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1 Introduction

Let A denote the class of functions of the form f(z) = z + Z]O:Q a;7, which are analytic and
univalent in the open unit disc U = {z:z € C: |z| <1}. T is a subclass of A consisting
of the functions of the form f(z) = z— 3%, |4;|2. For functions f,¢ € A given by f(z) =
zZ+ ;52 a7, gz) =z + Z,ofz bjZ, we define the Hadamard product (or convolution) of f

and g by (f xg)(2) =z + Y5, aibd, z € U.

Definition 1.1 (Ruscheweyh [1]) For f € A, n € N, the operator R” is defined by R” :
A— A,

R%(2) =f(2),
Rf(@)=7"(2), ...,
(n+ DR"™f(2) = 2(R'f (2)) + nR"f(2), zeU.

Remark 1.1 Iffc A, f(z) =z + ;3:2 a7, then R"f(z) =z + jo=o2 (:,E’:II)),' a7, ze U.

ffeT,flz)=2-3 a7, then R'f(2) =z - 35, %a,»zj, zel.

Definition 1.2 [2, 3] For f € A, n € NU{0}, A,/ > 0, the operator I(n, 1, [)f (z) is defined
by the following infinite series:

I(m A Df(2) =z + Z(M>n@zj.

‘> [+1
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Remark 1.2 [4] It follows from the above definition that

10,4, 0)f (2) = f (),
U+DIn+LA0f(2) = (L +1-2)I(n, 2, 0)f (2) + Az([(n,k,l)]‘(z))/, zel.

Remark 1.3 The operator I(n, A,0) = D} is the generalized Séildgean operator introduced
by Al-Oboudi [5], and I(n,1,0) = S” is the Salagean differential operator [6].

Definition 1.3 [7, 8] Let y, A,/ > 0, n € N. Denote by RI” ..., the operator given by RI
A— A,

RIY, f(2) = A -y)R'f(2) + yI(m 1, Df (2), zel.

Remark 1.4 Iff € A, f(2) =z + )5, a7, then

R, f(2) = Z+Z{ (%)nﬂl—ﬂ%}@zj, zel.

IffeT,flz) =2- 37 a7, then
= L+AG-1)+1\" (m+j-11
RI,; f (2) ]ZZ{V(T) +(1—J/)m}a,z’, zel.

Remark 1.5 The operator RI” wof (2) = RD} f (z) which was introduced in [9] and the op-
erator R/ Vl S =L" f (z) which was mtroduced in [10].

Following the work of Najafzadeh and Pezeshki [11] we can define the class RZ(y, A, [,
o, B) as follows.

Definition 1.4 For y,A,/>0,0<a<land0< B <1, let RZ(y, X, I, «, B) be the subclass
of T consisting of functions that satisfying the inequality

RI f(z) -1 "
20(RI f(2) - &) = (R f (2) - 1) b 1)
where
Y
Rt = - O, g2, 12

O<v<l1

Remark 1.6 Iff € T, f(z) =z -}, a;7, then

o]

Ry f(@)=1-) [1+u(i-1)]

j=t+1

1+xG-1)+1\" i— 1) )
PR s o e
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Remark 1.7 The class RZ(y,2,0,a,8) = RD(y, A, a, 8) defined and studied in [12] and
RZ(y,1,0,a,B) = L(y,«, B) defined and studied in [13].

2 Coefficient bounds
In this section we obtain coefficient bounds and extreme points for functions in RZ(y, A, 1,

a, B).

Theorem 2.1 Let the functionf € T. Then f € RZ(y, A, 1, a, B) if and only if

= ) 1+AG-1)+1\" (n+j—1)
j;l(l+u(;—1))[1+ﬂ(2u_1)]{y(7+ ;]+1 * ) +(1—y)72!6]_1)! }a,-

<2Bv(1-a). (2.1)

The result is sharp for the function F(z) defined by

26v(l—a)
(1+ (= D)L+ B2v = D]y (FHE )+ (1- ) S5y

Fz)=z— Z, j>t+1

Proof Suppose f satisfies (2.1). Then for |z| < 1, we have

RIY f(2) = 1| - B|2v(RI, f(2) — ) = (R, f (2) - 1)

o]

e o
—Z(lﬂl(j—l)){)/(%) +(1—V)%}a;z’l

j=t+1
W(l-a)-(2v-1 Z{ <%)n+(l_y)(};!;];_1;1)!}
x [1+u-1)]az™"

< Z[l+u(]’—1)]{y<w)n +(1- J/)w}ak—Zﬂv(l—Ol)

-B

e [+1 nl(j — 1)
> ‘ 1+AG-1)+1\" (m+j-1)
+j;ﬂﬂ(2v—l)(l+u(1—1)){y<T) +(1—y)m}a,»
~ > . 1+AG-1) +1\" (m+j-1)!
_j;l[l+,u(/—1)][1+,3(2v—1)]{7/<4l+1 ) +(l-y)—— TRy }a
-2Bv(1-a)<0.

Hence, by using the maximum modulus Theorem and (1.1), f € RZ(y, A,[,«, B). Con-
versely, assume that
RIY f(z) -1
20(RI,) f(2) — ) — (RI}Y f(z) - 1)
. =3l + s - DIy (CHE + (- ) e
(1= ) = 7511+ - DIEv - Dy (FHEy + (- ) G571

<B, zel.
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Since Re(z) < |z| for all z € U, we have

I\n ! i
Y+ nG = DIy (FHE + (- ) a2

Re
{2v(1—a)—zj=t+l[1+u(1—l) (v =) {y (B2 4 (1 - y),j,gll Ya; 7~ 1}

<B. (2.2)

By choosing choose values of z on the real axis so that RIZ Ay f(2) is real and letting z — 1
through real values, we obtain the desired inequality (2.1). d

Corollary 2.2 Iff € T isin RZ(y, A, 1, o, B), then

< 2601 101)0 - e JZ L (2.3)
(L+nG-DI+ By -Diy (=77 + A= y) G}
with equality only for functions of the form F(z).
Theorem 2.3 Let fi(z) = z and
28v(1-a)
D) L = DI + P2 — D1y Ty 4 (1=
j>t+1, (2.4)

for0<a<1,0<B<1,y,AI>0and0<v <1. Thenf(z)isin the class RZ(y, l,«, B) if
and only if it can be expressed in the form

f@ =) wf@), (2.5)
j=t

where w; > 0 and Z]O:ol wj=1.

Proof Suppose f(z) can be written as in (2.5). Then

> 28v(1-a) 4
(2)=2z- E ; Z.
S G I+ e Dy (2L ¢ ()BT

Now,

L+ (- DL+ By - Dy (FEE) + (1 - ) S5y

]; 2601 — ) I
28v(1l—a)
wi=1-w; <1.
e pG- DI+ @y - Dy (R 4 (1 ) B ,;1’ 1

Thus f € RZ(y, A L, B).
Conversely, let f € RZ(y, A,1,«, 8). Then by using (2.3), setting

(14 1= DI+ By - D)y (EHEDyr (1 ) iy
28v(1—a)

wj = (lj, j2t+1,
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and w; =1 - 3% wj, we have f(2) = 3%, wfi(2). This completes the proof of Theo-
rem 2.3. g

3 Distortion bounds
In this section we obtain distortion bounds for the class RZ(y, A, [, , B).

Theorem 3.1 Iff € RZ(y, 11, , B), then

~ 28v(1—a) el
(L+ pt)[1+ B2y - D]y (Bl + (1 - y) 2tk
28v(1 —a) £l
+ AL+ (n+1)! r
1+ p)[1+ B2y - Dy (B + (1- ) k)

<|f@)| = 3.1)

holds if the sequence {o;(y, ), 1, B, v)} .41 18 non-decreasing, and

B 28v(1—a)(t+1) o

AL+ pt)[1+ B2y - ]{y (Bryn 4 (1 - y) Lty

/ 2/3U(1—C()(t+1) P
= = s Ay Dl (s (= ) B

(3.2)

ﬂ\))

holds if the sequence { gl )

.1 is non-decreasing, where

. NG 1)
(7/(7/:/3")):[1+M(j—1)][1+,3(2v—1)]{y(%) +(1‘V)(Z!zj]_1;)‘}~

The bounds in (3.1) and (3.2) are sharp, for f(z) given by

flZ)=2z~ 26001~ ) 2, z=dr. (3.3)

(L+ut)[L+BQ2v - D)]{y (M2l 4 (1 - )2ty

Proof In view of Theorem 2.1, we have

it 28v(1—a)
—. (3:4)
,;“ (L+p)[L+ B2y - DIy (M) + (1- ) 5

We obtain

~ lz|™! Za, ()] <zl + |2 Za,

j=t+1 j=t+1
Thus
26v(1-a) .
A+ pn)+ By - D)y (e 1 (1 ) @
<f2)| < 2pv1-2) £+l (3.5)

T nL + B2v - D)]{y (Hedyn 4 (1 - ) etk
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Hence (3.1) follows from (3.5). Further,

. 2Bv(1 - )
. < .
LS o B Dl s ()

Hence (3.2) follows from

o0 oo
l—rthajf[f’(z)|§1+r‘2ja,~. -

j=t+1 j=t+1

4 Radius of starlikeness and convexity
The radii of close-to-convexity, starlikeness, and convexity for the class RZ(y, A,/ «, )

are given in this section.

Theorem 4.1 Let the function f € T belong to the class RZ(y, L, a, B), Then f(z) is close-

to-convex of order §, 0 < § <1, in the disc |z| < r, where

 TA=OL+ pli-DIL+ By - DIy (FHE) + (1 - y) S
r:= inf - . (4.1)
jzt+l 28vj(l — o)
The result is sharp, with extremal function f(z) given by (2.3).
Proof For given f € T we must show that
If'(2) -1 <1-3. (4.2)

By a simple calculation we have
oo
IF@)-1 <" jajlzl".
j=t+1

The last expression is less than 1 - § if
oo

3 1ng¢,|2|£ <1.

j=t+1
We use the fact that f € RZ(y, A, [, «, B) if and only if

1+ (= DI+ B2y - Dy (R + (1- ) Sy

ai <1.
b 28v(1-a) /=
Equation (4.2) holds true if
. 1+A(-1)+1 +j-1)
R ) ) (1] HEEEY 4 (1- ) S
1-5 2Bv(1 - ) '

j=t+1
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Or, equivalently,

(=&)L + u(i - DI+ By - Dy (FHEY" + (1 - ) S5

2pvj(l - «a) ’

z<Z

j=t+1
which completes the proof. 0

Theorem 4.2 Letf € RZ(y, )\, «, B). Then
1. f is starlike of order 8, 0 < 8 <1, in the disc |z| < 1, where

(A=) u( - DI+ Bv - DIy (HEEY + (- ) S ¢
N { 2Bv(1- ) - 9) } '

j=t+1

2. fis convex of order §, 0 < § < 1, in the disc |z| < ry where,

7o = inf
j=t+l

{(1 8L+ (i - DI+ B2v - D]y (FHE)" + (1 - y)i“.gf}}z
2Bvj(i- D1 - ) '

Each of these results is sharp for the extremal function f(z) given by (2.5).

Proof 1. For 0 < § <1 we need to show that

Zj‘t?*’“—a. (4.3)
We have

of'(2) ’ 'Z, (= 1)a,|z|

f@) 1= 3% ajlzlt

The last expression is less than 1 - § if

o0 .
)
Z(i 5)a,|z| <1

j=t+1

We use the fact that f € RZ(y, A, [, «, 8) if and only if

>

j=t+1

[+ G = DI+ By = DIy (FHE) + (1 - y) S5y

26v(1-a) K

Equation (4.3) holds true if

jos o MepG=DIL+BQY -y (" + (1 - y) S5
i 28v(1 - a) ’

Or, equivalently,

(1= 8L+ u(i = DI+ B2v - D]y (FHEY + (1 -y );gff.'}
2Bv(1—a)(j - 8)

lz|* <

which yields the starlikeness of the family.
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2. Using the fact that f is convex if and only zf” is starlike, we can prove (2) with a similar
way of the proof of (1). The function f is convex if and only if

’zf”(z)’ <1-6. (4.4)
We have
2" (2)] < Zz(z 1|z
j=t+1
Z ] |t 1 1'

j=t+1

We use the fact that f € RZ(y, A, [, «, B) if and only if

L+ u( - DL+ By - Dy (FEE) + (1 - ) S5y
Z 28v(1-a)

j=t+1

a;<1.

Equation (4.4) holds true if

=D 4GB0 DIy 0y 0=
<

1-§ T8 ¢ 26v(1-a)

or, equivalently,

(=&)L + u(i - DI+ B2y - DIy (B + (1 - ) Sy
2Bvj(i - D1 - ) ’

|Z|t71 <

which yields the convexity of the family. 0

5 Neighborhood property
In this section we study neighborhood property for functions in the class RZ(y, 1, [, o, B).

Definition 5.1 For functions f belong to A of the form and ¢ > 0, we define (1 — ¢)-
neighborhood of f by

NI(f)={g@) e Aig@)=z+ ) b2, > j"|aj—bjl <et,
j=2 j=2
where 7 is a fixed positive integer.

By using the following lemmas we will investigate the (1 — ¢)-neighborhood of function
in RI(V! )‘; l; o, IB)

Lemma5.1 Let-1<f<1,ifg(z)=z+ Z]ofz bi7 satisfies

- 2Bv(l —a)
z:p |b|—1+/3(2v_1)

j=2

then g(z) € RZ(y, 1, L a, B).

Page 8 of 11
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Proof By using of Theorem 2.1, it is sufficient to show that

[+ uG = DI+ v - DIy (FHE + 1 -y) Gy jont
28v(1l - ) - 28v(1l—a) [1+ﬁ(2v—1)].

But

[+ B2y = DIy (BG4 (1 - y) ) _

28v(1l—a) ~2Bv(l-a)

[1+B8(2v-1)]

Therefore it is enough to prove that

1+AG=1)+lyp p+j-1)!
) v )+ (- Y PIG-D!
QG p) = o PO <,
the result follows because the last inequality holds for all j > ¢ + 1. d

Lemma 5.2 Let f(z) =z — Z,fozakzke'T, Y,M0>0,0<a<1,0<B<lande=>0.If
f@ F22 e RI(y, M Lo, B), then

28v(1 —a)(1 +€)(t + 1)P+
0+1 <
,;1’ Y W wG- D)L+ By - DIy (B + (- ) &Y

where either p = 0 or p = 1. The result is sharp with the extremal function

fl2)=z- 28v(1-a)(l+e€) "
[1+M(i_1)][1+'3(2v_1)]{y(1+%t1”)n+(1_V)(ZT¢?!} ’

Proof Letting g(z) = L2 F22<2 we have

o0
6l1‘ .
Z)=2z— —7Z, zel.
2@ Zl+e
j=t+1

In view of Theorem 2.3, g(2) = 3_%, ;gj(2) where 1, >0, 3% ;= 1,

g(@) =z

and

gle)=z- 2v(L ~a)(1 + <) J, jet+l
' [+ pG = DI+ B@v - DIy Ay v - ) Sty 7

So we obtain

g(Z):nlz+§:n,[z_ 2B8v(1—a)(1+€) :|
ST G-+ pev Dl (R =) S
:Z‘iﬂ 2pv(1 -a)(1 +€)

S = D)L+ By~ D)y (D (1) e f),}
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Since 7; > 0 and Z,O:Oz 1y <1, it follows that

2Bv(1 - a)(1 +€)
ar < sup j**
% e’ W - DI+ By - DIy (R () By

Since whenever p = 0 or p = 1 we conclude that

2B8v(1—a)(1 +e€)
[+ 1 -1+ By - 1]y (R2ED 4 (1 - y) By

WG, p,y,a,B,€) =j*

is a decreasing function of j, the result will follow. The proof is complete. O

Theorem 5.1 Let p =0 or p =1 and suppose 0 < B <1 and

-1<6
[1+ (= D1+ B2y - DIy (ML) + (1 - y) ) — 28u(1 — a)(1 + €)(¢ + 1)
<

I+1 n't!

[+ (e = DL+ B2y = Dy (BEyr + (1 - y) 2ty

’

fl2) e T and ﬂﬂ% € RZ(y, M L, a, B), then the (n — €)-neighborhood of f is the subset of
RI( AL, B), where

&< 2(1—0{){9y[1 +u-D][1 +/3(2v—1)]{y<1 -l'l)-;,-lf1+ 1)” e V)(n,,:;)!}

—By[1+0@v-D]1+e)+ 1)'”1}/([1 +0@v - D][1+u(-1)]

x [1+B(2v —1)]{;/(%':1”)" - y)(”n;t)! })

The result is sharp.

Proof For f(2) =z = 35, |aj|7, let g(z) = z + 7%, b7 be in NY(f). So by Lemma 5.2, we
have

oo oo
Zj'l+l|bj| — Zj’]+1|aj_bj_ﬂj|
j=2

=2
28v(1—a)(1 + €)(t + 1)1

<e+
[+ p(t - DI+ Qv - DI{y () 4 (1 y) @Dty

By using Lemma 5.1, g(z) € L(y,«, B8) if

. 28v(1 —a)(1 + €)(t + 1)L - 20v(1 — )
[1+p(t- DI+ By - DIy (B4 1-y) 7,% T 1+6@v-1)’

2(1-a){0y [L+u(-D)][1+pv-Dy (AL (1) @D gy [140(20-1)](1+e)(¢+1)7+)
[1+6@v-D)] [+ (e-D] L+ @u-D){y (L 4 (1-y) Laly
is complete. O

thatis, ¢ < ,and the proof



http://www.advancesindifferenceequations.com/content/2014/1/117

Alb Lupas Advances in Difference Equations 2014, 2014:117
http://www.advancesindifferenceequations.com/content/2014/1/117

Competing interests
The author declares that she has no competing interests.

Author’s contributions
The author drafted the manuscript, read and approved the final manuscript.

Received: 1 March 2014 Accepted: 9 April 2014 Published: 06 May 2014

References

1.
2.

3.

Ruscheweyh, S: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109-115 (1975)

Alb Lupas, A: A special comprehensive class of analytic functions defined by multiplier transformation. J. Comput.
Anal. Appl. 12(2), 387-395 (2010)

Alb Lupas, A: A new comprehensive class of analytic functions defined by multiplier transformation. Math. Comput.
Model. 54, 2355-2362 (2011). doi:10.1016/.mcm.2011.05.044

. Alb Lupas, A: On special differential superordinations using multiplier transformation. J. Comput. Anal. Appl. 13(1),

121-126 (2011)
Al-Oboudi, FM: On univalent functions defined by a generalized Saldgean operator. Int. J. Math. Math. Sci. 27,
1429-1436 (2004)

. Sdlagean, GS: Subclasses of univalent functions. In: Lecture Notes in Math., vol. 1013, pp. 362-372. Springer, Berlin

(1983)

. Alb Lupas, A: On special differential subordinations using multiplier transformation and Ruscheweyh derivative.

RomaiJ. 6(2), 1-14 (2010)

. Alb Lupas, A: Certain special differential superordinations using multiplier transformation and Ruscheweyh

derivative. J. Comput. Anal. Appl. 13(1), 108-115 (2011)

. Alb Lupas, A: On special differential subordinations using a generalized Saldgean operator and Ruscheweyh

derivative. J. Comput. Anal. Appl. 13(1), 98-107 (2011)

. Alb Lupas, A: On special differential subordinations using Séldgean and Ruscheweyh operators. Math. Inequal. Appl.

12(4), 781-790 (2009)

. Najafzadeh, S, Pezeshki, E: Some aspects of univalent holomorphic functions involving Ruscheweyh and Salagean

operator. An. Univ. Oradea, Fasc. Mat. XX(1), 61-70 (2013)

Alb Lupas, A, Andrei, L: Aspects of univalent holomorphic functions involving Ruscheweyh derivative and
generalized Saldgean operator. J. Comput. Anal. Appl. (to appear)

Alb Lupas, A: Aspects of univalent holomorphic functions involving Saldgean operator and Ruscheweyh derivative.
J. Concr. Appl. Math. (to appear)

10.1186/1687-1847-2014-117
Cite this article as: Alb Lupas: Aspects of univalent holomorphic functions involving multiplier transformation and
Ruscheweyh derivative. Advances in Difference Equations 2014, 2014:117

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 11 of 11


http://www.advancesindifferenceequations.com/content/2014/1/117
http://dx.doi.org/10.1016/j.mcm.2011.05.044

	Aspects of univalent holomorphic functions involving multiplier transformation and Ruscheweyh derivative
	Abstract
	MSC
	Keywords

	Introduction
	Coefﬁcient bounds
	Distortion bounds
	Radius of starlikeness and convexity
	Neighborhood property
	Competing interests
	Author's contributions
	References


