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Abstract
We propose a new hybrid shrinking iterative scheme for approximating common
elements of the set of solutions to convex feasibility problems for countable families
of relatively nonexpansive mappings of a set of solutions to a system of generalized
mixed equilibrium problems. A strong convergence theorem is established in the
framework of Banach spaces. The results extend those of other authors, in which the
involved mappings consist of just finitely many ones.
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1 Introduction
Throughout this paper we assume that E is a real Banach space with its dual E∗, C is a
nonempty, closed, convex subset of E, and J : E → E∗ is the normalized duality mapping
defined by

Jx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E. (.)

In the sequel, we use F(T) to denote the set of fixed points of a mapping T . A point p in C
is said to be an asymptotic fixed point of T if C contains a sequence {xn} which converges
weakly to p such that the limn→∞(xn – Txn) = . The set of asymptotic fixed points of T
will be denoted by F̂(T). A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

A mapping T : C → C is said to be relatively nonexpansive if F(T) = F̂(T) �= ∅ and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,p ∈ F(T), (.)
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where φ : E × E →R
 denotes the Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

It is obvious from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), (.)

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, (.)

and

φ(x, y) = 〈x, Jx – Jy〉 + 〈y – x, Jy〉 ≤ ‖x‖‖Jx – Jy‖ + ‖y – x‖‖y‖. (.)

The asymptotic behavior of a relatively nonexpansive mapping was studied in [–]. In
, Mann [] introduced the iteration as follows: a sequence {xn} is defined by

xn+ = αnxn + ( – αn)Txn, (.)

where the initial element x ∈ C is arbitrary and {αn} is a sequence of real numbers in [, ].
TheMann iteration has been extensively investigated for nonexpansive mappings. One of
the fundamental convergence results was proved by Reich []. In an infinite-dimensional
Hilbert space, a Mann iteration can yield only weak convergence (see [, ]). Attempts to
modify the Mann iteration method (.) so that strong convergence is guaranteed have
recently been made. Nakajo and Takahashi [] proposed the following modification of
Mann iteration method (.) for a nonexpansive mapping T from C into itself in a Hilbert
space: from an arbitrary x ∈ C,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = αnxn + ( – αn)Txn,
Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, ∀n ∈N∪ {},

(.)

where PK denotes the metric projection from a Hilbert spaceH onto a closed convex sub-
set K of H and proved that the sequence {xn} converges strongly to PF(T)x. A projection
onto the intersection of two half-spaces is computed by solving a linear system of two
equations with two unknowns (see [, Section ]).
Let θ : C × C → R

 be a bifunction, ψ : C → R
 a real-valued function, and B : C → E∗

a nonlinear mapping. The so-called generalized mixed equilibrium problem (GMEP) is to
find an u ∈ C such that

θ (u, y) + 〈y – u,Bu〉 +ψ(y) –ψ(u) ≥ , ∀y ∈ C, (.)

whose set of solutions is denoted by �(θ ,B,ψ).
The equilibrium problem is a unifyingmodel for several problems arising in physics, en-

gineering, science optimization, economics, transportation, network and structural anal-
ysis, Nash equilibrium problems in noncooperative games, and others. It has been shown
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that variational inequalities and mathematical programming problems can be viewed as
a special realization of the abstract equilibrium problems. Many authors have proposed
some usefulmethods to solve the EP (equilibriumproblem), GEP (generalized equilibrium
problem), MEP (mixed equilibrium problem), and GMEP.
In , Plubtieng andUngchittrakool [] established strong convergence theorems for

a common fixed point of two relatively nonexpansivemappings in a Banach space by using
the following hybrid method in mathematical programming:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = J–[αnJxn + ( – αn)Jzn],
zn = J–[β ()

n Jxn + β
()
n JTxn + β

()
n JSxn],

Hn = {z ∈ C : φ(z, yn) ≤ φ(z,xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jy〉 ≥ },
xn+ = PHn∩Wnx, ∀n ∈N∪ {}.

(.)

Their results extended and improved the corresponding ones announced by Nakajo and
Takahashi [], Martinez-Yanes and Xu [], and Matsushita and Takahashi [].
Recently, Su and Qin [] modified iteration (.), the so-called monotone CQ method

for nonexpansive mapping, as follows: from an arbitrary x ∈ C,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn = αnxn + ( – αn)Txn,
C = {z ∈ C : ‖y – z‖ ≤ ‖x – z‖}, Q = C,
Cn = {z ∈ Cn– ∩Qn– : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ Cn– ∩Qn– : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, ∀n ∈N∪ {},

(.)

and proved that the sequence {xn} converges strongly to PF(T)x.
Inspired and motivated by the studies mentioned above, in this paper, we use a modi-

fied hybrid iteration scheme for approximating common elements of the set of solutions
to convex feasibility problem for a countable families of relatively nonexpansivemappings,
of set of solutions to a system of generalized mixed equilibrium problems. A strong con-
vergence theorem is established in the framework of Banach spaces. The results extend
those of the authors, in which the involved mappings consist of just finitely many ones.

2 Preliminaries
We say that E is strictly convex if the following implication holds for x, y ∈ E:

‖x‖ = ‖y‖ = , x �= y ⇒
∥∥∥∥x + y



∥∥∥∥ < . (.)

It is also said to be uniformly convex if for any ε > , there exists δ >  such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥∥∥∥x + y



∥∥∥∥ ≤  – δ. (.)

It is well known that if E is a uniformly convex Banach space, then E is reflexive and strictly
convex. A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

(.)
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exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = }. E is said to be uniformly smooth if the limit
(.) is attained uniformly for x, y ∈ S(E).
Following Alber [], the generalized projection PC : E → C is defined by

PC = arg inf
y∈C φ(y,x), ∀x ∈ E. (.)

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty, closed, convex subset of E. Then the following conclusions hold:
() φ(x,PCy) + φ(PCy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E.
() If x ∈ E and z ∈ C, then z = PCx⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈ C.
() For x, y ∈ E, φ(x, y) =  if and only if x = y.

Lemma . [] Let E be a uniformly convex and smooth Banach space and let r > .Then
there exists a continuous, strictly increasing, and convex function h : [, r] → [,∞) such
that h() =  and

h
(‖x‖ – ‖y‖) ≤ φ(x, y) (.)

for all x, y ∈ Br := {z ∈ E : ‖z‖ ≤ r}.

Lemma . [] Let E be a uniformly convex and smooth Banach space and let {xn} and
{yn} be two sequences of E. If φ(xn, yn) → , where φ is the function defined by (.), and
either {xn} or {yn} is bounded, then ‖xn – yn‖ → .

Remark . The following basic properties for a Banach space E can be found in Cio-
ranescu [].

(i) If E is uniformly smooth, then J is uniformly continuous on each bounded subset
of E.

(ii) If E is reflexive and strictly convex, then J– is norm-weak-continuous.
(iii) If E is a smooth, strictly convex and reflexive Banach space, then the normalized

duality mapping J : E → E∗ is single valued, one-to-one, and onto.
(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.
(v) Each uniformly convex Banach space E has the Kadec-Klee property, i.e., for any

sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x as n → ∞.

Lemma . [] Let E be a real uniformly convex Banach space and let Br() be the closed
ball of E with center at the origin and radius r > . Then there exists a continuous strictly
increasing convex function g : [,∞)→ [,∞) with g() =  such that

‖λx +μy + γ z‖ ≤ λ‖x‖ +μ‖y‖ + γ ‖z‖ – λμg
(‖x – y‖) (.)

for all x, y, z ∈ Br() and λ,μ,γ ∈ [, ] with λ +μ + γ = .

Lemma . [] The unique solutions to the positive integer equation

n = in +
(mn – )mn


, mn ≥ in,n = , , , . . . (.)
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are

in = n –
(mn – )mn


, mn = –

[


–

√
n +




]
,n = , , , . . . , (.)

where [x] denotes the maximal integer that is not larger than x.

3 Main results
Theorem . Let E be a real uniformly smooth and strictly convex Banach space, and
C be a nonempty, closed, convex subset of E. Let {Ti} : C → C and {Si} : C → C be two
sequences of relatively nonexpansive mappings with F :=

⋂∞
i=(F(Ti) ∩ F(Si)) �= ∅. Let {xn}

be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C, H– =W– = C,
yn = J–[λnJxn + ( – λn)Jzn],
zn = J–[αnJxn + βnJTinxn + γnJSinxn],
Hn = {z ∈ Hn– ∩Wn– : φ(z, yn)≤ φ(z,xn)},
Wn = {z ∈Hn– ∩Wn– : 〈xn – z, Jx – Jy〉 ≥ },
xn+ = PHn∩Wnx, ∀n ∈N∪ {},

(.)

where {λn}, {αn}, {βn}, and {γn} are sequences in [, ] satisfying
()  ≤ λn < , ∀n ∈N∪ {}; lim supn→∞ λn < ;
() αn + βn + γn = ; limn→∞ αn =  and lim infn→∞ βnγn > ;

and in is the solution to the positive integer equation n = in + (mn–)mn
 (mn ≥ in, n = , , . . .),

that is, for each n≥ , there exists a unique in such that

i = , i = , i = , i = , i = , i = ,

i = , i = , i = , i = , i = , . . . .

Then {xn} converges strongly to PFx, where PFx is the generalized projection from C onto F .

Proof We divide the proof into several steps.
(I) Hn andWn (∀n ∈N∪ {}) both are closed and convex subsets in C.
This follows from the fact that φ(z, yn)≤ φ(z,xn) is equivalent to

〈z, Jxn – Jyn〉 ≤ ‖xn‖ – ‖yn‖. (.)

(II) F is a subset of
⋂∞

n=(Hn ∩Wn).
In fact, we note by [, Proposition .] that for each i ≥ , F(Si) and F(Ti) are closed

convex sets and so is F . It is clear that F ⊂ C = H– ∩ W–. Suppose that F ⊂ Cn– ∩ Qn–

for some n ∈N. For any u ∈ F , by the convexity of ‖ · ‖, we have

φ(u, zn) = φ
(
u, J–[αnJxn + βnJTinxn + γnJSinxn]

)
= ‖u‖ – 〈u,αnJxn + βnJTinxn + γnJSinxn〉

+ ‖αnJxn + βnJTinxn + γnJSinxn‖

≤ ‖u‖ – αn〈u, Jxn〉 – βn〈u, JTinxn〉 – γn〈u, JSinxn〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/148
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+ αn‖xn‖ + βn‖Tinxn‖ + γn‖Sinxn‖

= αnφ(u,xn) + βnφ(u,Tinxn) + γnφ(u,Sinxn)

≤ αnφ(u,xn) + βnφ(u,xn) + γnφ(u,xn)

= φ(u,xn), (.)

and then

φ(u, yn) = φ
(
u, J–

[
λnJxn + ( – λn)Jzn

])
= ‖u‖ – 

〈
u,λnJxn + ( – λn)Jzn

〉
+

∥∥λnJxn + ( – λn)Jzn
∥∥

≤ ‖u‖ – λn〈u, Jxn〉 – ( – λn)〈u, Jzn〉 + λn‖xn‖ + ( – λn)‖zn‖

= λn
(‖u‖ – 〈u, Jxn〉 + ‖xn‖

)
+ ( – λn)

(‖u‖ – 〈u, Jzn〉 + ‖zn‖
)

= λnφ(u,xn) + ( – λn)φ(u, zn)

≤ λnφ(u,xn) + ( – λn)φ(u,xn)

= φ(u,xn). (.)

This implies that F ⊂Hn. It follows from xn = PHn–∩Wn–x and Lemma .() that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈Hn– ∩Wn–. (.)

Particularly,

〈xn – z, Jx – Jxn〉 ≥ , ∀u ∈ F , (.)

and hence F ⊂ Wn, which yields F ⊂Hn ∩Wn. By induction, F ⊂ ⋂∞
n=(Hn ∩Wn).

(III) limn→∞ ‖xn – Tinxn‖ = limn→∞ ‖xn – Sinxn‖ = .
In view of xn+ = PHn∩Wnx ∈Hn and the definition of Hn, we also have

φ(xn+, yn) ≤ φ(xn+,xn), ∀n ∈N. (.)

This implies that

lim
n→∞φ(xn+, yn) = lim

n→∞φ(xn+,xn) = . (.)

It follows from Lemma . that

lim
n→∞‖xn+ – yn‖ = lim

n→∞‖xn+ – xn‖ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞‖Jxn+ – Jyn‖ = lim

n→∞‖Jxn+ – Jxn‖ =  (.)

and

‖Jxn+ – Jyn‖ ≥ ( – λn)‖Jxn+ – Jzn‖ – λn‖Jxn+ – Jxn‖, ∀n ∈N∪ {}. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/148
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This implies that

‖Jxn+ – Jzn‖ ≤ 
 – λn

(‖Jxn+ – Jyn‖ + λn‖Jxn+ – Jxn‖
)

≤ 
 – λn

(‖Jxn+ – Jyn‖ + ‖Jxn+ – Jxn‖
)
. (.)

From (.) and lim supn→∞ λn < , we have limn→∞ ‖Jxn+ – Jzn‖ = . Since J– is also uni-
formly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞‖xn+ – zn‖ = lim

n→∞
∥∥J–(Jxn+) – J–(Jzn)

∥∥ = . (.)

From ‖xn – zn‖ ≤ ‖xn – xn+‖ + ‖xn+ – zn‖ we have limn→∞ ‖xn – zn‖ = . Since {xn}
is bounded, φ(p,Tinxn) ≤ φ(p,xn) and φ(p,Sinxn) ≤ φ(p,xn) for any p ∈ F . We also find
that {Jxn}, {JTinxn} and {JSinxn} are bounded, and then there exists an r >  such that
{Jxn}, {JTinxn}, {JSinxn} ⊂ Br(). Therefore Lemma . is applicable and we observe that

φ(p, zn) = ‖p‖ – 〈p,αnJxn + βnJTinxn + γnJSinxn〉
+ ‖αnJxn + βnJTinxn + γnJSinxn‖

≤ ‖p‖ – αn〈p, Jxn〉 – βn〈p, JTinxn〉 – γn〈p, JSinxn〉
+ αn‖xn‖ + βn‖Tinxn‖ + γn‖Sinxn‖ – βnγng

(‖JTinxn – JSinxn‖
)

= αnφ(p,xn) + βnφ(p,Tinxn) + γnφ(p,Sinxn) – βnγng
(‖JTinxn – JSinxn‖

)
≤ φ(p,xn) – βnγng

(‖JTinxn – JSinxn‖
)
. (.)

That is,

βnγng
(‖JTinxn – JSinxn‖

) ≤ φ(p,xn) – φ(p, zn), (.)

where g : [,∞) → [,∞) is a continuous strictly convex function with g() = .
Let {‖Tink xnk –Sink xnk‖} be any subsequence of {‖Tinxn–Sinxn‖}. Since {xnk } is bounded,

there exists a subsequence {xnj} of {xnk } such that for any p ∈ F ,

lim
j→∞φ(p,xnj ) = lim sup

k→∞
φ(p,xnk ) := a. (.)

From (.) we have

φ(p,xnj ) = φ(p, znj ) + φ(znj ,xnj ) + 〈p – znj , Jznj – Jxnj〉
≤ φ(p, znj ) + φ(znj ,xnj ) +M‖Jznj – Jxnj‖ (.)

for some appropriate constantM > . Since

lim
j→∞φ(znj ,xnj ) =  = lim

j→∞‖Jznj – Jxnj‖, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/148
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it follows that

a = lim inf
j→∞ φ(p,xnj ) ≤ lim inf

j→∞ φ(p, znj ). (.)

From (.), we have

lim sup
j→∞

φ(p, znj ) ≤ lim sup
j→∞

φ(p,xnj ) = a (.)

and hence limj→∞ φ(p,xnj ) = a = limj→∞ φ(p, znj ). By (.), we observe that, as j → ∞,

βnjγnj g
(‖JTinj xnj – JSinj xnj‖

) ≤ φ(p,xnj ) – φ(p, znj ) → . (.)

Since lim infn→∞ βnγn > , it follows that limj→∞ g(‖JTinj xnj – JSinj xnj‖) = . By the proper-
ties of the mapping g , we have limj→∞ ‖JTinj xnj – JSinj xnj‖ = . Since J– is also uniformly
norm-to-norm continuous on bounded sets, we obtain

lim
j→∞‖Tinj xnj – Sinj xnj‖ = lim

j→∞
∥∥J–(JTinj xnj ) – J–(JSinj xnj )

∥∥ = , (.)

and then limn→∞ ‖Tinxn–Sinxn‖ = . Next, we note by the convexity of ‖ ·‖ and (.) that,
as n→ ∞,

φ(Tinxn, zn) = ‖Tinxn‖ – 〈Tinxn,αnJxn + βnJTinxn + γnJSinxn〉
+ ‖αnJxn + βnJTinxn + γnJSinxn‖

≤ ‖Tinxn‖ – αn〈Tinxn, Jxn〉 – βn〈Tinxn, JTinxn〉 – γn〈Tinxn, JSinxn〉
+ αn‖xn‖ + βn‖Tinxn‖ + γn‖Sinxn‖

= αnφ(Tinxn,xn) + βnφ(Tinxn,Sinxn) → , (.)

since αn → . By Lemma ., we have limn→∞ ‖Tinxn – zn‖ =  and hence

‖Tinxn – xn‖ ≤ ‖Tinxn – zn‖ + ‖zn – xn‖ →  (.)

as n→ ∞. Moreover, we observe that

‖Sinxn – xn‖ ≤ ‖Sinxn – Tinxn‖ + ‖Tinxn – xn‖ →  (.)

as n→ ∞.
(IV) xn → PFx as n → ∞.
It follows from the definition of Wn and Lemma .() that xn = PWnx. Since xn+ =

PHn∩Wnx ∈ Wn, we have

φ(xn,x) ≤ φ(xn+,x), ∀n≥ . (.)

Therefore, {φ(xn,x)} is nondecreasing. Using xn = PWnx and Lemma .(), we have

φ(xn,x) = φ(PWnx,x)≤ φ(p,x) – φ(p,xn) ≤ φ(p,x) (.)
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for all p ∈ F and for all n ∈N, that is, {φ(xn,x)} is bounded. Then

lim
n→∞φ(xn,x) exists. (.)

In particular, by (.), the sequence {(‖xn‖ – ‖x‖)} is bounded. This implies that {xn} is
bounded. Note again that xn = PWnx and for any positive integer k, xn+k ∈ Wn+k– ⊂ Wn.
By Lemma .(),

φ(xn+k ,xn) = φ(xn+k ,PWnx)

≤ φ(xn+k ,x) – φ(PWnx,x)

= φ(xn+k ,x) – φ(xn,x). (.)

By Lemma ., we have, form,n ∈N withm > n,

h
(‖xm – xn‖

) ≤ φ(xm,xn) ≤ φ(xm,x) – φ(xn,x), (.)

where h : [,∞) → [,∞) is a continuous, strictly increasing, and convex function with
h() = . Then the properties of the function g show that {xn} is a Cauchy sequence in C,
so there exists x∗ ∈ C such that

xn → x∗ (n→ ∞). (.)

Now, set Ni = {k ∈ N : k = i + (m–)m
 ,m ≥ i,m ∈ N} for each i ∈ N. Note that Tik = Ti

and Sik = Si whenever k ∈ Ni. By Lemma . and the definition of Ni, we have N =
{, , , , , , . . .} and i = i = i = i = i = i = · · · = . Then it follows from (.) and
(.) that

lim
Ni�k→∞

‖Tixk – xk‖ = lim
Ni�k→∞

‖Sixk – xk‖ = , ∀i ∈N. (.)

It then immediately follows from (.) and (.) that x∗ ∈ F(Ti) ∩ F(Si) for each i ∈ N

and hence x∗ ∈ F .
Put u = PFx. Since u ∈ F ⊂ Hn ∩ Wn and xn+ = PHn∩Wnx, we have φ(xn+,x) ≤ φ(u,x),

∀n ∈N. Then

φ
(
x∗,x

)
= lim

n→∞φ(xn+,x)≤ φ(u,x), (.)

which implies that x∗ = u since u = PFx, and hence xn → x∗ = PFx as n → ∞. This com-
pletes the proof. �

Remark . Note that the algorithm (.) is based on the projection onto an intersection
of two closed and convex sets. We first give an example [] of how to compute such a
projection onto the intersection of two half-spaces.

Let H be a Hilbert space and suppose that (x, y, z) ∈H satisfies

{
w ∈ H : 〈w – y,x – y〉 ≤ 

} ∩ {
w ∈H : 〈w – z, y – z〉 ≤ 

} �= ∅. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/148
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Set

π = 〈x – y, y – z〉, μ = ‖x – y‖, ν = ‖y – z‖, ρ = μν – π, (.)

and

Q(x, y, z) =

⎧⎪⎨
⎪⎩
z, if ρ =  and π ≥ ;
x + ( + π/ν)(z – y), if ρ >  and πν ≥ ρ;
y + (ν/ρ)(π (x – y) +μ(z – y)), if ρ >  and πν < ρ.

(.)

In [], Haugazeau introduced the operator Q as an explicit description of the projector
onto the intersection of the two half-spaces defined in (.). He proved in [] that the
sequence {yn} defined by y = x and

(∀n ∈N) yn+ =Q
(
x,Q(x, yn,PByn),PAQ(x, yn,PByn)

)
(.)

converges strongly to PCx.
Since the algorithm (.) involves the projection onto the intersection of two convex sets

not necessarily half-spaces, we next give an example [] to explain and illustrate how the
projection is calculated in the general convex case.

Dykstra’s algorithm Let �,�, . . . ,�p be closed and convex subsets of Rn. For any i =
, , . . . ,p and x ∈R

n, the sequences {xki } are defined by the following recursive formulas:

⎧⎪⎨
⎪⎩
xk = xk–p ,
xki = P�i (x

k
i– – yk–i ), i = , , . . . ,p,

yki = xki – (xki– – yk–i ), i = , , . . . ,p,
(.)

for k = , , . . . with initial values xp = x and yi =  for i = , , . . . ,p. If � :=
⋂p

i= �i �= ∅,
then {xki } converges to x∗ = P�(x), where P�(x) := arg infy∈� ‖y – x‖, ∀x ∈R

n.

Note Another iterativemethod termedHAAR (Haugazeau-like Averaged Alternating Re-
flections) for finding the projection onto intersection of finitely many closed convex sets
in a Hilbert space can be found in [, Remark .(iii)].

4 Applications
The so-called convex feasibility problem for a family of mappings {Ti}∞i= is to find a point
in the nonempty intersection

⋂∞
i= F(Ti).

Note Although the problemmentioned above is indeed a convex feasibility problem, it is
mainly referred to the finite case.

Let E be a smooth, strictly convex, and reflexive Banach space, and C be a nonempty,
closed, convex subset of E. Let {Bi}∞i= : C → E∗ be a sequence of βi-inverse stronglymono-
tone mappings, {ψ}∞i= : C → R

 a sequence of lower semi-continuous and convex func-
tions, and {θi}∞i= : C ×C →R

 a sequence of bifunctions satisfying the conditions:

(A) θ (x,x) = ;

http://www.fixedpointtheoryandapplications.com/content/2014/1/148
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(A) θ is monotone, i.e., θ (x, y) + θ (y,x) ≤ ;
(A) lim supt↓ θ (x + t(z – x), y)≤ θ (x, y);
(A) the mapping y �→ θ (x, y) is convex and lower semicontinuous.

A system of generalized mixed equilibrium problems (GMEP) for {θi}∞i=, {Bi}∞i= and
{ψi}∞i= is to find an x∗ ∈ C such that

θi
(
x∗, y

)
+

〈
y – x∗,Bix∗〉 +ψi(y) –ψi

(
x∗) ≥ , ∀y ∈ C, i ∈N, (.)

whose set of common solutions is denoted by � :=
⋂∞

i= �i, where �i denotes the set of
solutions to generalized mixed equilibrium problem for θi, Bi, and ψi.
Define a countable family of mappings {Sr,i}∞i= : E → C with r >  as follows:

Sr,i(x) =
{
z ∈ C : τi(z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
, ∀i ∈N, (.)

where τi(x, y) = θi(x, y) + 〈y – x,Bix〉 + ψi(y) – ψi(x), ∀x, y ∈ C, i ∈ N. It has been shown by
Zhang [] that
() {Sr,i}∞i= is a sequence of single-valued mappings;
() {Sr,i}∞i= is a sequence of closed relatively nonexpansive mappings;
()

⋂∞
i= F(Sr,i) = �.

Theorem . Let E be a smooth, strictly convex, and reflexive Banach space, and C be a
nonempty, closed, convex subset of E. Let {Ti}∞i= : C → C be a sequence of relatively non-
expansive mappings and {Sr,i}∞i= : C → C be a sequence of mappings defined by (.) with
F :=

⋂∞
i=(F(Ti)∩ F(Sr,i)) �= ∅. Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C, H– =W– = C,
yn = J–[λnJxn + ( – λn)Jzn],
zn = J–[αnJxn + βnJTinxn + γnJSr,inxn],
Hn = {z ∈ Hn– ∩Wn– : φ(z, yn)≤ φ(z,xn)},
Wn = {z ∈Hn– ∩Wn– : 〈xn – z, Jx – Jy〉 ≥ },
xn+ = PHn∩Wnx, ∀n ∈N∪ {},

(.)

where {λn}, {αn}, {βn} and {γn} are sequences in [, ] satisfying
()  ≤ λn < , ∀n ∈N∪ {}; lim supn→∞ λn < ;
() αn + βn + γn = ; limn→∞ αn =  and lim infn→∞ βnγn > ;

and in satisfies the equation n = in + (mn–)mn
 (mn ≥ in, n = , , . . .). Then {xn} converges

strongly to PFx, which is some common solution to the convex feasibility problem for {Ti}∞i=
and a system of generalized mixed equilibrium problems for {Sr,i}∞i=.
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