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Abstract: This article concerns the inverse problem of the coupled age-structured population dynam-
ics system with discontinuous diffusion coefficients. The internal observations with two measurements
are allowed to obtain the stability result for the inverse problem consisting of simultaneously retriev-
ing two space dependent source terms in the given parabolic system. The proof of the result relies on
Carleman estimates and certain energy estimates for parabolic system.
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1. Introduction

Population dynamics is the branch of life sciences that studies short-term and long-term changes in
the size and age composition of populations, and the biological and environmental processes influenc-
ing those changes. To study the basic ideas of modeling a population dynamics system, one can refer
to [5]. In [10, 15], the authors studied the existence and uniqueness results along with regularity results
of population dynamics model with age-dependent diffusion coefficient. Several studies were made
on controllability of the model in the past. For instance, Ainseba [1] proved the exact and approxi-
mate controllability for a linear age-dependent and spatially structured population dynamics problem.
Ainseba and Anitha [3] discussed the local exact controllability of a linear age and space population
dynamics model where the birth process is nonlocal, whereas in [2], the authors studied internal exact
controllability of a linear age and space structured population model. The null controllability of a lin-
ear age-structured model with degenerate dispersion coefficient in population dynamics was studied in
[4, 19]. Uesaka and Yamamoto [25] considerd a time-dependent structured population model equation
and established unique continuation results using Carleman estimate. As for as inverse problems for
a population model is concerned, only fewer works were done in the past. One such noted work was
done by Blasio and Lorenzi [10].
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In this paper we focus on an inverse problem of reconstructing the source terms in the coupled
age-structured population model from the partial knowledge of a solution of the system. These kind
of inverse problems for the reaction diffusion system with discontinuous coefficients has already been
investigated by several authors [8, 9, 17, 18, 24]. In this context, we consider the following linear
coupled age-structured model:

Du = div(k(x)∇u) + µ(x)u + α(x)v + h1(t, a, x), (t, a, x) ∈ Q

Dv = div(k̃(x)∇v) + µ̃(x)u + α̃(x)v + h2(t, a, x), (t, a, x) ∈ Q

 (1.1)

with the initial/boundary conditions

u(θ1, a, x) := u(θ1)(a, x), v(θ1, a, x) := v(θ1)(a, x), (a, x) ∈ QA

u(t, θ2, x) := u(θ2)(t, x), v(t, θ2, x) := v(θ2)(t, x), (t, x) ∈ QT

u(t, a, x) = v(t, a, x) = 0 on Σ

and transmission conditions

u|
(0,T )×(0,A)×B+

= u|
(0,T )×(0,A)×B−

v|
(0,T )×(0,A)×B+

= v|
(0,T )×(0,A)×B−

where u(t, a, x) and v(t, a, x) be the densities of individuals at time t with age a and at a point x, A be
the life expectancy of an individual and T be a positive constant, k and k̃ represent the diffusivity of
the species u and v, µ and µ̃ represents the natural growth rate of the species u corresponding to the
species u and v, α and α̃ represents the natural growth rate of v corresponding to the species u and
v, h1 and h2 represent the corresponding source terms. We have used the notations Du := ut + ua,
Q = (0,T ) × (0, A) × Ω, QT = (0,T ) × Ω, QA = (0, A) × Ω and Σ = (0,T ) × (0, A) × Γ for some
bounded, connected open subset Ω of Rn, for n ≤ 3, with boundary Γ of class C2 and some fixed
θ1 ∈ (0,T ) and θ2 ∈ (0, A). Let Ω0 and Ω1 be a partition of Ω into two nonempty open sets such that
Ω0 ⊂ Ω , Ω1 = Ω \Ω0.

We denote by B = Ω0 ∩Ω1, the interface, which will be supposed of class C2 and by n⃗, the outward
unit normal toΩ1 at the points of B and also the outward unit normal toΩ at the points of Γ. Let B+ and
B−, respectively, be the parts of B corresponding to the positive and negative direction of the normal n⃗.

The diffusion coefficients k, k̃ are assumed to be piecewise regular such that

k(x) =
{

k0(x) if x ∈ Ω0

k1(x) if x ∈ Ω1
k̃(x) =

{
k̃0(x) if x ∈ Ω0

k̃1(x) if x ∈ Ω1
(1.2)

Let µ, µ̃, α, α̃ ∈ L∞(Ω) and hi’s be decomposed as h1(t, a, x) = f (x)R(t, a, x) and h2(t, a, x) =
g(x)R(t, a, x). Further assume that∣∣∣∣∣∂hi

∂t
(t, a, x)

∣∣∣∣∣ ≤ |gi(t)| |hi(θ1, a, x)| ,
∣∣∣∣∣∂hi

∂a
(t, a, x)

∣∣∣∣∣ ≤ | ji(a)| |hi(t, θ2, x)| , i = 1, 2 (1.3)

for all (t, a, x) ∈ [0,T ] × [0, A] ×Ω, where gi(t) ∈ L2(0,T ) and ji(a) ∈ L2(0, A), i = 1, 2.
Now, let us give some assumptions on the parameters involved in (1.1).
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Assumption: 1.1. The coefficients ki, k̃i, i = 0, 1 satisfy the following:

• ki, k̃i ∈ C2(Ωi), i = 0, 1
• k0|B+ , k1|B− , k̃0|B+ , k̃1|B−

Assumption: 1.2. The coefficients k, k̃, µ, µ̃, α, α̃ satisfy the following:

• Suppose 0 < r0 ≤ k(x), 0 < r2 ≤ k̃(x) in Ω exists and the functions k(x), k̃(x) and all their first
derivatives are respectively bounded by the positive constants r1 and r3. And suppose 0 < µ0 ≤
µ(x) ≤ µ1 < ∞, 0 < µ2 ≤ µ̃(x) ≤ µ3 < ∞, 0 < α0 ≤ α(x) ≤ α1 < ∞, 0 < α2 ≤ α̃(x) ≤ α3 <

∞ a.e. in Ω

The inverse problems will be studied in the following context:
Is it possible to determine the space dependent source terms f (x) and g(x) from the measurements

of Du and Dv on a nonempty open subset ω of Ω along with the measurements of the solutions u, v
and its derivatives at some fixed time θ1 and fixed age θ2?

In order to get the basic ideas about bounded estimates, one can refer [20] . As far as the stability
estimate of an inverse problems for parabolic equations via Carleman estimates is concerned, there
exist a vast number of publications [6, 11, 12]. Referencing all these works is beyond the scope of
this paper. So let us first recall briefly the initial results based on Carleman estimates. The theory of
Carleman inequality is one of the fastest developing areas of partial differential equations(PDEs); in
particular, after the pioneering work of Carleman in 1939, the theory of inequalities of Carleman type
has been rapidly developed and now many general results are available for partial differential equations.
For the first time, the method of Carleman estimates was introduced in the field of inverse problems
by Bukhgeim and Klibanov [13, 14, 22]. The paper by Klibanov [23] presents a brief review of the
applications of Carleman estimates to inverse problems for PDEs with respect to three fundamental
issues, namely, uniqueness, stability and numerical methods. After these fundamental contributions
to the study of inverse problems there have been abundant papers appearing in various dimensions
of scope. Secondly, let us recall some interesting results based on the carleman estimates for partial
differential equations with discontinuous diffusion coefficients. Benabdallah et al. [9] gave uniqueness
and stability results for both the diffusion coefficients and the initial condition for the heat equation
with a discontinuous diffusion coefficient. Doubova et al. [18] found an exact controllability result
for a semi-linear heat equation with discontinuous diffusion coefficient. Golgeleyen [21] discussed the
inverse problems for source term and coefficient of a potential term in a transport equation. Poisson [24]
considered the heat equation with a discontinuous coefficient in three connected situations and gave
the uniqueness and stability results for the diffusion coefficient in the main case from measurements
of the solution on an arbitrary part of the boundary and at a fixed time in the whole spatial domain.
Baudouin and Mercado [7] established the inverse problem of retrieving a stationary potential for the
Schrödinger equation in a bounded domain with Dirichlet data and discontinuous principal coefficient
from a single time-dependent Neumann boundary measurement.

The main objective of our work can be briefly described as follows. Let (u, v) be the solution
of (1.1) associated with zero Dirichlet boundary conditions and the known semi-initial conditions
u(θ1)(a, x), u(θ2)(t, x), v(θ1)(a, x), v(θ2)(t, x) with the discontinuous diffusion coefficient k(x), k̃(x) and
unknown source terms f (x) and g(x). Then for sufficiently smooth u(θi), v(θi), i = 1, 2 there exists a
constant C > 0 depending on Ω, ω, r0, r1, r2, r3, µ1, µ3, α1, α3, p1, p2, l1 and l2 (p1, p2, l1 and l2 will be
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defined later) satisfying

∥ f ∥2L2(Ω) + ∥g∥
2
L2(Ω) ≤ C (A(ω) + B(θ1) + E(θ2)) (1.4)

where

A(ω) = s3λ4
∫

Qω

e−2sηϕ3
(
|Du|2 + |Dv|2

)
dQ

B(θ1) = s
∫

QA

e−2sη(θ1)
(
|div(k∇u(θ1))|2 + |div(k̃∇v(θ1))|2 + |u(θ1)|2 + |v(θ1)|2

)
dQA

E(θ2) = s
∫

QT

e−2sη(θ2)
(
|div(k∇u(θ2))|2 + |div(k̃∇v(θ2))|2 + |u(θ2)|2 + |v(θ2)|2

)
dQT

It should be emphasized that to the best of our knowledge, as far as the inverse problem of a system
of parabolic equations with discontinuous coefficients is concerned, there are few papers appeared;
for instance see, Cristofol et al. [17] in which they have discussed the simultaneous reconstruction
of the discontinuous diffusion coefficients for the parabolic equations and Baudouin and Mercado
[7] established the inverse problem of retrieving a stationary potential for the Schrödinger equation
with discontinuous principal coefficient from a single measurement whereas our work establishes the
simultaneous identification of two source terms in a coupled age-structured population system with
discontinuous diffusion coefficients from the knowledge of solutions on an arbitrary interior domain
and at some arbitrary positive time and age. Further, it should be noted that, as far as the inverse
problems for a system of age-structured model is concerned, there is no paper available in the literature
for discontinuous diffusion coefficients.

The outline of this paper is as follows: In Section 2 we deduce a Carleman estimate for the system
(1.1) with two observation which can be obtained from the classical Carleman estimates for parabolic
system [18]. This estimate is applied successfully in Section 3 to derive an estimate for the source
terms with the known observations.

2. Carleman Estimate

In this section, we quote a Carleman type estimate which is useful for further proceedings. But to
get such a estimate, it is necessary to multiply the solution by some suitable weight functions, thus we
need to introduce the following functions to express the Carleman estimate in the desired form. Let
ω0 b ω b Ω0. Let us define a function β̃ ∈ C2(Ω), β̃i = β̃|Ωi , i = 0, 1, such that

β̃ > 0 in Ω, β̃ = 0 on Γ
∂n⃗β̃ < 0 on Γ, β̃ = 1 on B
∂n⃗β̃0 > 0, ∂n⃗β̃1 > 0 on B
k0∂n⃗β̃0 = k1∂n⃗β̃1 on B
|∇β̃| > 0 in Ω \ ω0


(2.1)

The existence of such a function is referred in [18].
Let us consider the functions

β = β̃ + K, and β =
5
4

max
Ω

β (2.2)
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with K > 0 such that K ≥ 5 max
Ω

β̃.

Let λ be a sufficiently large positive constant that depends only onΩ and ω and will be defined later.
For t ∈ (0,T ), a ∈ (0, A), let us define

ϕ(t, a, x) =
eλβ(x)

t(T − t)a(A − a)
, η(t, a, x) =

eλβ − eλβ(x)

t(T − t)a(A − a)
. (2.3)

Observe that the function ϕ and η are positive and we have the following relations

∇ϕ = λϕ∇β, ∇η = −λϕ∇β. (2.4)

Now, let us define

Zk :=
{
q : q ∈ C2([0,T ] × [0, A] ×Ωi), i = 0, 1, q|(0,T )×(0,A)×B+ = q|(0,T )×(0,A)×B− ,

k0∂n⃗q|(0,T )×(0,A)×B+ = k1∂n⃗q|(0,T )×(0,A)×B− , q = 0 on Σ
}

As a first step in our analysis, we apply the classical Carleman estimates [18] derived for general
parabolic type equations with discontinuous coefficient to the following operator

Lq := Dq − div(k(x)∇q), (t, a, x) ∈ Q (2.5)

Theorem: 2.1. (Carleman estimate) Let β, ϕ and η be defined as in (2.2)-(2.3) and assume thatω∩Ω0 is
nonempty. Suppose that Assumptions 1.1, 1.2 on the coefficient k(x) holds. Then there exist parameters
λ0 > 0 and s0 > 0 and a positive constant C that only depends on Ω, ω, r0 and r1 such that, for all
λ > λ0 and for all s ≥ s0, the following inequality holds

I(q; k) ≤ C
(
s3λ4

∫
Qω

e−2sηϕ3|q|2 dQ +
∫

Q
e−2sη|Lq|2 dQ

)
(2.6)

where

I(q; k) = (sλ)−1
∫

Q
ϕ−1e−2sη(|Dq|2 + |div(k(x)∇q)|2)dQ

+sλ2
∫

Q
ϕe−2sη|∇q|2dQ + s3λ4

∫
Q
ϕ3e−2sη|q|2dQ.

for all q ∈ Zk, where s0 and λ0 will be defined later.

Proof. Now let us make the change of variable for the unknown function q(t, a, x) = esηψ(t, a, x) in
(2.5) along with the conditions ψ(0, ·, ·) = ψ(T, ·, ·) = ψ(·, 0, ·) = ψ(·, A, ·) = 0. Then we write the
resulting equation in terms of the two operators M1ψ and M2ψ as

M1ψ + M2ψ = fs (2.7)

where

M1ψ = −div(k∇ψ) − s2λ2ϕ2|∇β|2kψ + sηt ψ + sηa ψ,
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M2ψ = ψt + ψa + 2sλϕ k∇β · ∇ψ + sλ2ϕ|∇β|2kψ,

fs = e−sηLq − sλϕ div(k∇β)ψ.

Then we have

∥M1ψ∥22 + ∥M2ψ∥22 + 2(M1ψ, M2ψ) = ∥ fs∥22 (2.8)

where (·, ·) denote the scalar product in L2(Q) and the norms are defined in L2(Q). Now let us estimate
all the terms appearing in the inner product. As a first step, let us split the inner product as a sum of the
terms Ii j, i, j = 1, 2, 3, 4, where Ii j is the inner product of the ith term in the expression of M1ψ with
jth term in the expression of M2ψ above. Now we shall simplify and estimate each of these integrals
by using Green’s theorem and usual integration by parts.

Now the terms I1 j, j = 1, 2, 3, 4 become, with an integration by parts

I11 = 0, and similarly I12 = 0

I13 = −sλ
∫
Σ

ϕ|k∂n⃗ψ|2 (∂n⃗β) dΣ + sλ
∫

QB

ϕ|k∂n⃗ψ|2 [∂n⃗β]B dQB

+sλ2
∫

Q
ϕk2|∇β|2|∇ψ|2 dQ + sλ

∫
Q
ϕk2∆β|∇ψ|2 dQ

I14 = sλ2
∫

QB

ϕ(k∂n⃗β)(k∂n⃗ψ) [∂n⃗β]B ψ dQB + sλ2
∫

Q
ϕk div(k|∇β|2)∇ψ ψ dQ

+sλ2
∫

Q
ϕk2|∇β|2|∇ψ|2 dQ + sλ3

∫
Q
ϕk2∇β|∇β|2∇ψ ψ dQ

where QB := (0,T ) × (0, A) × B. Computations corresponding to the scalar product of the second term
in M1ψ with M2ψ gives

I21 = s2λ2
∫

Q
ϕ ϕtk|∇β|2|ψ|2 dQ

I22 = s2λ2
∫

Q
ϕ ϕak|∇β|2|ψ|2 dQ

I23 = s3λ3
∫

QB

ϕ3|k∂n⃗β|2 [∂n⃗β]B |ψ|2 dQB + s3λ3
∫

Q
ϕ3div(k2∇β|∇β|2) |ψ|2 dQ

+3s3λ4
∫

Q
ϕ3k2|∇β|4|ψ|2 dQ

I24 = −s3λ4
∫

Q
ϕ3k2|∇β|4|ψ|2 dQ

Calculating the scalar products I3 j and I4 j, j = 1, 2, 3, 4,

I31 = −
s
2

∫
Q
ηtt|ψ|2 dQ and similarly I41 = −

s
2

∫
Q
ηaa|ψ|2 dQ

I32 = I42 = −
s
2

∫
Q
ηta|ψ|2 dQ
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I33 = s2λ2
∫

Q
ϕ ϕtk|∇β|2|ψ|2 dQ − s2λ2

∫
Q
ϕ ηtk|∇β|2|ψ|2 dQ

−s2λ

∫
Q
ϕηt div(k∇β)|ψ|2 dQ

I43 = s2λ2
∫

Q
ϕ ϕak|∇β|2|ψ|2 dQ − s2λ2

∫
Q
ϕ ηak|∇β|2|ψ|2 dQ

−s2λ

∫
Q
ϕηa div(k∇β)|ψ|2 dQ

I34 = s2λ2
∫

Q
ϕηtk|∇β|2|ψ|2 dQ

I44 = s2λ2
∫

Q
ϕηak|∇β|2|ψ|2 dQ

where we have used the notation [ · ]B to denote the jump on B and [k]B = k0 − k1 ≤ 0 on B and
[∂n⃗β]B = ∂n⃗β0 − ∂n⃗β1 ≥ 0 on B, where n⃗ is the outward unit normal to Ω1 and also ∂n⃗β ≤ 0 on Γ, using
(2.1) and (2.2). Also note that k0∂n⃗β0|B+ − k1∂n⃗β1|B− = 0.

Substituting all the preceding equalities in (2.8), we obtain

∥M1ψ∥
2

2
+ ∥M2ψ∥

2

2
+ 2s3λ3

∫
QB

ϕ3|k∂n⃗β|2 [∂n⃗β]B |ψ|2 dQB

+2sλ
∫

QB

ϕ|k∂n⃗ψ|2 [∂n⃗β]B dQB − 2sλ
∫
Σ

ϕ|k∂n⃗ψ|2 (∂n⃗β) dΣ

+3s3λ4
∫

Q
ϕ3k2|∇β|4|ψ|2 dQ + 2sλ2

∫
Q
ϕk2|∇β|2|∇ψ|2 dQ

= ∥ fs∥
2

2
− 2X (2.9)

where

X = sλ
∫

Q
ϕk2∆β|∇ψ|2 dQ + sλ2

∫
QB

ϕ(k∂n⃗β)(k∂n⃗ψ) [∂n⃗β]B ψ dQB

+sλ2
∫

Q
ϕk div(k|∇β|2)∇ψ ψ dQ + sλ3

∫
Q
ϕk2∇β|∇β|2∇ψ ψ dQ

+s3λ3
∫

Q
ϕ3div(k2∇β|∇β|2) |ψ|2 dQ + 2s2λ2

∫
Q
ϕ Dϕ k|∇β|2|ψ|2 dQ

−s2λ

∫
Q
ϕDη div(k∇β)|ψ|2 dQ − s

2

∫
Q

D2η|ψ|2 dQ

Making use of the estimates (2.3) and (2.4), we have

|X| ≤ s2λ4
∫

Q
ϕ3|ψ|2 dQ +C s3λ3

∫
Q
ϕ3|ψ|2 dQ

+sλ
∫

Q
ϕ|∇ψ|2 dQ +C sλ

∫
Q
ϕ|∇ψ|2 dQ

+ϵ sλ2
∫

Q
ϕ|∇ψ|2 dQ + ϵ sλ

∫
QB

ϕ|k∂n⃗ψ|2 [∂n⃗β]B dQB
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+Cϵ sλ3A4T 4
∫

QB

ϕ3|k∂n⃗β|2 [∂n⃗β]B|ψ|2 dQB

for any s ≥ s1 = C(Ω, r1)
(
A2T 2(A2 + T 2 + A2T 2 + A + T ) + AT (T 2 + A2)

)
and for any λ ≥ λ1 =

C(Ω, r1)
(
A
√

T + T
√

A + 3√A 6√T + 3√T 6√A
)
.

On the other hand, from (2.7), we have

∥ fs∥22 ≤ ∥e
−sηLq∥2

2
+C(Ω, r1, µ1)

(
s2λ2A2T 2

∫
Q
ϕ3|ψ|2 dQ

)
(2.10)

for any λ ≥ 1. Further, note that all the integrals in the left hand side of (2.9) are non-negative. More-
over, we know that (2.1) and (2.2) hold. Then, for some λ0 ≥ 1, we have

λ2ϕ|k∇β|2 ≥ C(Ω, r0)λ2ϕ

λ4ϕ3k2|∇β|4 ≥ C(Ω, r0)λ4ϕ3

}
(2.11)

for all (t, a, x) ∈ (0,T ) × (0, A) × (Ω \ ω0) and λ ≥ λ0.

Using the estimates (2.10) and (2.11) in (2.9), we obtain

∥M1ψ∥22 + ∥M2ψ∥22 +Cs3λ4
∫ T

0

∫ A

0

∫
Ω\ω0

ϕ3|ψ|2 dx da dt +Csλ2
∫ T

0

∫ A

0

∫
Ω\ω0

ϕ|∇ψ|2 dx da dt

+2s3λ3
∫

QB

ϕ3|k∂n⃗β|2[∂n⃗β]B|ψ|2 dQB + 2sλ
∫

QB

ϕ|k∂n⃗ψ|2[∂n⃗β]B dQB

≤ ∥ fs∥22 + |X|

for any λ ≥ 1 and s ≥ s2 = C((A + T )4 + (A + T )3).
For any sufficiently large λ ≥ λ1 and for any s ≥ s3 = max{s1, s2}, all the upper bounds of X will

be absorbed by one of the dominating term in the left hand side of the above inequality. For ϵ small
enough, there exists a constant C > 0 such that

∥M1ψ∥22 + ∥M2ψ∥22 + sλ2
∫

Q
ϕ|∇ψ|2 dQ + s3λ4

∫
Q
ϕ3|ψ|2 dQ

≤ C
∥e−sηLq∥2

2
+ sλ2

∫
Qω0

ϕ|∇ψ|2 dQ + s3λ4
∫

Qω0

ϕ3|ψ|2 dQ
 (2.12)

In order to obtain the Carleman estimate, it remains to obtain the first order derivative in time, age and
second order derivative in space of the variable ψ in the left hand side. First one can be done using the
expressions of Miψ (i = 1, 2). Indeed, from (2.7), we have

(sλ)−1
∫

Q
ϕ−1|Dψ|2 dQ ≤ C

(
sλ

∫
Q
ϕ|∇ψ|2 dQ + sλ3

∫
Q
ϕ|ψ|2 dQ + ∥M2ψ∥22

)
and

(sλ)−1
∫

Q
ϕ−1|div(k∇ψ)|2 dQ ≤ C

(
s3λ3

∫
Q
ϕ3|ψ|2 d + ∥M1ψ∥22

)
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for any s ≥ s4 = C(Ω, r1) (AT (AT + A + T )) and λ ≥ 1. Thus we get

(sλ)−1
∫

Q
ϕ−1

(
|Dψ|2 + |div(k∇ψ)|2

)
dQ + s3λ4

∫
Q
ϕ3|ψ|2 dQ + sλ2

∫
Q
ϕ|∇ψ|2 dQ

≤ C
∫

Q
e−2sη|Lq|2 dQ + sλ2

∫
Qω0

ϕ|∇ψ|2 dQ + s3λ4
∫

Qω0

ϕ3|ψ|2 dQ
 (2.13)

for any s ≥ s5 = max{s3, s4} and λ ≥ λ0 = max{1, λ1}.
Finally we turn back to our original variable by using the transformation ψ = e−sηq. Noting that

e−2sη|q|2 = |ψ|2,
e−2sη|∇q|2 = |∇ψ + s∇ηψ|2 ≤ 2|∇ψ|2 + 2s2|∇η|2|ψ|2,
e−2sη|Dq|2 ≤ 2|Dψ|2 + 2s2|Dη|2|ψ|2, and

e−2sη|div(k∇q)|2 ≤ 4|div(k∇ψ)|2 + 4s2|div(k∇η)|2|ψ|2 + 8s2|∇η|2|k|2|∇ψ|2 + 4s2|∇η|4|k|2|ψ|2,

we have

(sλ)−1
∫

Q
e−2sηϕ−1

(
|Dq|2 + |div(k∇q)|2

)
dQ + s3λ4

∫
Q

e−2sηϕ3|q|2 dQ + sλ2
∫

Q
ϕ|∇q|2 dQ

≤ C
∫

Q
e−2sη|Lq|2 dQ + sλ2

∫
Qω0

e−2sηϕ|∇q|2 dQ + s3λ4
∫

Qω0

e−2sηϕ3|q|2 dQ
 (2.14)

In order to conclude the proof of the Carleman estimate it is sufficient to derive the first order term in
the right hand side of the above equation in terms of the zeroth order term of q in Qω.

In order to obtain, consider a function ρ ∈ C∞0 (ω) such that ρ ≡ 1 in ω0 and ρ ≥ 0. We consider
ω0 ⊂ ω and the estimates obtained below remain true for larger ω.

Now multiplying the equation (2.5) by sλ2e−2sηρϕq and integrating over Qω := (0, T ) × (0, A) × ω,
we obtain

sλ2
∫

Qω

e−2sηρϕq Dq dQ − sλ2
∫

Qω

e−2sηρϕq div(k∇q) dQ

+sλ2
∫

Qω

e−2sηρϕµ|q|2 dQ = sλ2
∫

Qω

e−2sηρϕLq q dQ

Using the definition of ρ along with the estimates (2.4), after some usual calculations, we finally obtain

sλ2
∫

Qω0

e−2sηϕ|∇q|2 dQ ≤ C
(∫

Q
e−2sη|Lq|2dQ + s3λ4

∫
Qω

e−2sηϕ3|q|2dQ
)

(2.15)

for any s ≥ s6 = σ1((A + T )4 + (A + T )3 + (A + T )8/3) and for any λ ≥ 1. Substituting (2.15) in (2.14),
we get

I(q; k) ≤ C
[∫

Q
e−2sη|Lq|2 dQ + s3λ4

∫
Qω

ϕ3e−2sη|q|2 dQ
]

for all s ≥ s0 = max{s5, s6} and λ ≥ λ0. This completes the proof. �
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Now we apply the above Carleman estimates derived for age-dependent diffusion model with dis-
continuous coefficient to the first equation in (1.1)(referred as (1.1a)). Let u be the solution of (1.1a)
and suppose Assumptions 1.1, 1.2 hold true. Then for any λ ≥ λ̃0 > 0 and s ≥ s̃0(Ω, A,T ) > 0, there
exists a constant C(Ω, ω, r0, r1) > 0 satisfying

I(u; k) ≤ C
(
s3λ4

∫
Qω

e−2sηϕ3|u|2 dQ +
∫

Q
e−2sη|Du − div(k∇u)|2 dQ

)
(2.16)

where I(u; k) is same as defined in (2.6). From (1.1b), we obtain for any λ ≥ λ0 > 0 and s ≥
s0(Ω, A,T ), there exists a constant C(Ω, ω, r2, r3) > 0 satisfying

I(v; k̃) ≤ C
(
s3λ4

∫
Qω

e−2sηϕ3|v|2 dQ +
∫

Q
e−2sη|Dv − div(k̃∇v)|2 dQ

)
(2.17)

Now coupling the estimates (2.16)-(2.17), we get

I(u; k) + I(v; k̃) ≤ C
(
s3λ4

∫
Qω

e−2sηϕ3
(
|u|2 + |v|2

)
dQ +

∫
Q

e−2sη
(
|h1|2 + |h2|2

)
dQ

)
(2.18)

for sufficiently large enough s ≥ s̃ = max{s̃0, s0,CA2T 2} and λ ≥ λ̃ = max{λ̃0, λ0} with C =

C(Ω, ω, r0, r1, r2, r3, µ1, µ3, α1, α3) > 0.

3. Stability Results

In this section, we establish a stability estimate using certain ideas from [9]. More precisely, we
obtain an inequality which estimates the space dependent source terms f (x) and g(x) with an upper
bound given by some Sobolev norm of the solution u, v and its derivative with respect to the time, age
and certain spatial derivatives of u, v at time θ1 ∈ (0,T ) and at age θ2 ∈ (0, A). In proving these kinds
of stability estimates, the Carleman estimate obtained in the previous section will play a crucial part
along with certain energy estimates.

Theorem: 3.1. Suppose all the assumptions of Theorem 2.1 hold true with s ≥ s̃ and λ ≥ λ̃. Assume
that R,R ∈ H1(0,T ; L∞(QA)) ∩ H1(0, A; L∞(QT )) and |R(θ1, a, x)| ≥ l1 > 0, |R(θ1, a, x)| ≥ l2 > 0
a.e. in QA, |R(t, θ2, x)| ≥ p1 > 0, |R(t, θ2, x)| ≥ p2 > 0 a.e. in QT , Then there exists a constant
C = C(Ω, ω, T, A, r0, r1, r2, r3, α1, α3, µ1, µ3, l1, l2, p1, p2) > 0 such that

∥ f ∥2L2(Ω) + ∥g∥
2
L2(Ω) ≤ C

(
s3λ4

∫
Qω

e−2sηϕ3
(
|Du|2 + |Dv|2

)
dQ + B(θ1) + E(θ2)

)
.

where B(θ1) and E(θ2) are already defined in (1.4).

Proof. Let us set y = Du and z = Dv. Then we have

Dy = div(k∇y) + µy + αz + Dh1, in Q

Dz = div(k̃∇z) + µ̃y + α̃z + Dh2, in Q

y(t, a, x) = 0, z(t, a, x) = 0 on Σ

y(θ1, a, x) = y(θ1), z(θ1, a, x) = z(θ1), in QA

y(t, θ2, x) = y(θ2), z(t, θ2, x) = z(θ2), in QT

(3.1)
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where

y(θ1) = h1(θ1) + div(k∇u)(θ1) − µ(x)u(θ1) − α(x)v(θ1),
z(θ1) = h2(θ1) + div(k̃∇v)(θ1) − µ̃(x)u(θ1) − α̃(x)v(θ1),
y(θ2) = h1(θ2) + div(k∇u)(θ2) − µ(x)u(θ2) − α(x)v(θ2),

and z(θ2) = h2(θ2) + div(k̃∇v)(θ2) − µ̃(x)u(θ2) − α̃(x)v(θ2),

Let θ1 and θ2 be some fixed points in (0, T ) and (0, A) respectively, that is, a point at which 1/(t(T − t))
and 1/(a(A − a)) has its minimum value. In view of (3.1) and the estimate (2.18), we have

I(y; k) + I(z; k̃) ≤ C
(
s3λ4

∫
Qω

e−2sηϕ3
(
|y|2 + |z|2

)
dQ +

∫
Q

e−2sη
(
|Dh1|2 + |Dh2|2

)
dQ

)
(3.2)

On the other hand, we have∫
QA

sy(θ1, a, x)2e−2sη(θ1,a,x)dQA

=

∫ θ1

0

∂

∂t

( ∫
QA

sy(t, a, x)2e−2sη(t,a,x)dQA

)
dt

≤
∫

Q
−2s2e−2sηηt|y|2dQ +

∫
Q

2syyte−2sηdQ

Similarly, for any θ2 ∈ (0, A),∫
QT

sy(t, θ2, x)2e−2sη(t,θ2,x)dQT

=

∫ θ2

0

∂

∂a

( ∫
QT

sy(t, a, x)2e−2sη(t,a,x)dQT

)
dt

≤
∫
Q

−2s2e−2sηηa|y|2dQ +
∫
Q

2syyae−2sηdQ

Coupling the estimates∫
QA

sy(θ1, a, x)2e−2sη(θ1,a,x)dQA +

∫
QT

sy(t, θ2, x)2e−2sη(t,θ2,x)dQT

≤
∫
Q

−2s2e−2sηDη|y|2dQ +
∫
Q

2syDye−2sηdQ

≤ C(T A2 + AT 2)s2
∫
Q

ϕ2e−2sη|y|2dQ + 2
∫
Q

(
s
√

sλϕye−sη
)( 1
√

sλϕ
Dye−sη

)
dQ

≤ C

(T 3A4 + A3T 4)s2 + T 4A4s3λ

∫
Q

ϕ3e−2sη|y|2dQ +
∫
Q

1
sλϕ

e−2sη|Dy|2dQ


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≤ C
(
s3λ4

∫
Q

ϕ3e−2sη|y|2dQ +
∫
Q

(sλϕ)−1e−2sη|Dy|2dQ
)

≤ CI(y; k). (3.3)

for any λ ≥ C(Ω)AT (T
1
3 A

1
3 + T−

1
4 + A−

1
4 ) and s ≥ 1. Similarly,∫

QA

sz(θ1)2e−2sη(θ1)dQA +

∫
QT

sz(θ2)2e−2sη(θ2)dQT ≤ CI(z; k̃). (3.4)

And also, it is easy to see that, from (3.1)

s
∫

QA

e−2sη(θ1)
2∑

i=1

hi(θ1)2dQA + s
∫

QT

e−2sη(θ2)
2∑

i=1

hi(θ2)2dQT

≤ C
( ∫

QA

s(y(θ1)2 + z(θ1)2)e−2sη(θ1)dQA

+

∫
QT

s(y(θ2)2 + z(θ2)2)e−2sη(θ2)dQT + B(θ1) + E(θ2)
)
. (3.5)

where B(θ1),E(θ2) are defined in (1.4) and C depends on Ω, µ1, µ3, α1, α3. In view of (3.3)-(3.5), we
have

s
∫

QA

e−2sη(θ1)
2∑

i=1

hi(θ1)2dQA + s
∫

QT

e−2sη(θ2)
2∑

i=1

hi(θ2)2dQT ≤ C
(
I(y; k) + I(z; k̃) + B(θ1) + E(θ2)

)
.(3.6)

From the Carleman estimate derived in the previous section, we have

s
∫

QA

e−2sη(θ1)
2∑

i=1

hi(θ1)2dQA + s
∫

QT

e−2sη(θ2)
2∑

i=1

hi(θ2)2dQT

≤ C
(
s3λ4

∫
Qω

e−2sηϕ3
(
|y|2 + |z|2

)
dQ +

∫
Q

e−2sη
(
|Dh1|2 + |Dh2|2

)
dQ

+B(θ1) + E(θ2)
)
. (3.7)

Now from the definition of the source terms (1.3) and also R,R ∈ H1(0,T ; L∞(QA)) ∩
H1(0, A; L∞(QT )) we deduce that: there exist gi ∈ L2(0,T ) and ji ∈ L2(0, A), i = 1, 2 so that

|DR(t, a, x)| ≤ g1(t)|R(θ1, a, x)| + j1(a)|R(t, θ2, x)|, ∀(t, a, x) ∈ Q.

|DR(t, a, x)| ≤ g2(t)|R(θ1, a, x)| + j2(a)|R(t, θ2, x)|, ∀(t, a, x) ∈ Q.

Making use of the definition of the source terms, we get

s
∫

QA

(
| f |2|R(θ1)|2 + |g|2|R(θ1)|2

)
e−2sη(θ1)dQA + s

∫
QT

(
| f |2|R(θ2)|2 + |g|2|R(θ2)|2

)
e−2sη(θ2)dQT

≤ C
∫

Q
e−2sη

(
| f |2|g1|2|R(θ1)|2 + |g|2|g2|2|R(θ1)|2 + | f |2| j1|2|R(θ2)|2 + |g|2| j2|2|R(θ2)|2

)
dQ
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+C
(
s3λ4

∫
Qω

e−2sηϕ3
(
|y|2 + |z|2

)
dQ + B(θ1) + E(θ2)

)
(3.8)

Then, by virtue of the properties of η and ϕ, there exist m0,m1 and n0, n1 such that

inf
QA

e−2sη(θ1) ≥ m0 > 0 and sup
QA

e−2sη(θ1) ≤ m1 < ∞, ∀(a, x) ∈ QA,

and
inf
QT

e−2sη(θ2) ≥ n0 > 0 and sup
QT

e−2sη(θ2) ≤ n1 < ∞, ∀(t, x) ∈ QT ,

But the functions gi ∈ L2(0,T ) and ji ∈ L2(0, A), i = 1, 2 implying that∫ T

0
|gi|2dt ≤ Gi < ∞,

∫ A

0
| ji|2dt ≤ Ki < ∞, i = 1, 2

For the choice of s ≥ s0 = max{s̃,C(m1, n1)(G1 +G2 + K1 + K2)} and any λ ≥ λ̃, we have∫
QA

(
| f |2|R(θ1)|2 + |g|2|R(θ1)|2

)
dQA +

∫
QT

(
| f |2|R(θ2)|2 + |g|2|R(θ2)|2

)
dQT

≤ C
(
s3λ4

∫
Qω

e−2sηϕ3
(
|y|2 + |z|2

)
dQ + B(θ1) + E(θ2)

)
(3.9)

where we have used the fact that e−2sη ≤ e−2sη(θ1) and e−2sη ≤ e−2sη(θ2) for all (t, a, x) ∈ Q.
Taking into account |R(θ1, a, x)| ≥ l1 > 0, |R(θ1, a, x)| ≥ l2 > 0 a.e. in QA, |R(t, θ2, x)| ≥ p1 >

0, |R(t, θ2, x)| ≥ p2 > 0 a.e. in QT , and set r2 = min{l2
1, l

2
2} and p2 = min{p2

1, p2
2}, we have

∥ f ∥2L2(Ω) + ∥g∥
2
L2(Ω) ≤

C
(Ar2 + T p2)

(
s3λ4

∫
Qω

e−2sηϕ3
(
|y|2 + |z|2

)
dQ + B(θ1) + E(θ2)

)
. (3.10)

Thus going back to the original variable y = Du and z = Dv one can complete the proof. �

4. Conclusion

In this paper we have proved the stability analysis of reconstructing the two space dependent source
terms in the age-structured population model of two equations with discontinuous diffusion coefficients
by two observations. It is observed that the results can be extended to the system consisting of m
species and the reconstruction of m space dependent source term with m observations are possible.
The reconstruction of all the source terms by a single observation (in general, reconstruction of m
source terms with m − 1 observations) would be an interesting work and as far as we know, it is very
complicated due to the presence of source term.
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