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The existence of bounded nonoscillatory solutions of a higher-order nonlinear neutral delay
difference equationΔ(akn · · ·Δ(a2nΔ(a1nΔ(xn+bnxn−d))))+f(n, xn−r1n , xn−r2n , . . . , xn−rsn) = 0, n ≥ n0,
where n0 ≥ 0, d > 0, k > 0, and s > 0 are integers, {ain}n≥n0

(i = 1, 2, . . . , k) and {bn}n≥n0
are real

sequences,
⋃s

j=1{rjn}n≥n0
⊆ Z, and f : {n : n ≥ n0} × R

s → R is a mapping, is studied. Some
sufficient conditions for the existence of bounded nonoscillatory solutions of this equation are
established by using Schauder fixed point theorem and Krasnoselskii fixed point theorem and
expatiated through seven theorems according to the range of value of the sequence {bn}n≥n0

.
Moreover, these sufficient conditions guarantee that this equation has not only one bounded
nonoscillatory solution but also uncountably many bounded nonoscillatory solutions.

1. Introduction and Preliminaries

Recently, the interest in the study of the solvability of difference equations has been increasing
(see [1–17] and references cited therein). Some authors have paied their attention to various
difference equations. For example,

Δ(anΔxn) + pnxg(n) = 0, n ≥ 0 (1.1)

(see [14]),

Δ(anΔxn) = qnxn+1, Δ(anΔxn) = qnf(xn+1), n ≥ 0 (1.2)
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(see [11]),

Δ2(xn + pxn−m
)
+ pnxn−k − qnxn−l = 0, n ≥ n0 (1.3)

(see [6]),

Δ2(xn + pxn−k
)
+ f(n, xn) = 0, n ≥ 1 (1.4)

(see [10]),

Δ2(xn − pxn−τ
)
=

m∑

i=1

qifi(xn−σi), n ≥ n0 (1.5)

(see [9]),

Δ(anΔ(xn + bxn−τ)) + f(n, xn−d1n , xn−d2n , . . . , xn−dkn) = cn, n ≥ n0 (1.6)

(see [8]),

Δm(xn + cxn−k) + pnxn−r = 0, n ≥ n0 (1.7)

(see [15]),

Δm(xn + cnxn−k) + pnf(xn−r) = 0, n ≥ n0 (1.8)

(see [3, 4, 12, 13]),

Δm(xn + cxn−k) +
u∑

s=1

psnfs(xn−rs) = qn, n ≥ n0 (1.9)

(see [16]),

Δm(xn + cxn−k) + pnxn−r − qnxn−l = 0, n ≥ n0 (1.10)

(see [17]).
Motivated and inspired by the papers mentioned above, in this paper, we investigate

the following higher-order nonlinear neutral delay difference equation:

Δ(akn · · ·Δ(a2nΔ(a1nΔ(xn + bnxn−d)))) + f(n, xn−r1n , xn−r2n , . . . , xn−rsn) = 0, n ≥ n0, (1.11)

where n0 ≥ 0, d > 0, k > 0, and s > 0 are integers, {ain}n≥n0
(i = 1, 2, . . . , k) and {bn}n≥n0

are real
sequences,

⋃s
j=1{rjn}n≥n0

⊆ Z, and f : {n : n ≥ n0} × R
s → R is a mapping. Clearly, difference
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equations (1.1)–(1.10) are special cases of (1.11). By using Schauder fixed point theorem and
Krasnoselskii fixed point theorem, the existence of bounded nonoscillatory solutions of (1.11)
is established.

Lemma 1.1 (Schauder fixed point theorem). LetΩ be a nonempty closed convex subset of a Banach
space X. Let T : Ω → Ω be a continuous mapping such that TΩ is a relatively compact subset of X.
Then T has at least one fixed point in Ω.

Lemma 1.2 (Krasnoselskii fixed point theorem). Let Ω be a bounded closed convex subset of a
Banach space X, and let T1, T2 : Ω → X satisfy T1x + T2y ∈ Ω for each x, y ∈ Ω. If T1 is a
contraction mapping and T2 is a completely continuous mapping, then the equation T1x+T2x = x has
at least one solution in Ω.

The forward difference Δ is defined as usual, that is, Δxn = xn+1 − xn. The higher-order
difference for a positive integer m is defined as Δmxn = Δ(Δm−1xn), Δ0xn = xn. Throughout this
paper, assume that R = (−∞,+∞), N and Z stand for the sets of all positive integers and integers,
respectively, α = inf{n − rjn : 1 ≤ j ≤ s, n ≥ n0}, β = min{n0 − d, α}, limn→∞(n − rjn) = +∞,
1 ≤ j ≤ s, and l∞

β
denotes the set of real sequences defined on the set of positive integers lager than β

where any individual sequence is bounded with respect to the usual supremum norm ‖x‖ = supn≥β|xn|
for x = {xn}n≥β ∈ l∞β . It is well known that l∞β is a Banach space under the supremum norm. A subset
Ω of a Banach space X is relatively compact if every sequence in Ω has a subsequence converging to
an element of X.

Definition 1.3 (see [5]). A set Ω of sequences in l∞
β

is uniformly Cauchy (or equi-Cauchy) if,
for every ε > 0, there exists an integer N0 such that

∣
∣xi − xj

∣
∣ < ε, (1.12)

whenever i, j > N0 for any x = {xk}k≥β in Ω.

Lemma 1.4 (discrete Arzela-Ascoli’s theorem [5]). A bounded, uniformly Cauchy subset Ω of l∞β
is relatively compact.

Let

A(M,N) =
{
x = {xn}n≥β ∈ l∞β : M ≤ xn ≤ N, ∀n ≥ β

}
for N > M > 0. (1.13)

Obviously, A(M,N) is a bounded closed and convex subset of l∞β . Put

b = lim sup
n→∞

bn, b = lim inf
n→∞

bn. (1.14)

By a solution of (1.11), we mean a sequence {xn}n≥β with a positive integer N0 ≥
n0 + d + |α| such that (1.11) is satisfied for all n ≥ N0. As is customary, a solution of (1.11) is
said to be oscillatory about zero, or simply oscillatory, if the terms xn of the sequence {xn}n≥β
are neither eventually all positive nor eventually all negative. Otherwise, the solution is called
nonoscillatory.
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2. Existence of Nonoscillatory Solutions

In this section, a few sufficient conditions of the existence of bounded nonoscillatory solutions
of (1.11) are given.

Theorem 2.1. Assume that there exist constants M and N with N > M > 0 and sequences
{ain}n≥n0

(1 ≤ i ≤ k), {bn}n≥n0
, {hn}n≥n0

, and {qn}n≥n0
such that, for n ≥ n0,

bn ≡ −1, eventually, (2.1)
∣
∣f(n, u1, u2, . . . , us) − f(n, v1, v2, . . . , vs)

∣
∣ ≤ hn max{|ui − vi| : ui, vi ∈ [M,N], 1 ≤ i ≤ s},

(2.2)
∣
∣f(n, u1, u2, . . . , us)

∣
∣ ≤ qn, ui ∈ [M,N], 1 ≤ i ≤ s, (2.3)

∞∑

t=n0

max
{

1
|ait| , ht, qt : 1 ≤ i ≤ k

}

< +∞. (2.4)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).

Proof. Choose L ∈ (M,N). By (2.1), (2.4), and the definition of convergence of series, an
integer N0 > n0 + d + |α| can be chosen such that

bn ≡ −1, ∀n ≥ N0, (2.5)

∞∑

j=1

∞∑

t1=N0+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≤ min{L −M,N − L}. (2.6)

Define a mapping TL : A(M,N) → X by

(TLx)n =

⎧
⎪⎨

⎪⎩

L − (−1)k
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

, n ≥ N0,

(TLx)N0
, β ≤ n < N0

(2.7)

for all x ∈ A(M,N).
(i) It is claimed that TLx ∈ A(M,N), for all x ∈ A(M,N).
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In fact, for every x ∈ A(M,N) and n ≥ N0, it follows from (2.3) and (2.6) that

(TLx)n ≥ L −
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

∣
∣f(t, xt−r1t , xt−r2t , . . . , xt−rst)

∣
∣

∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≥ L −
∞∑

j=1

∞∑

t1=N0+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≥ M,

(TLx)n ≤ L +
∞∑

j=1

∞∑

t1=N0+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≤ N.

(2.8)

That is, (TLx)(A(M,N)) ⊆ A(M,N).
(ii) It is declared that TL is continuous.
Let x = {xn} ∈ A(M,N) and x(u) = {x(u)

n } ∈ A(M,N) be any sequence such that
x
(u)
n → xn as u → ∞. For n ≥ N0, (2.2) guarantees that

∣
∣
∣TLx

(u)
n − TLxn

∣
∣
∣

≤
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

∣
∣
∣f
(
t, x

(u)
t−r1t , x

(u)
t−r2t , . . . , x

(u)
t−rst

)
− f(t, xt−r1t , xt−r2t , . . . , xt−rst)

∣
∣
∣

∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≤
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

ht max
{∣
∣
∣x

(u)
t−rjt − xt−rjt

∣
∣
∣ : 1 ≤ j ≤ s

}

∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≤
∥
∥
∥x(u) − x

∥
∥
∥

∞∑

j=1

∞∑

t1=N0+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

ht
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
.

(2.9)

This inequality and (2.4) imply that TL is continuous.
(iii) It can be asserted that TLA(M,N) is relatively compact.
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By (2.4), for any ε > 0, take N3 ≥ N0 large enough so that

∞∑

j=1

∞∑

t1=N3+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
<

ε

2
. (2.10)

Then, for any x = {xn} ∈ A(M,N) and n1, n2 ≥ N3, (2.10) ensures that

|TLxn1 − TLxn2 | ≤
∞∑

j=1

∞∑

t1=n1+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

∣
∣f(t, xt−r1t , xt−r2t , . . . , xt−rst)

∣
∣

∣
∣
∣
∏k

i=1aiti

∣
∣
∣

+
∞∑

j=1

∞∑

t1=n2+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

∣
∣f(t, xt−r1t , xt−r2t , . . . , xt−rst)

∣
∣

∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≤
∞∑

j=1

∞∑

t1=N3+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣

+
∞∑

j=1

∞∑

t1=N3+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣

<
ε

2
+
ε

2
= ε,

(2.11)

which means that TLA(M,N) is uniformly Cauchy. Therefore, by Lemma 1.4, TLA(M,N) is
relatively compact.

By Lemma 1.1, there exists x = {xn} ∈ A(M,N) such that TLx = x, which is a bounded
nonoscillatory solution of (1.11). In fact, for n ≥ N0 + d,

xn = L − (−1)k
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

,

xn−d = L − (−1)k
∞∑

j=1

∞∑

t1=n+(j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

,

(2.12)
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which derives that

xn − xn−d = (−1)k
∞∑

j=1

n+jd−1∑

t1=n+(j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

,

Δ(xn − xn−d) = (−1)k
∞∑

j=1

n+jd∑

t1=n+1+(j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

− (−1)k
∞∑

j=1

n+jd−1∑

t1=n+(j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

= −(−1)k
∞∑

j=1

∞∑

t2=n+(j−1)d

∞∑

t3=t2

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)

a1(n+(j−1)d)
∏k

i=2aiti

+ (−1)k
∞∑

j=1

∞∑

t2=n+jd

∞∑

t3=t2

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)

a1(n+jd)
∏k

i=2aiti

= (−1)k−1
∞∑

t2=n

∞∑

t3=t2

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)

a1n
∏k

i=2aiti

.

(2.13)

That is,

a1nΔ(xn − xn−d) = (−1)k−1
∞∑

t2=n

∞∑

t3=t2

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=2aiti

, (2.14)

by which it follows that

Δ(a1nΔ(xn − xn−d)) =(−1)k−1
∞∑

t2=n+1

∞∑

t3=t2

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=2aiti

−(−1)k−1
∞∑

t2=n

∞∑

t3=t2

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=2aiti

= (−1)k−2
∞∑

t3=n

∞∑

t4=t3

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)

a2n
∏k

i=3aiti

,

...

Δ(akn · · ·Δ(a2nΔ(a1nΔ(xn + bnxn−d)))) = (−1)k−(k+1)f(n, xn−r1n , xn−r2n , . . . , xn−rsn)

= −f(n, xn−r1n , xn−r2n , . . . , xn−rsn).
(2.15)

Therefore, x is a bounded nonoscillatory solution of (1.11). This completes the proof.
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Remark 2.2. The conditions of Theorem 2.1 ensure the (1.11) has not only one bounded
nonoscillatory solution but also uncountably many bounded nonoscillatory solutions.
In fact, let L1, L2 ∈ (M,N) with L1 /=L2. For L1 and L2, as the preceding proof
in Theorem 2.1, there exist integers N1,N2 ≥ n0 + d + |α| and mappings TL1 , TL2

satisfying (2.5)–(2.7), where L,N0 are replaced by L1, N1 and L2, N2, respectively,
and

∑∞
j=1

∑∞
t1=N4+jd

∑∞
t2=t1 · · ·

∑∞
tk=tk−1

∑∞
t=tk(ht/|

∏k
i=1aiti |) < |L1 − L2|/2N for some N4 ≥

max{N1,N2}. Then the mappings TL1 and TL2 have fixed points x, y ∈ A(M,N), respectively,
which are bounded nonoscillatory solutions of (1.11) in A(M,N). For the sake of proving
that (1.11) possesses uncountably many bounded nonoscillatory solutions in A(M,N), it is
only needed to show that x /=y. In fact, by (2.7), we know that, for n ≥ N4,

xn = L1 − (−1)k
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

,

yn = L2 − (−1)k
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f
(
t, yt−r1t , yt−r2t , . . . , yt−rst

)

∏k
i=1aiti

.

(2.16)

Then,

∣
∣xn − yn

∣
∣ ≥ |L1 − L2|

−
∞∑

j=1

∞∑

t1=n+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

∣
∣f(t, xt−r1t , xt−r2t , . . . , xt−rst) − f

(
t, yt−r1t , yt−r2t , . . . , yt−rst

)∣
∣

∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≥ |L1 − L2| −
∥
∥x − y

∥
∥

∞∑

j=1

∞∑

t1=N4+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

ht
∣
∣
∣
∏k

i=1aiti

∣
∣
∣

≥ |L1 − L2| − 2N
∞∑

j=1

∞∑

t1=N4+jd

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

ht
∣
∣
∣
∏k

i=1aiti

∣
∣
∣

> 0, n ≥ N4,

(2.17)

that is, x /=y.

Theorem 2.3. Assume that there exist constants M and N with N > M > 0 and sequences
{ain}n≥n0

(1 ≤ i ≤ k), {bn}n≥n0
, {hn}n≥n0

, {qn}n≥n0
, satisfying (2.2)–(2.4) and

bn ≡ 1, eventually. (2.18)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).



Advances in Difference Equations 9

Proof. Choose L ∈ (M,N). By (2.18) and (2.4), an integerN0 > n0 +d+ |α| can be chosen such
that

bn ≡ 1, ∀n ≥ N0,

∞∑

j=1

N0+2jd−1∑

t1=N0+(2j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≤ min{L −M,N − L}.

(2.19)

Define a mapping TL : A(M,N) → X by

(TLx)n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L + (−1)k
∞∑

j=1

n+2jd−1∑

t1=n+(2j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

, n ≥ N0,

(TLx)N0
, β ≤ n < N0

(2.20)

for all x ∈ A(M,N).
The proof that TL has a fixed point x = {xn} ∈ A(M,N) is analogous to that in

Theorem 2.1. It is claimed that the fixed point x is a bounded nonoscillatory solution of (1.11).
In fact, for n ≥ N0 + d,

xn = L + (−1)k
∞∑

j=1

n+2jd−1∑

t1=n+(2j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

,

xn−d = L + (−1)k
∞∑

j=1

n+(2j−1)d−1∑

t1=n+2(j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

,

(2.21)

by which it follows that

xn + xn−d = 2L + (−1)k
∞∑

j=1

n+jd−1∑

t1=n+(j−1)d

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

. (2.22)

The rest of the proof is similar to that in Theorem 2.1. This completes the proof.

Theorem 2.4. Assume that there exist constants b, M, and N with N > M > 0 and sequences
{ain}n≥n0

(1 ≤ i ≤ k), {bn}n≥n0
, {hn}n≥n0

, {qn}n≥n0
, satisfying (2.2)–(2.4) and

|bn| ≤ b <
N −M

2N
, eventually. (2.23)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).
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Proof. Choose L ∈ (M + bN,N − bN). By (2.23) and (2.4), an integer N0 > n0 + d + |α| can be
chosen such that

|bn| ≤ b <
N −M

2N
, ∀n ≥ N0,

∞∑

t1=N0

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≤ min{L − bN −M,N − bN − L}.

(2.24)

Define two mappings T1L, T2L : A(M,N) → X by

(T1Lx)n =

⎧
⎨

⎩

L − bnxn−d, n ≥ N0,

(T1Lx)N0
, β ≤ n < N0,

(T2Lx)n =

⎧
⎪⎨

⎪⎩

(−1)k
∞∑

t1=n

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

, n ≥ N0,

(T2Lx)N0
, β ≤ n < N0

(2.25)

for all x ∈ A(M,N).
(i) It is claimed that T1Lx + T2Ly ∈ A(M,N), for all x, y ∈ A(M,N).
In fact, for every x, y ∈ A(M,N) and n ≥ N0, it follows from (2.3), (2.24) that

(
T1Lx + T2Ly

)
n ≥ L − bN −

∞∑

t1=N0

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≥ M,

(
T1Lx + T2Ly

)
n ≤ L + bN +

∞∑

t1=N0

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≤ N.

(2.26)

That is, (T1Lx + T2Ly)(A(M,N)) ⊆ A(M,N).
(ii) It is declared that T1L is a contraction mapping on A(M,N).
In reality, for any x, y ∈ A(M,N) and n ≥ N0, it is easy to derive that

∣
∣(T1Lx)n −

(
T1Ly

)
n

∣
∣ ≤ |bn|

∣
∣xn−d − yn−d

∣
∣ ≤ b

∥
∥x − y

∥
∥, (2.27)

which implies that

∥
∥T1Lx − T1Ly

∥
∥ ≤ b

∥
∥x − y

∥
∥. (2.28)

Then, b < (N −M)/2N < 1 ensures that T1L is a contraction mapping on A(M,N).
(iii) Similar to (ii) and (iii) in the proof of Theorem 2.1, it can be showed that T2L is

completely continuous.
By Lemma 1.2, there exists x = {xn} ∈ A(M,N) such that T1Lx + T2Lx = x, which is a

bounded nonoscillatory solution of (1.11). This completes the proof.
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Theorem 2.5. Assume that there exist constants M and N with N > ((2 − b)/(1 − b))M > 0 and
sequences {ain}n≥n0

(1 ≤ i ≤ k), {bn}n≥n0
, {hn}n≥n0

, {qn}n≥n0
, satisfying (2.2)–(2.4) and

bn ≥ 0, eventually, and 0 ≤ b ≤ b < 1. (2.29)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).

Proof. Choose L ∈ (M + ((1 + b)/2)N,N + (b/2)M). By (2.29) and (2.4), an integer N0 >
n0 + d + |α| can be chosen such that

b

2
≤ bn ≤ 1 + b

2
, ∀n ≥ N0,

∞∑

t1=N0

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≤ min

{

L −M − 1 + b

2
N,N − L +

b

2
M

}

.

(2.30)

Define two mappings T1L, T2L : A(M,N) → X as (2.25). The rest of the proof is analogous to
that in Theorem 2.4. This completes the proof.

Similar to the proof of Theorem 2.5, we have the following theorem.

Theorem 2.6. Assume that there exist constants M and N with N > ((2 + b)/(1 + b))M > 0 and
sequences {ain}n≥n0

(1 ≤ i ≤ k), {bn}n≥n0
, {hn}n≥n0

, {qn}n≥n0
, satisfying (2.2)–(2.4) and

bn ≤ 0, eventually, and − 1 < b ≤ b ≤ 0. (2.31)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).

Theorem 2.7. Assume that there exist constants M and N with N > (b(b
2 − b)/b(b2 − b))M > 0

and sequences {ain}n≥n0
(1 ≤ i ≤ k), {bn}n≥n0

, {hn}n≥n0
, {qn}n≥n0

, satisfying (2.2)–(2.4) and

bn > 1, eventually, 1 < b and b < b2 < +∞. (2.32)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).

Proof. Take ε ∈ (0, b − 1) sufficiently small satisfying

1 < b − ε < b + ε <
(
b − ε

)2 ,

((
b + ε

)(
b − ε

)2 −
(
b + ε

)2
)

N >

((
b + ε

)2(
b − ε

) − (
b − ε

)2
)

M.
(2.33)



12 Advances in Difference Equations

Choose L ∈ ((b+ ε)M+((b+ ε)/(b− ε))N, (b− ε)N +((b− ε)/(b+ ε))M). By (2.33), an integer
N0 > n0 + d + |α| can be chosen such that

b − ε < bn < b + ε, ∀b ≥ N0,

∞∑

t1=N0

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

qt
∣
∣
∣
∏k

i=1aiti

∣
∣
∣
≤ min

{
b − ε

b + ε
L − (

b − ε
)
M −N,

b − ε

b + ε
M +

(
b − ε

)
N − L

}

.

(2.34)

Define two mappings T1L, T2L : A(M,N) → X by

(T1Lx)n =

⎧
⎪⎪⎨

⎪⎪⎩

L

bn+d
− xn+d

bn+d
, n ≥ N0,

(T1Lx)N0
, β ≤ n < N0,

(T2Lx)n =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k
bn+d

∞∑

t1=n

∞∑

t2=t1

· · ·
∞∑

tk=tk−1

∞∑

t=tk

f(t, xt−r1t , xt−r2t , . . . , xt−rst)
∏k

i=1aiti

, n ≥ N0,

(T2Lx)N0
, β ≤ n < N0

(2.35)

for all x ∈ A(M,N). The rest of the proof is analogous to that in Theorem 2.4. This completes
the proof.

Similar to the proof of Theorem 2.7, we have

Theorem 2.8. Assume that there exist constants M and N with N > ((1 + b)/(1 + b))M > 0 and
sequences {ain}n≥n0

(1 ≤ i ≤ k), {bn}n≥n0
, {hn}n≥n0

, {qn}n≥n0
, satisfying (2.2)–(2.4) and

bn < −1, eventually, −∞ < b and b < −1. (2.36)

Then (1.11) has a bounded nonoscillatory solution in A(M,N).

Remark 2.9. Similar to Remark 2.2, we can also prove that the conditions of Theorems 2.3–2.8
ensure that (1.11) has not only one bounded nonoscillatory solution but also uncountably
many bounded nonoscillatory solutions.

Remark 2.10. Theorems 2.1–2.8 extend and improve Theorem 1 of Cheng [6], Theorems
2.1–2.7 of Liu et al. [8], and corresponding theorems in [3, 4, 9–17].

3. Examples

In this section, two examples are presented to illustrate the advantage of the above results.

Example 3.1. Consider the following fourth-order nonlinear neutral delay difference equation:

Δ(4nΔ(3nΔ(2nΔ(xn − xn−1)))) = 0, n ≥ 1. (3.1)
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Choose M = 1 and N = 2. It is easy to verify that the conditions of Theorem 2.1 are satisfied.
Therefore Theorem 2.1 ensures that (3.1) has a nonoscillatory solution in A(1, 2). However,
the results in [3, 4, 6, 8–17] are not applicable for (3.1).

Example 3.2. Consider the following third-order nonlinear neutral delay difference equation:

Δ
(

(2n − n)Δ
((

n2 − n + 1
)
Δ
(

xn +
2n − 1
3n

xn−4

)))

+
sin(2xn−2)

n2
− cos(3xn−3)

n3
= 0, n ≥ 5,

(3.2)

where

a1n = n2 − n + 1, a2n = 2n − n, bn =
2n − 1
3n

,

f(n, u1, u2) =
sin(2u1)

n2
− cos(3u2)

n3
, hn = qn =

2
n2

.

(3.3)

ChooseM = 1 andN = 5. It can be verified that the assumptions of Theorem 2.5 are fulfilled.
It follows from Theorem 2.5 that (3.2) has a nonoscillatory solution in A(1, 5). However, the
results in [3, 4, 6, 8–17] are unapplicable for (3.2).
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