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ABSTR ACT: Hydroxyapatite (HA) is an essential element required for bone regeneration. Different forms of HA have been used for a long time. The 
essence of bone regeneration always revolves around the healthy underlying bone or it may be the surroundings that give enough strength. HA is well known 
for bone regeneration through conduction or by acting as a scaffold for filling of defects from ancient times, but emerging trends of osteoinductive property 
of HA are much promising for new bone regeneration. Emerging technology has made the dreams of clinicians to realize the use of HA in different forms 
for various regenerative purposes both in vivo and in vitro. The nanostructured calcium apatite plays an important role in the construction of calcified tissues. 
The nanostructured material has the ability to attach biological molecules such as proteins, which can be used as functional materials in many aspects, and 
the capability of synthesizing controlled structures of apatite to simulate the basic structure of bone and other calcified tissues. The process of regeneration 
requires a biomimetic and biocompatible nanostructured novel material. The nanostructured bioceramic particles are of interest in synthetic bone grafts and 
bone cements both injectable and controlled setting, so that such composites will reinforce the strength of bioceramics. Extensive research is being carried 
out for bone regeneration using nanotechnology. Artificial bone formation is not far from now. Nanotechnology has made many dreams come true. This 
paper gives comprehensive insights into the history and evolution with changing trends in the use of HA for various regenerative purposes.
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Introduction
The era of hydroxyapatite (HA) in regenerative science dates 
back to 1950s1 when bioceramics were used as an inert scaffold 
for filling of the bone defects. The history of calcium ortho-
phosphates dates back to 1770;2 the early history till 1950 
can be read elsewhere in the published literature.3,4 On the 
basis of the exhaustive literature available on HA from 1950 
in relation to its composition, properties, production, and its 
uses, this article comprehensively reviews landmark studies 
on HA properties and its use in clinical sciences with chang-
ing trends in the understanding of material interaction with 
living tissues.5 In the beginning, HA was used for grafting, 
which had no reaction with adjacent living tissues. Later, the 
trend changed to the reactive nature of the material so that it 
is categorized as second generation, where the material acts as 
a conductive scaffold for bony ingrowth.4 Recently, emerging 
production technology with the advent of nanotechnology and 
understanding of regenerative science has changed the face of 
bioceramics to a different dimension.6–11

HA is one of the bioceramics that represents the large 
quantity of regenerative graft material available in the market. 
HA is very closely associated with the bony apatite structure. 
It is one of the inorganic components of the bone. It is bounded 

in the organic matrix, so that it exists with other mineral trace 
elements in the normal bone.2 Diseases associated with the 
bone and ablative surgery the resections or removal of part 
of the bone, which ultimately requires reconstruction through 
various available measures. Because of the nature of the HA, 
it is gaining increasing importance in regenerative science as 
a potential substitute material next to autograft. This paper 
comprehensively reviews the role of HA in regenerative sci-
ence since the beginning of the history.

Chemical and Physical Properties of HA
HA is used as a bone substitute because of its chemical simi-
larities with the natural bone. The major composition of bone 
is a mineral phase (69 wt%), an organic matrix (22 wt%), 
and water (9 wt%).4 Bone is the major calcified tissue pres-
ent in mammals2 and is a ceramic–organic bionanocompos-
ite that has a complex structure. HA with a general formula 
of Ca10(OH)2(PO4)6 is much similar to an inorganic com-
ponent of bone matrix.4 Because of this close similarity, 
extensive research is ongoing to use HA as a bone substitute. 
HA is one of the most stable and less-soluble calcium phos-
phate bioceramics with Ca/P ratio of 1.67.1,4 The pure HA 
powder is white, whereas naturally occurring HA can also 
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have brown, yellow, or green colorations, comparable to the 
discolorations of dental fluorosis. In biological systems, HA 
occurs as the principal inorganic constituent of normal (bone, 
teeth, fish enameloid, and some species of shells) and patho-
logical (dental and urinary calculus and stones) calcifications.2 
The mechanical properties of HA depend on porosity, den-
sity, sinterability, crystal size, phase composition, and so 
on. The bending, compressive, and tensile strength values 
of HA ceramics lie in the range of 38–250, 120–150, and 
38–300 MPa, respectively.1,4 Young’s modulus of dense HA 
ceramics varies from 35 to 120 GPa, depending on the residual 
porosity and impurities.1,2,4 Weibull’s modulus of dense HA 
ceramics lies in the range 5–18, characteristic of brittle mate-
rials. The Vicker’s hardness of dense HA ceramics is 3–7 GPa. 
The mechanical properties of HA bioceramics strongly 
depend on the microstructure and sintering ability; densely 
sintered bodies with fine grains are tougher and stronger than 
porous ones with larger grains.2,4

Biological Properties of HA
HA bioceramics have been widely used as artificial bone 
substitutes because of their favorable biological properties, 
which include biocompatibility, bioaffinity, bioactivity, 
osteoconduction,1 osteointegration,2 and osteoinduction3 (in 
certain conditions). HA contains only calcium and phosphate 
ions and therefore no adverse local or systemic toxicity has 
been reported in any study. When implanted, newly formed 
bone binds directly to HA through a carbonated calcium-
deficient apatite layer at the bone–implant interface.4,5 HA 
surface supports osteoblastic cell adhesion, growth, and dif-
ferentiation, and new bone is deposited by the creeping sub-
stitution from the adjacent living bone. HA scaffolds can 
also serve as delivery vehicles for cytokines with a capac-
ity to  bind  and concentrate bone morphogenetic proteins 
(BMPs) in vivo.6

The interaction of apatite with biological tissues is an 
important aspect for regeneration. The concepts in the min-
eralization and tissue interaction are changing because of the 
change in production technology, size, nature of material, and 
so on. The beginning of bone regeneration has started with 
scaffold. The term biomimetics was coined by Otto Herbert 
Schmitt in 1950s.4 This biological process induces the bio-
logical process of generation of highly ordered materials with 
hybrid composition and begins by designing and synthesizing 
molecules that have the ability to self-organize spontaneously 
to higher order structures.4

The tissue interactions of HA are important. It is nec-
essary to understand the in vivo host responses for HA. In 
general, the mechanism of action of a biomaterial is consid-
ered to be biocompatible, bioinert, biotolerant, and bioactive, 
and includes bioresorbable materials. These shifts in under-
standing have occurred due to the changes in the properties 
and production technology and the deeper understanding of 
material interaction with the tissues. The advanced front of 

nanotechnology results in cutting edge production of HA in 
a much bioactive or bioresorbable manner. The tissue reac-
tion to any foreign body, even though it is biocompatible, will 
form a capsule thus it will be isolated. Bioinert materials will 
not show any positive interaction nor release any toxic con-
stituents. The body or host tissue will separate such materi-
als through encapsulation, which measures the bioinertness 
of material.4

A bioactive material will dissolve slightly, but it forms a 
biological apatite before it interacts with tissues at the atomic 
level; this results in the formation of chemical bonds directly 
with bones. This phenomenon provides good stabilization for 
the materials that are subjected to mechanical loading. Biore-
sorbable material dissolves over a period of time so that new 
tissues will grow into surface irregularities. The bioresorbable 
materials are used as scaffolds that allow substitution and act 
as filling material. These reactions depend on the nature of 
the material, such as porosity. Recently, concepts of bioactive 
material made into bioresorbable and bioresorbable into bioac-
tive. The use of HA with Ca/P ratio of 1.0–1.7 is nontoxic and 
neither has it induced any foreign body reaction. The nature of 
healing mimics fracture healing.4

HA has displayed an ability to directly bond with bone. 
Sometimes, the micromovement of implants may lead to 
inflammation because of disruption of large microvessels that 
have grown into the pores of the implant. HA also exhibits 
the property of osteoinductivity.5,10,12–25 The mechanism of 
bone induction by a synthetic material is still not clear, but 
various factors such as microporosity, surface area, geometry, 
and topography are important,25–27 of which microporosity 
has a positive effect on increasing ectopic bone formation. 
Some studies have shown that osteoinduction is brought about 
by the concentration of bone growth factors from circulating 
biological fluids.28 Other studies have shown that the geom-
etry of HA is a critical parameter in bone induction. Nano 
structured HA, rough surfaces are found to cause asymmetri-
cal division of stem cells into osteoblasts which is important 
for osteoinduction.26

Biodegradation of HA is usually initiated by changes 
in the surrounding biofluids and adsorption of biomolecules. 
The physicochemical dissolution process depends on the 
surface area to volume ratio, fluid convection, acidity, and 
temperature.29,30 The dissolution is usually inversely pro-
portional to the Ca/P ratio, purity, crystal size, and surface 
area. Usually, HA is more stable than other calcium ortho-
phosphates such as TCP. Bioresorption is usually mediated by 
osteoclast cells,31–33 sometimes by macrophages. The biodeg-
radation kinetics depend on the Ha/TCP ratio. The higher 
the ratio, the lower the degradation. The incorporation of ions 
either increases or decreases the solubility of HA and CDHA.4

Bioactive materials form a chemical bond. The rough-
ness and biomaterial porosity are considered to be important 
factors for bonding.5,34–36 The interfacial reactions of bioac-
tive materials were introduced by Prof. H Larry.37–40 Soon 
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after implantation, the proteins will be adsorbed on the HA 
surface. The extent and interconnectivity of pores influence 
bone ingrowth and blood vessel formation.41–44 A minimal 
pore size of approximately 50  µm has been estimated for 
blood vessel formation and approximately 200  µm for oste-
oid growth. The pore dimension, approximately 100 µm and 
50 µm, also showed bone ingrowth.45 The pore size and effects 
are as follows: ,1 µm is responsible for bioactivity, interaction 
with proteins, and attraction of cells; 1–20  µm leads to the 
orientation and directionality of cellular and bone ingrowth; 
100–1,000  µm helps in mechanical strengthening and 
functionality; .1,000 µm influences the shape and esthetics 
of the implant.46

The degree of porosity regulates the bioactivity of graft 
substitutes, which controls the rate of bone regeneration, 
local environment, and equilibrium of new bone at the repair 
site. The pore interconnectivity, geometry, topography, and 
porosity modulate osteogenesis, which synergistically pro-
motes the osteoconductivity or the inductivity potential 
of bone graft.47–49 The excellent biocompatibility, possible 
osteoinductivity,5,10,12–17 and high affinity for drugs, protein, 
and cells make these tissue engineering applications very 
much functional.50

In the beginning, the bioceramics were bioinert, but 
the trend changed to responsive bioceramics.51 These have 
been divided into different generations, which depict evo-
lution and properties of HA biomaterials. Osteoconduc-
tion and osteoinduction properties of HA scaffolds are well 
known. Osteoinduction occurs because of the stimulation of 
the host mesenchymal stem cells. These stem cells then dif-
ferentiate into bone-forming osteoblasts. Extensive studies 
have been conducted over the past several years to understand 
the osteoinduction potential of HA. Osteoinduction has been 
observed in several independent studies in various hosts such 
as dogs, goats, and baboons.7–10 Ripamonti et al have con-
ducted extensive work on the long-term use of HA implants 
in the nonhuman primate Papio ursinus.7,8 Their studies indi-
cate spontaneous bone formation in non-osseous sites. In one 
study, they used coral-derived calcium carbonate that was 
converted to HA by a hydrothermal reaction.7 Constructs 
of HA and calcium carbonate (5% and 13% HA) exhibiting 
different morphologies (rods and disks) were implanted into 
the heterotopic rectus abdominus or into orthotopic calvarial 
defects, respectively. Different time points were assessed dur-
ing this one-year study and, in all instances, induction of bone 
in the concavities of the matrices was detected. After a year, 
resorption of the calcium carbonate/HA as well as deposits 
of newly formed bone was visible.7 In a very recent study, 
Riamonti reported the use of HA-coated Ti implant in an 
8-month in vivo trial in P. ursinus, where osteoinduction was 
also observed.11

The rationale in using HA coatings as a means of fixation 
for orthopedic and dental implants has been known as early as 
the 1980s. HA as a surface coating attempts to improve bone 

fixation to the implant and thus increases the lifetime of metal-
lic implants. Higher osteoblast activity and in vitro increased 
collagen levels seen in cells growing on HA-coated Ti,52 in vivo 
HA coat resulted in higher bone–implant contact area.53 
Enhancing the ingrowth of mineralized tissue improved the 
biological fixation, biocompatibility, and bioactivity of dental 
implants.54 The deposition can be achieved through plasma 
spraying, sputter coating, pulsed laser deposition, dynamic 
mixing method, dip coating, sol–gel, electrophoretic depo-
sition, electrochemical deposition, and biomimetic coating 
with various advantages and disadvantages.55 Studies have 
suggested that both amorphous and crystalline phases in 
the coatings are desirable to promote a more stable interface 
with the biological environment.56,57 Thinner HA layers, in 
the nanometer range, revealed increased cellular response 
than thicker HA layers.58–60 Biomimetic nano-apatite coat-
ings of porous titanium scaffolds resulted in an enhanced 
human osteoblast culture as well as greater bone formation in 
a canine bone in a growth chamber.61 Recently, biomimetic 
HA-polymer composite scaffolds have been widely explored 
for bone regeneration.62,63

Recent Advances in HA
It is well established that nano-sized HA can mimic the 
dimensions of constituent components of calcified tissues such 
as bone and teeth. Thus, recent development of HA-based 
biomaterials for biomedical applications will obviously stand 
to benefit most from nanotechnology, which offers a unique 
approach to overcome the shortcomings of their conventional 
forms due to their large surface to volume ratio and unusual 
chemical/electronic synergistic effects.1 Nanocrystalline HA 
is expected to have better bioactivity and dissolution than 
coarser crystals.41,42 Nanostructured biomaterials promote 
osteoblast adhesion and proliferation, osseointegration, and 
the deposition of calcium-containing minerals on the surface 
of these materials.43,44

Nanocrystalline HA powder exhibits improved sinter-
ability and enhanced densification due to a greater surface 
area, which could improve the fracture toughness as well as 
other mechanical properties.21,23,45,46 In addition, nanostruc-
tured ceramics can be sintered at a lower temperature, thereby 
problems associated with high temperature-sintering pro-
cesses can also be eliminated. It is possible to enhance both 
the mechanical and biological performance of HA by control-
ling the characteristic features of powders such as surface area, 
crystallinity, morphology, particle size, particle distribution, 
and agglomeration.47 Even though nano-HA offers much 
improved performance than their conventional counterparts, 
it is not sufficient for wide applications. Artificial biomaterials 
with different properties depending upon the application are 
needed for hard tissue replacement. Properties such as den-
sity, porosity, thermal stability, bioactivity, resorbability, and 
mechanical properties should be tailored to make functional 
biomaterials.
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The aim of tissue engineering is to help the body heal 
naturally by implanting a resorbable and porous scaffold to 
serve only as a temporary matrix that would degrade over 
time, while allowing the regeneration of the host tissue at 
the implant site. Degradation depends on the particle size, 
crystallinity, porosity, the composition and preparation 
conditions, as well as the environment at the implanta-
tion site. Recent advances in composite materials for bone 
engineering are based on nanotechnology and involve the 
development of nanocomposites containing nanofibers, HA 
nanoparticles, carbon nanotubes (CNTs), and so on. Bone 
is structurally divided into nanostructure, microstructure, 
and macrostructure that include cortical and cancellous 
bone.64–66 Nanotechnology is the creation of functional 
materials, devices, and systems through the control of matter 
on the nanometer length scale (1–100 nm) and exploitation 
of novel phenomena and physical, chemical, and biological 
properties at that length scale.67 Engineering of nanomate-
rials can thus meet current challenges in bone replacement 
therapies.68,69 There are various techniques to manufacture 
nano-HA particles. These methods include wet chemical 
precipitation,70 sol-gel synthesis,71 co-precipitation,72 hydro-
thermal synthesis,73 mechano-chemical synthesis,74 mechan-
ical alloying,75 ball milling,76 radio frequency induction,77 
electro-crystallization,78 microwave processing,79 hydrolysis 
of other calcium orthophosphates,80 double step stirring,81 
and other methods. Nano-HA demonstrated rapid bone 
ingrowth and accelerated bone formation within and around 
the implanted material.82 In recent years, several studies are 
focusing on the development of HA–CNT nanocomposites 
with improved mechanical properties,83 and reports are also 
available for the processing of HA–CNT composite coatings 
for orthopedic implants through plasma spraying,84,85 laser 
surface alloying,86 electrophoretic deposition,87 and aerosol 
deposition.88 In addition to conventional sintering89,90 and 
hot isostatic pressing,91 spark plasma sintering (SPS)92 has 
also been employed to fabricate freestanding HA–CNT 
composites.

In recent years, extensive studies have been conducted 
to develop biomimetic materials for bone tissue engineering 
applications. These materials should be three dimensional, 
have a high volume of open and interconnected pores, be a 
bioresorbable scaffold with controlled resorption, and have 
suitable mechanical properties, biocompatibility, and bio-
activity. Porous HA implants can be manufactured using 
a variety of methods including processing of natural bone, 
ceramic foaming, sintering with porogens, starch consoli-
dation, microwave processing, slip casting, and electropho-
retic deposition. Microporosity results in a larger surface 
area that is believed to contribute to higher bone-inducing 
protein adsorption as well as to ion exchange and bone-like 
apatite formation by dissolution and re-precipitation. Over 
the past 15 years, a variety of 3D HA and biphasic scaffolds 

with various porosities and surface topographies have been 
developed.93–95

Forms and Uses of HA
Since its introduction in the mid-1980s, HA has been inves-
tigated for its clinical viability in various bone defects. Many 
researchers have demonstrated a better initial osseointegration 
and a high short-term success rate.96–98 HA-coated implants 
showed varying results of survival.99–105 The literature review 
revealed many studies revolving around these materials.106–149 
Different forms of HA have been derived from different origins 
for various uses. Bovine HA124–135 and synthetic HA136–149 are 
major sources of HA grafts. These have shown varying suc-
cess rates. Few studies have compared the efficacy of one form 
of HA over the other.106–123 HA use in the enhancement of 
bone regeneration in cystic defects has been selected for dis-
cussion. Many published studies have discussed about the 
implants and HA, which has been described briefly in previ-
ous sections.11,53,54 Available studies are divided mainly into 
bovine, synthetic, and comparative studies for the convenience 
of discussion and enumeration of the drawbacks and advan-
tages collectively, as well as to discuss the emerging technology 
in the production with a note on recent materials over old ones.

Synthetic HA exhibits good properties as a biomaterial, 
such as biocompatibility, bioactivity, and osteoconductivity; 
hence, it has been widely used as a bone substitute, coating 
on metallic implants, scaffold for tissue engineering, and car-
rier for drug delivery. The different forms of HA employed 
for biomedical applications include porous and dense blocks, 
granules, paste, cement, and coatings.64–67 Despite its numer-
ous useful characteristics, a major drawback of HA is its 
low strength resulting in the inability to make high load-
bearing implants entirely out of HA.68 Nanocrystalline HA 
is the main building block of bones and teeth. HA is used for 
grafting in sinus augmentation, ridge reconstructions, recon-
struction of bone defects. A summary of the various forms 
of HA with different sources of origin has been enumerated 
in Tables 1–3106–149 The authors agree upon the use of HA 
for early bone regeneration in various maxillofacial surgical, 
orthopedic and neurosurgical, and facial esthetic procedures 
in an economic way without morbidity of second surgery to 
harvest the autogenous bone.4 HA reconstruction of cystic 
cavity achieved superior bone quality with early regeneration 
without any complications. It also prevented dead space and 
fibrous healing of bone.130,150–155 All of the studies showed 
osteoconduction and few studies recently are in favor of 
osteoinduction.8–11 The published studies have many limita-
tions. Randomized blind clinical trials are necessary to pro-
duce good clinical evidence, which are lacking in the existing 
literature. In vitro laboratory and animal histomorphomet-
ric analysis demonstrated HA as a valuable graft material 
(Tables 1–3). The changing scenario in the production tech-
nology has made HA osteoinductive.6–11
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Future Insights
In the near future, the production of HA is going to be eco-
nomic because of the use of natural raw materials such as an 
egg shell. The production of HA from eggshell is an already 
established fact.111 However, commercial production of the 
material is under trial. HA production is cost effective in a 
small scale. Pioneering reports on the properties of HA 
derived from egg shell have shown promising results.153,154 
The nano-HA particles derived from egg shell are used in 
various maxillofacial reconstruction procedures with good 
results.155,156 The histomorphometric results of egg shell–
derived HA have shown equal efficacy to that of commercially 
available materials.154 Although only few comparative studies 
are available, they have demonstrated good performance. The 
use of nanotechnology is a boon for the production of HA. The 
material exhibited antibacterial properties, with the substitu-
tion of Ag, Sn, and other elements.4,156 The spatial rotation of 
HA particles makes HA as osteoinductive even in heterotro-
phic sites.6–11 Other interesting trends for HA include appli-
cations in drug delivery, cell culture, purification of antibodies 
on an industrial scale, as an artificial blood vessel or trachea, 
as well as a catheter made of an HA composite.4
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