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Abstract

In this article, we investigate the generalized Hyers-Ulam-Rassias stability, Isac-Rassias
type stability and superstability of ternary homomorphisms and ternary derivations
associated to the generalized m-variables Cauchy-Jensen functional equation
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for a fixed positive integer m with m ≥ 3 on ternary quasi-Banach algebras.
2010 Mathematics Subject Classification: 39B82; 39B52.

Keywords: superstability, Hyers-Ulam-Rassias stability, Isac-Rassias-type stability, tern-
ary algebra, homomorphism, derivation, quasi-Banach space

1. Introduction
A functional equation (ξ) is stable if any function g satisfying the equation (ξ) approxi-

mately is near to a true solution of (ξ). A functional equation (ξ) is superstable if any

function g satisfying the equation (ξ) approximately is a true solution of (ξ).

It is of interest to consider the concept of stability for a functional equation arising

when we replace the functional equation by an inequality which acts as a perturbation

of the equation.

The first stability problem was raised by Ulam [1] during his talk at the University of

Wisconsin in 1940. The stability question of functional equations is that how do the

solutions of the inequality differ from those of the given functional equation? If the

answer is affirmative, we would say that the equation is stable.

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach

spaces. Let f : E ® E’ be a mapping between Banach spaces such that∥∥f (x + y) − f (x) − f (y)
∥∥ ≤ δ

for all x, y Î E, and for some δ > 0. Then there exists a unique additive mapping T :

E ® E’ such that∥∥f (x) − T(x)
∥∥ ≤ δ
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for all x Î E. Moreover if f(tx) is continuous in t Î ℝ for each fixed x Î E, then T is

linear. Aoki [3] and Bourgin [4] considered the stability problem with unbounded Cau-

chy differences. In 1978, Rassias [5] provided a generalization of Hyers’ theorem by

proving the existence of unique linear mappings near approximate additive mappings.

It was shown by Gajda [6], as well as by Rassias and Šemrl [7] that one cannot prove a

stability theorem of the additive equation for a specific function. Găvruta [8] obtained

generalized result of Rassias’ theorem which allows the Cauchy difference to be con-

trolled by a general unbounded function.

Bourgin [4] is the first mathematician dealing with stability of (ring) ho-momorphism

f(xy) = f(x)f(y). The topic of approximate homomorphisms and approximate derivations

was studied by a number of mathematicians (see [9-13], and references therein).

We refer the readers to [2,5-8,11-51] and references therein for more detailed results

on the stability problems of various functional equations.

We note that a quasi-norm is a real-valued function on a vector space X satisfying

the following properties:

(1) ǁxǁ ≥ 0 for all x Î X and ǁxǁ = 0 if and only if x = 0.

(2) ǁl.xǁ = ǀlǀ. ǁxǁ for all l Î ℝ and all x Î X.

(3) There is a constant K ≥ 1 such that ǁx + yǁ ≤ K(ǁxǁ + ǁyǁ) for all x, y Î X. The

pair (X, ǁ.ǁ) is called a quasi-normed space if ǁ.ǁ is a quasi-norm on X . A quasi-

Banach space is a complete quasi-normed space. A quasi-norm ǁ.ǁ is called a p-norm

(0 ≤ p ≤ 1) if∥∥x + y
∥∥p ≤ ‖x‖p + ∥∥y∥∥p

for all x, y Î X . In this case, a quasi-Banach space is called a p-Banach space.

Ternary algebraic operations were considered in the 19th century by several mathe-

maticians such as Cayley [52] who introduced the notion of cubic matrix which in

turn was generalized by Kapranov et al. [39]. There are some applications, although

still hypothetical, in the fractional quantum Hall effect, the nonstandard statistics,

supersymmetric theory, and Yang-Baxter equation. The comments on physical applica-

tions of ternary structures can be found in [37,39,40,43,44,52-59].

Let A be a linear space over a complex field equipped with a mapping []: A3 = A × A

× A ® A with (x, y, z) ↦ [x, y, z] that is linear in variables x, y, z and satisfies the asso-

ciative identity [[x, y, z], u, v] = [x, [y, z, u], v] = [x, y, [z, u, v]] for all x, y, z, u, v in A.

The pair (A, [ ]) is called a ternary algebra.

Assume that A is a ternary algebra. We say A has a unit if there exist an element e Î
A such that [e, e, a] = [eae] = [a, e, e] = a for all a Î A.

Let A be a ternary algebra and let (A, ǁ.ǁ) be a quasi-Banach space (p-Banach space)

(with constant K ≥ 1). Then A is called a ternary quasi-Banach algebra (ternary p-

Banach algebra) if ǁ[x, y, z] ǁ ≤ Kǁxǁǁyǁǁzǁ for all x, y, z Î A.

Let A and B be ternary algebras. A ℂ-linear mapping H : A → B is called a tern-

ary homomorphism if

H([abc]) = [H(a)H(b)H(c)]

for all a, b, c ∈ A . A ℂ-linear mapping δ : A → A is called a ternary derivation if

δ([abc]) = [δ(a)bc] + [aδ(b)c] + [abδ(c)]
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for all a, b, c ∈ A (see [25-31,46,60]).

Recently, Ebadian and et al. [61] investigated the solution and stability of functional

equation

m∑
i=1

f (mxi +
m∑

j=1,j�=i
xj) + f (

m∑
i=1

xi) = 2m
m∑
i=1

f (xi) (1:1)

for a fixed positive integer m with m ≥ 2 in quasi-Banach spaces. In this paper, we

establish the generalized Hyers-Ulam-Rassias stability of ternary homomorphisms and

ternary derivations on ternary quasi-Banach algebras. Moreover, by using the main the-

orems, we prove the superstability of ternary homomorphisms and ternary derivations

on ternary quasi Banach algebras.

Throughout this article, we assume that A is a ternary quasi-Banach algebra with

quasi-norm ǁ.ǁA and B is a ternary p-Banach algebra with quasi-norm ǁ.ǁB

2. Ternary homomorphisms
From now on, we assume that m, n0 Î N are positive integers m ≥ 3, and suppose that

T
1

1
no

:= {eiθ ; 0 ≤ θ ≤ 2π
no

} . Moreover, we will use the following abbreviation for a given

mapping f : A ® B:

Dμf (x1, x2, . . . , xm, a, b, c, u) :=
m∑
i=1

f (mxi +
m∑

j=1,j�=i
xj) + f (

m∑
i=1

xi) − 2m
m∑
i=1

f (xi)

+f ([abc]) − [f (a)f (b)f (c)] + f (μu) − μf (u)

for all a, b, c, u, x1, x2, ..., xm Î A and all μ ∈ T
1

1
no

Theorem 2.1. Let
φ : A×· · · × A︸ ︷︷ ︸

m+4−times

→ [0,∞)
be a function satisfying

�(x) =
∞∑
i=1

(
1
m
)
ip

(φ(mi−1x, 0, . . . , 0))
p
< ∞

for all x Î A, and

lim
n→∞

1
mn

φ(mnx1, . . . ,mnxm,mna,mnb,mnc,mnu) = 0 (2:1)

for all u, a, b, c, xj Î A (1 ≤ j ≤ m). Let f : A ® B be a mapping such that f(0) = 0

and that∥∥Dμf (x1, . . . , xm, a, b, c, u)
∥∥ ≤ φ(x1, . . . , xm, a, b, c, u) (2:2)

for all u, a, b, c, xj Î A (1 ≤ j ≤ m) and all μ ∈ T
1

1
no
. Then there exists a unique tern-

ary homomorphism T : A ® B such that inequality

∥∥f (x) − T(x)
∥∥ ≤ [�(x)]

1
p (2:3)

for all x Î A.
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Proof: Putting μ = 1, a = b = c = u = 0 in (2.2), then we have∥∥D1f (x1, . . . , xm, 0, 0, 0, 0)
∥∥ ≤ φ(x1, . . . , xm, 0, 0, 0, 0)

for all x1, x2, ..., xm Î A. By using the Theorem 2.2 of [61], the limit

lim
n→∞

1
mn

f (mnx)

exists for all x Î A and the mapping

T(x) := lim
n→∞

1
mn

f (mnx) (x ∈ A)

is a unique additive function which satisfies (2.3). Moreover, one can show that

T(x) = 1
mn T(mnx) = 1

m2n T(m2nx) for all x Î A. Putting a = b = c = x1 = x2 = ... = xm =

0 in (2.2) to get∥∥f (μu) − μf (u)
∥∥ =

∥∥Dμf (0, 0, . . . , 0, u)
∥∥ ≤ φ(0, 0, . . . , 0, u)

for all u Î A and all μ ∈ T
1

1
no
. Then by definition of T and (2.1), we have

∥∥T(μu) − μT(u)
∥∥ = lim

n→∞
1
mn

∥∥f (mnμu) − uf (mnu)
∥∥ ≤ lim

n→∞
1
mn

φ(0, 0, . . . , 0,mnu) = 0

for all u Î A and all μ ∈ T
1

1
no
. This means that

T(μu) = μT(u)

for all u Î A and all μ ∈ T
1

1
no
. By the same reasoning as that in the proof of Theo-

rem 2.1 of [19], one can show that T : A ® B is ℂ-linear. On the other hand, by put-

ting u = x1 = x2 = ... = xm = 0 in (2.2), we have∥∥f ([abc]) − [f (a)f (b)f (c)]
∥∥ ≤ φ(0, 0, . . . , 0, a, b, c, 0)

for all a, b, c Î A. It follows that

∥∥T([abc]) − [T(a)T(b)T(c)]
∥∥ =

∥∥∥∥ 1
m2n

T([m2nabc]) − [T(a)
1
mn

T(mnb)
1
mn

T(mnc)]

∥∥∥∥
= lim

n→∞

∥∥∥∥ 1
m3n

f ([(mna)(mnb)(mnc)]) − [(
1
mn

f (mna))(
1
mn

f (mnb))(
1
mn

f (mnc))]

∥∥∥∥
= lim

n→∞
1

m3n

∥∥f ([(mna)(mnb)(mnc)]) − [(f (mna))(f (mnb))(f (mnc))]
∥∥

≤ lim
n→∞

1
m3n

φ(0, 0, . . . 0,mna,mnb,mnc, 0)

= 0

for all a, b, c Î A. This means that T : A ® B is a ternary homomorphism. The

uniqueness of T follows from Theorem 2.2 of [61].

Corollary 2.2. Let θ, r, rj (1 ≤ j ≤ m) be non-negative real numbers such that 0 <r, rj
< 1. Suppose that a mapping f : A ® B with f(0) = 0 satisfies the inequality
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∥∥Dμf (x1, . . . , xm, a, b, c, u)
∥∥
B ≤ θ

m∑
j=1

∥∥xj∥∥rjA + ‖a‖rA + ‖b‖rA + ‖c‖rA + ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A and all μ ∈ T
1

1
no
. Then there exists a unique tern-

ary homomorphism T : A ® B such that

∥∥f (x) − T(x)
∥∥
B ≤ θ‖x‖r1

mr1

{
m(1−r1)p

m(1−r1)p − 1

} 1
p

for all x Î A

Proof: It follows from Theorem 2.1 by putting

φ(x1, . . . , xm, a, b, c, u) = θ

m∑
j=1

∥∥xj∥∥rjA + ‖a‖rA + ‖b‖rA + ‖c‖rA + ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A.

Now, we investigate the Hyers-Ulam type stability of ternary homomor-phisms on

ternary quasi Banach algebras as follows.

Corollary 2.3. Let θ be non-negative real number. Suppose that a mapping f :A ® B

with f(0) = 0 satisfies the inequality∥∥Dμf (x1, . . . , xm, a, b, c, u)
∥∥
B ≤ θ

for all a, b, c, u, x1, x1, ..., xm Î A and all μ ∈ T
1

1
no
. Then there exists a unique tern-

ary homomorphism T : A ® B such that

∥∥f (x) − T(x)
∥∥
B ≤ θ

{
1

mp − 1

} 1
p

for all x Î A.

Proof. It follows from Theorem 2.1, by putting

φ(x1, x2, . . . xm, a, b, c, u) := θ

for all u, a, b, c, x1, x2, ..., xm Î A.

Isac and Rassias [38] generalized the Hyers’ theorem by introducing a mapping ψ : ℝ
+ ® ℝ+ subject to the conditions:

1) lim
t→∞

ψ(t)
t

= 0 ,

2) ψ(ts) ≤ ψ(t)ψ(s); s, t > 0,

3) ψ(t) <t; t > 1.

These stability results can be applied in stochastic analysis [38], financial and actuar-

ial mathematics, as well as in psychology and sociology. The following corollary is

Isac-Rassias type stability of ternary homomorphisms on ternary quasi-Banach algebras.
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Corollary 2.4. Let ψ : ℝ+® ℝ+ be a mapping such that

lim
t→∞

ψ(t)
t

= 0,

ψ(ts) ≤ ψ(t)ψ(s) s, t > 0,

ψ(t) < t t > 1.

Let θ, r, rj (1 ≤ j ≤ m) be non-negative real numbers. Let f : A ® B be a mapping

such that f(0) = 0 and that

∥∥Dμf (x1, . . . , xm, a, b, c, u)
∥∥
B ≤ θ

⎛
⎝ m∑

j=1

ψ(
∥∥xj∥∥A) + ψ(‖a‖A) + ψ(‖b‖A) + ψ(‖c‖A) + ψ(‖u‖A)

⎞
⎠

for all u, a, b, c, x1, x2, ..., xm Î A. Then there exists a unique ternary homo-morph-

ism T : A ® B such that∥∥f (x) − T(x)
∥∥
B ≤ kθψ(m−1)ψ(‖x‖)

for all x Î A, where k = ψ(m)
m−ψ(m) .

Proof: The proof follows from Theorem 2.1 by taking

φ(x1, . . . , xm, a, b, c, u) := θ

⎛
⎝ m∑

j=i

ψ(
∥∥xj∥∥A) + ψ(‖a‖A) + ψ(‖b‖A) + ψ(‖c‖A) + ψ(‖u‖A)

⎞
⎠

for all u, a, b, c, x1, x2,..., xm Î A.

Moreover, we have the superstability of ternary homomorphisms on ternary quasi

Banach algebras as follows.

Corollary 2.5. Let θ, r, rj (1 ≤ j ≤ m) be non-negative real numbers such that 0 <r, rj
< 1. Suppose that a mapping f : A ® B with f(0) = 0 satisfies the inequality

∥∥Dμf (x1, . . . , xm, a, b, c, u)
∥∥
B ≤ θ

⎛
⎝ m∏

j=1

∥∥xj∥∥rjA
⎞
⎠ ‖a‖rA ‖b‖rA ‖c‖rA ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A and all μ ∈ T
1

1
no
. Then f : A ® B is a ternary

homomorphism.

Proof: Putting

φ(x1, . . . , xm, a, b, c, u) := θ

⎛
⎝ m∏

j=1

∥∥xj∥∥rjA
⎞
⎠ ‖a‖rA ‖b‖rA ‖c‖rA ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A. Then we have j(x, 0, 0, ..., 0) = 0. By Theorem 2.1,

there exists a unique ternary homomorphism T : A ® B such that

∥∥f (x) − T(x)
∥∥
B ≤ [�(x)]

1
p = 0

for all x Î A. This means that f(x) = T(x) for all x Î A. Hence f : A ® B is a ternary

homomorphism.

Osbouei et al. Advances in Difference Equations 2012, 2012:80
http://www.advancesindifferenceequations.com/content/2012/1/80

Page 6 of 11



3. Ternary derivations
In this section, we use the following abbreviation for a given mapping f : A ® A:

�μf (x1, x2, . . . , xm, a, b, c, u) :=
m∑
i=1

f

⎛
⎝mxi +

m∑
j=1,j�=i

xj

⎞
⎠ + f

(
m∑
i=1

xi

)
− 2m

m∑
i=1

f (xi)

+f ([abc]) − [f (a)bc] − [af (b)c] − [abf (c)] + f (μu) − μf (u)

for all a, b, c, u, x1, x2, ..., xm Î A and all μ ∈ T
1

1
no
.

Theorem 3.1. Let
φ : A×· · · × A︸ ︷︷ ︸

m+4−times

→ [0,∞)
be a function satisfying

�(x) =
∞∑
i=1

(
1
m
)
ip

(φ(mi−1x, 0, . . . , 0))
p
< ∞

for all x Î A, and

lim
n→∞

1
mn

φ(mnx1, ...,mnxm,mna,mnb,mnc,mnu) = 0

for all u, a, b, c, xj Î A (1 ≤ j ≤ m). Let f : A ® B be a mapping such that f(0) = 0

and that∥∥�μf (x1, . . . , xm, a, b, c, u)
∥∥ ≤ φ(x1, . . . , xm, a, b, c, u) (3:1)

for all u, a, b, c, xj Î A (1 ≤ j ≤ m) and all μ ∈ T
1

1
no
. Then there exists a unique tern-

ary derivation D : A ® B such that

∥∥f (x) − D(x)
∥∥ ≤ [�(x)]

1
p

for all x Î A.

Proof: By using the same technique of proving Theorem 2.1, the limit

lim
n→∞

1
mn

f (mnx)

exists for all x Î A and the mapping

D(x) := lim
n→∞

1
mn

f (mnx) (x ∈ A)

is a unique ℂ-linear function which satisfies (2.3). On the other hand, by putting u =

x1 = x2 = ⋅⋅⋅= xm = 0 in (3.1), we have∥∥f ([abc]) − [f (a)bc] − [af (b)c] − [abf (c)]
∥∥ ≤ φ(0, 0, . . . , 0, a, b, c, 0)
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for all a, b, c Î A. It follows that∥∥D([abc]) − [D(a)bc] − [aD(b)c] − [abD(c)]
∥∥

=

∥∥∥∥ 1
m2n

D([m2nabc]) −
[
D(a)

1
mn

(mnb)
1
mn

(mnc)
]

−
[

1
mn

(mna)D(b)
1
mn

(mnc)
]

−
[

1
mn

D(mna)
1
mn

(mnb)D(c)
]∥∥∥∥

= lim
n→∞

∥∥∥∥ 1
m3n

f ([(mna)(mnb)(mnc)]) −
[(

1
mn

f (mna)
)(

1
mn

(mnb)
)(

1
mn

(mnc)
)]

−
[(

1
mn

(mna)
)(

1
mn

f (mnb)
)(

1
mn

(mnc)
)]

−
[(

1
mn

(mna)
)(

1
mn

(mnb)
)(

1
mn

f (mnc)
)]∥∥∥∥

= lim
n→∞

1
m3n

∥∥f ([(mna)(mnb)(mnc)]) − [(f (mna))((mnb))((mnc))]

−[((mna))(f (mnb))((mnc))] − [((mna))((mnb))(f (mnc))]
∥∥

≤ lim
n→∞

1
m3n

φ(0, 0, . . . , 0,mna,mnb,mnc, 0)

= 0

for all a, b, c Î A. This means that D : A ® B is a ternary derivation.

Corollary 3.2. Let θ, r, rj (1 ≤ j ≤ m) be non-negative real numbers such that 0 <r, rj
< 1. Suppose that a mapping f : A ® B with f(0) = 0 satisfies the inequality

∥∥�μf (x1, . . . , xm, a, b, c, u)
∥∥
A ≤ θ(

m∑
j=1

∥∥xj∥∥rjA + ‖a‖rA + ‖b‖rA + ‖c‖rA + ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A and all μ ∈ T
1

1
no
. Then there exists a unique tern-

ary derivation D : A ® B such that

∥∥f (x) − D(x)
∥∥
A ≤ θ‖x‖r1

mr1

{
m(1−r1)p

m(1−r1)p − 1

} 1
p

for all x Î A.

Proof: It follows from Theorem 3.1 by putting

φ(x1, . . . , xm, a, b, c, u) = θ

m∑
j=1

∥∥xj∥∥rjA + ‖a‖rA + ‖b‖rA + ‖c‖rA + ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A.

We have the Hyers-Ulam type stability of ternary derivations on ternary quasi

Banach algebras as follows.

Corollary 3.3. Let θ be non-negative real number. Suppose that a mapping f :A ® B

with f(0) = 0 satisfies the inequality∥∥�μf (x1, . . . , xm, a, b, c, u)
∥∥
A ≤ θ

for all a, b, c, u, x1, x1, ..., xm Î A and all μ ∈ T
1

1
no
. Then there exists a unique tern-

ary derivation D : A ® B such that

∥∥f (x) − D(x)
∥∥
A ≤ θ

{
1

mp − 1

} 1
p
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for all x Î A.

Proof. It follows from Theorem 3.1, by putting

φ(x1, x2, . . . , xm, a, b, c, u) := θ

for all u, a, b, c, x1, x2, ..., xm Î A.

By using the same technique of proving Corollary 2.4, we can prove the Isac-Rassias

type stability of ternary derivations on ternary quasi-Banach algebras as follows.

Corollary 3.4. Let ψ : ℝ+ ® ℝ+ be a mapping such that

lim
t→∞

ψ(t)
t

= 0,

ψ(ts) ≤ ψ(t)ψ(s) s, t > 0,

ψ(t) < t t > 1.

Let θ, r, rj (1 ≤ j ≤ m) be non-negative real numbers. Let f : A ® A be a mapping

such that f(0) = 0 and that

∥∥�μf (x1, . . . , xm, a, b, c, u)
∥∥
A ≤ θ

⎛
⎝ m∑

j=1

ψ(
∥∥xj∥∥A) + ψ(‖a‖A) + ψ(‖b‖A) + ψ(‖c‖A) + ψ(‖u‖A)

⎞
⎠

for all u, a, b, c, x1, x2, ..., xm Î A. Then there exists a unique ternary derivation D: A

® A such that∥∥f (x) − D(x)
∥∥
A ≤ kθψ(m−1)ψ(‖x‖)

for all x Î A, where k = ψ(m)
m−ψ(m) .

Similar to Corollary 2.5, we can prove the superstability of ternary derivations on

ternary quasi-Banach algebras as follows.

Corollary 3.5. Let θ, r, rj (1 ≤ j ≤ m) be non-negative real numbers such that 0 <r, rj
< 1. Let f: A ® A be a mapping such that f(0) = 0 and that

∥∥�μf (x1, . . . , xm, a, b, c, u)
∥∥
A ≤ θ

⎛
⎝ m∏

j=1

∥∥xj∥∥rj
A

⎞
⎠ ‖a‖rA ‖b‖rA ‖c‖rA ‖u‖rA

for all a, b, c, u, x1, x1, ..., xm Î A and all μ ∈ T
1

1
no
. Then f : A ® A is a ternary

derivation.
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