trans-

formation

x = sin(z), (62)
which leads directly to the equation

y+n*y=0, (63)

where dots denote derivatives with respect to . Alternatively, the transformation

X = sin<£>, (64)
n

casts equation (61) directly to the equation
y+y=0, (65)

where dots denote derivatives with respect to the new ¢. The particular solutions of this
equation, sin(¢) and cos(t), are not necessarily oscillatory because ¢ o sin"*(x). This raises
the question of how we could define oscillatory behavior in the solutions of equation (61).
Our answer makes use of the definition of oscillation given at the end of Section 5.1: The
solutions of equation (61), the Chebyshev polynomials, are defined in the closed interval
[-1,1]; therefore, the lowest-order solution that can be called oscillatory according to our
definition is the # = 3 polynomial. This case is shown in Figure 8, which depicts the numer-
ical solution of equation (61) with # = 3 and boundary conditions ¥(0) = 1 and »(0) = 0.
Two minima are observed in the open interval (-1,1). This case is however a borderline
case; for different choices of boundary conditions (e.g., for ¥(0) = 0 and y'(0) = 1), nu-
merical integrations produce solutions that are nonoscillatory. This example is another
demonstration of the heavy influence of the boundary conditions to the low-order poly-
nomial solutions (see also Section 5.2).

5.5 Laguerre equation
The Laguerre equation [21], written in the form of equation (2) is

/" 1-x ’ A
YV+—y+-y=0 (x=0), (66)
X x
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(123)y” =xy’ + fy =0, n = 3, y(0)=1, y'(0)=0
1 T T T T

Figure 8 The numerical solution of equation (61) with n = 3 and boundary conditions y(0) = 1 and
y'(0)=0.

where A > 0 is a constant. Its canonical form is

L, (1 2+l 1
U+ — + - —Ju=0, (67)
4x? 2x 4

where again x > 0 and y(x) = u(x) exp(x/2)/4/x. Then criterion (22) predicts oscillatory

solutions for

x <221 +1). (68)

This condition can be tested only approximately by numerical integrations of equation
(66) because the solutions y(x) break off oscillating and run away too steeply right before
the critical value 2(2X + 1) is reached. This difficulty is not present in the canonical form,
so we present as examples two solutions of the canonical form. Figure 9 shows the numer-
ical solution of equation (67) with A =7 and boundary conditions #(0) = 0 and #'(0) = 1.
Clearly, the oscillations break off precisely at x = 30 (which is a point of inflection), just
as predicted by inequality (68) for A = 7. Similarly, Figure 10 shows the lowest-order nu-
merical solution, which is oscillatory according to our definition; this solution has A =3
and obeys the same boundary conditions. Again, the oscillation breaks off precisely at
the inflection point x = 14, as predicted by condition (68) with A = 3. In the same A =3
case, another numerical integration of equation (67) with different boundary conditions
(#(0) = 1and #/(0) = 0) also produces a low-order oscillatory solution. This is in contrast to
the lowest-order borderline cases for the Hermite and Chebyshev equations (Section 5.2

and Section 5.4, respectively), where we found some nonoscillatory solutions.
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u’+ [1/(4)@) + (21 + 1)/(2x) — 1/4]Ju = 0, A = 7, u(0)=0, u’(0)=1
0.1 T T T T T

0.05

-0.05

-0.15

~0.25 I I I I I I I

Figure 9 The numerical solution of equation (67) with A = 7 and boundary conditions u(0) = 0 and
u'0)=1.

u”+ [1/(4)?) + (2L + 1)/(2x) — 1/4]Ju = 0, & = 3, u(0)=0, u’(0)=1
0.06 T T T T T T T
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Figure 10 The numerical solution of equation (67) with A = 3 and boundary conditions u(0) = 0 and
u0)=1.

6 Summary and discussion

6.1 Summary

In this paper, we have presented a new methodology for predicting the intervals of oscilla-
tions in the solutions of ordinary second-order linear homogeneous differential equations
by examining the behavior of their coefficients. We have defined oscillatory behavior as
the appearance of successive critical points of the same kind (maxima, minima, or inflec-
tion points) in the graph of a solution (Section 2.4). According to this definition, low-order
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polynomial solutions can be oscillatory even in finite intervals (see Section 5.1). Because
of the subtleties involved in investigating oscillations in finite and infinite intervals, an
entire program must be carried out with the goal of transforming a given equation to its
simplest possible form. The starting point of the program is the canonical form (5) of any
given equation in the form (2).

In the first step, an attempt must be made to transform the canonical form into a damped
harmonic oscillator with constant coefficients in the form (1). Then the criterion for oscil-
latory solutions can be established, quite easily, from the discriminant of the characteristic
quadratic equation, as is well known. It turns out that the Cauchy-Euler equation (Sec-
tion 2.1), the Riemann-Weber equations (Section 3.3), the CDOS equation (Section 5.3),
and the Chebyshev equation (Section 5.4) can all be transformed to equations with con-
stant coefficients during this step of the program.

In the event that the above step is not viable, a different type of transformation may still
be applied to the independent variable (Section 2.3; see also Section 2.2 for a failure to
transform the dependent variable). In this second step, the canonical form (5) must be
cast to a form in which the coefficient of the first derivative is constant. This constant rep-
resents pure damping that is capable of opposing any natural oscillatory tendency that the
solutions may possess (Section 2.4). Finally, when this form is transformed to its canon-
ical form, the constant damping is folded into the coefficient of this final form, where it
will certainly oppose oscillation. Then, an application of Sturm’s [8] comparison theorem
produces a criterion (equations (21) and (22)) that can detect the intervals of oscillatory
behavior in this step of the program. In Sections 3-5, we have presented several examples
of equations from applied mathematics and mathematical physics in which our oscillation-

detection program can be carried out successfully.

6.2 Discussion

For the general second-order differential equation of the form (2), we can use the crite-
rion (22) and equation (6) to answer the question posed in the beginning of this paper
(Section 1) about any useful information that may be obtained directly from the discrimi-
nant of equation (2), d(x) = b%(x) — 4c(x). By combining these equations, the criterion for
oscillatory solutions can be written as

d(x) < _iz — 20 (x). (69)
x

This inequality shows that it is not sufficient for d(x) to be negative, as in the case of the
harmonic oscillator with constant coefficients (equation (1)). Solving equation (69) for
¢(x), we find that

c(x)>@+ [@+4sz:| (70)

The term 1/(4x?) represents the lowest-level resistance to oscillation that is present even
in cases with b(x) = 0. For ' > 0, the terms in square brackets represent additional resis-
tance to oscillation on top of the term 5?/4, which is analogous to the damping B2/4 in the
constant-coefficients case (see equation (4)). The term c¢(x) must overcome these terms as
well for oscillation to appear in the solutions. Only in the special case of b(x) = 1/(2x) + co,
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where ¢ is an arbitrary constant, do the bracketed terms cancel one another, and the cri-
terion (c > b*/4 or, equivalently, d < 0) then resembles the constant-coefficients case. In
this case, as well as in all the other cases where b’ < 0, the term &'/2 works to diminish
the effect of damping in equations of the form (2). Cases in which &’ < 0 are quite com-
mon in the equations of mathematical physics (Bessel, Hermite, Chebyshev, and Laguerre
equations all belong to this category).

Two more interesting cases that make use of special forms of b(x) can be delineated from

inequality (70):
(a) For
b =2, 7
x

the b-dependent terms in equation (70) cancel out, and the criterion reduces to c(x) >
1/(4x?). Therefore, in this case, there is no need to transform equation (2) to the canonical
form (5) since g(x) = c(x), unless of course equation (2) can be transformed to a harmonic

oscillator with constant coefficients. An example of this exception is the equation
2, 1/(1 u
"+=y+—|-+— Ju=0, 72
Yyt ( ) (72)

4 In’x

where p is a constant. This extension of the Riemann-Weber [18] equations (see Sec-
tion 3.3) can be transformed to an equation with constant coefficients of the form (33).
(b) For

)= 2, (73)
X

all terms at the right-hand side of equation (70) cancel out, and the criterion reduces to
¢(x) > 0. This case is directly applicable to Bessel equations and shows that differential

equations of the form
1 1 /
Y+ =y +clx)y=0, (74)
x

do not contain any damping of the term c(x). The category includes also the ‘fuel cell’
equation [23]

—(xy/)/ —x%y=)xy (x>0, =const), (75)
which can be written in the form (74) with c(x) = x> + A. The absence of damping from
equation (74) is consistent with what is known about the Bessel differential equation

2

1 n
"+ 2y 4+ 1-= |y=0 = t.), 76
y xy < xz)y (n = const.) (76)

in which the y'/x term is an inertial term that appears when a cylindrical coordinate system
is used to solve Laplace’s equation (the origin of this term is the curvature of the coordinate
system). As such, this term should neither oppose nor assist oscillations in the solutions.®
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The Riccati equations of these two cases (25 + b* = 0 and 2b' + b? +1/x? = 0, respectively)
can both be solved to yield the general solutions for b(x) that lead to the above special
criteria, but the particular solutions (71) and (73) given here seem to be the most relevant
b(x)-forms for the equations of mathematical physics. The general solution of the latter
case may however be of some theoretical interest. The most general form of b(x) that
represents the complete absence of damping in equation (2) is

b(x) = l|:1 L}, (77)

+
x In|cox|

where ¢g is an arbitrary constant. The particular solution (73) of physical interest is recov-
ered from this equation in the limit as ¢y — 0.

Finally, we return to the Cauchy-Euler equation (7), the CDOS equation (54), and the
Chebyshev equation (61), which can be transformed to harmonic oscillators with constant
coefficients in the first step of the program, thereby simplifying considerably the study of
their oscillatory properties. An examination of the transformations x = g(¢) that we have
used in each case (equation (8), equations (55), (58), and equations (62), (64), respectively)
reveals that the inverse transformation ¢ = g7 (x) can be obtained by the integration

t:/\/c(x)dx, (78)

where c(x) is the coefficient of the y term that appears in the general form (2). The mul-
tiplicative constant that appears in the c(x) in each case may be retained or dropped (see
Section 5.3 and Section 5.4), and still the transformation x = g(¢) is successful in casting
each of these equations to a final form with constant coefficients. This suggests that such
a transformation should always be attempted in the first step of the program.
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Endnotes
@ If g(x) contains two or more regular singular points, then the oscillatory properties of the solutions can still be
investigated across each singularity by applying a different x = f(t) transformation in each interval that contains one
such singularity.

This is also the case for elementary periodic functions such as sin(kx) and cos(kx). For n = 0, the solution (44) of
equation (43) reduces to u(x) = sin(kx), and the criterion (46) for oscillations reduces to |x| > 1/(2|k|). Thus, the
oscillations set in outside of a finite interval of width £P/(4r), where P = 27r/|k| is the fundamental period. This
interval is however too narrow for a break in oscillation to be observed in the graphs of sin(kx) and cos(kx) (cf.
Section 5.1).

When Laplace’s equation is separated in Cartesian or spherical coordinates, the resulting inertial terms by’ are 0 and
of the form (2/x)y’, respectively. It is interesting that the criterion (70) reduces to c(x) > 1/(4x%) in both of these cases.
This inequality indicates that the lowest-level resistance to oscillation is present in these coordinate systems unlike
in the case of cylindrical coordinates.
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