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Abstract

This paper investigates the existence of solutions for weighted p(r)-Laplacian
impulsive system mixed type boundary value problems. The proof of our main result
is based upon Gaines and Mawhin’s coincidence degree theory. Moreover, we obtain
the existence of nonnegative solutions.
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1 Introduction
In this paper, we mainly consider the existence of solutions for the weighted p(r)-

Laplacian system

−(w(r)|u′|p(r)−2u′(r))′ + f (r, u(r), (w(r))
1

p(r)−1 u′(r)) = 0, r ∈ (0,T), r �= ri, (1)

where u: [0, T] ® ℝN, with the following impulsive boundary conditions

lim
r→r+i

u(r) − lim
r→r−i

u(r) = Ai( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k, (2)

lim
r→r+i

w(r)|u′|p(r)−2u′(r) − lim
r→r−i

w(r)|u′|p(r)−2u′(r)

= Bi( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,
(3)

au(0) − b lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0, and cu(T) + d lim
r→T−

w(r)|u′|p(r)−2u′(r) = 0, (4)

where p Î C ([0, T], ℝ) and p(r) > 1, -Δp(r) u:= -(w(r) |u’|p(r)-2 u’(r))’ is called

weighted p(r)-Laplacian; 0 <r1 <r2 < ... <rk <T; Ai, Bi Î C(ℝN × ℝN, ℝN); a, b, c, d Î
[0, +∞), ad + bc > 0.

Throughout the paper, o(1) means functions which uniformly convergent to 0

(as n ® +∞); for any v Î ℝN, vj will denote the j-th component of v; the inner product

in ℝN will be denoted by 〈·,·〉; |·| will denote the absolute value and the Euclidean norm

on ℝN. Denote J = [0, T], J’ = [0, T]\{r0, r1,..., rk+1}, J0 = [r0, r1], Ji = (ri, ri+1], i = 1, ..., k,

where r0 = 0, rk+1 = T. Denote Joi the interior of Ji, i = 0, 1,..., k. Let PC(J, ℝN) = {x: J
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® ℝN | x Î C(Ji, ℝ
N), i = 0, 1,..., k, and limr→r+i x(r) exists for i = 1,..., k}; w Î PC(J, ℝ)

satisfies 0 <w(r), ∀r Î J’, and (w(·))
−1

p(·)−1 ∈ L1(0,T);

limr→r+i w(r)|x′|p(r)−2x′(r), limr→r+i w(r)|x′|p(r)−2x′(r) and limr→r−i+1
w(r)|x′|p(r)−2x′(r)

exists for i = 0, 1,..., k}. For any x = (x1,..., xN) Î PC(J, ℝN), denote |xi|0 = suprÎJ’ |x
i(r)|.

Obviously, PC(J, ℝN) is a Banach space with the norm ||x||0 = (
∑N

i=1 |xi|20)
1
2, PC

1(J, ℝN)

is a Banach space with the norm ||x||1 = ||x||0 + ||(w(r))
1

p(r)−1 x′||0. In the following, PC

(J, ℝN) and PC1(J, ℝN) will be simply denoted by PC and PC1, respectively. Let L1 = L1

(J, ℝN) with the norm ||x||L1 = (
∑N

i=1 |xi|2L1 )
1
2, ∀x Î L1, where |xi|L1 =

∫ T
0 |xi(r)|dr. We

will denote

u(r+i ) = lim
r→r+i

u(r), u(r−i ) = lim
r→r−i

u(r),

w(0)|u′|p(0)−2u′(0) = lim
r→0+

w(r)|u′|p(r)−2u′(r),

w(T)|u′|p(T)−2u′(T) = lim
r→T−

w(r)|u′|p(r)−2u′(r).

The study of differential equations and variational problems with nonstandard p(r)-

growth conditions is a new and interesting topic. It arises from nonlinear elasticity the-

ory, electro-rheological fluids, image processing, etc. (see [1-4]). Many results have

been obtained on this problems, for example [1-25]. If p(r) ≡ p (a constant), (1) is the

well-known p-Laplacian system. If p(r) is a general function, -Δp(r) represents a nonho-

mogeneity and possesses more nonlinearity, thus -Δp(r) is more complicated than -Δp;

for example, if Ω ⊂ ℝN is a bounded domain, the Rayleigh quotient

λp(·) = inf
u∈W1,p(x)

0 (�)\{0}

∫
�

1
p(x) |∇u|p(x)dx∫

�
1

p(x) |u|p(x)dx

is zero in general, and only under some special conditions lp( · ) > 0 (see

[8,17-19]), but the property of lp > 0 is very important in the study of p-Laplacian

problems.

Impulsive differential equations have been studied extensively in recent years. Such

equations arise in many applications such as spacecraft control, impact mechanics,

chemical engineering and inspection process in operations research (see [26-28] and

the references therein). It is interesting to note that p(r)-Laplacian impulsive bound-

ary problems are about comparatively new applications like ecological competition,

respiratory dynamics and vaccination strategies. On the Laplacian impulsive differen-

tial equation boundary value problems, there are many results (see [29-37]). There

are many methods to deal with this problem, e.g., subsupersolution method, fixed

point theorem, monotone iterative method and coincidence degree. Because of the

nonlinearity of -Δp, results on the existence of solutions for p-Laplacian impulsive

differential equation boundary value problems are rare (see [38,39]). On the Lapla-

cian (p(x) ≡ 2) impulsive differential equations mixed type boundary value problems,

we refer to [30,32,34].

Yin et al. Boundary Value Problems 2011, 2011:42
http://www.boundaryvalueproblems.com/content/2011/1/42

Page 2 of 22



In [39], Tian and Ge have studied nonlinear IBVP⎧⎪⎪⎨⎪⎪⎩
−(ρ(t)�p(x′(t)))′ + s(t)�p(x(t)) = f (t, x(t)), t �= ti, a.e.t ∈ [a, b],

lim
t→t+i

ρ(t)�p(x′(t)) − lim
t→t−i

ρ(t)�p(x′(t)) = Ii(x(ti)), i = 1, . . . , l,

αx′(a) − βx(a) = σ1, γ x′(b) + σx(b) = σ2,

(5)

where Fp(x) = |x|p-2 x, p > 1, r, s Î L∞ [a, b] with essin f[a, b] r > 0, and essin f[a,b] s

> 0, 0 <r(a), p(b) <∞, s1 ≤ 0, s2 ≥ 0, a, b, g, s > 0, a = t0 <t1 < ... <tl <tl+1 = b, Ii Î C

([0, +∞), [0, ∞)), i = 1,..., l, f Î C ([a, b] × [0, +∞), [0, ∞)), f(·, 0) is nontrivial. By using

variational methods, the existence of at least two positive solutions was obtained.

In [24,25], the present author investigates the existence of solutions of p(r)-Laplacian

impulsive differential equation (1-3) with periodic-like or multi-point boundary value

conditions.

In this paper, we consider the existence of solutions for the weighted p(r)-Laplacian

impulsive differential system mixed type boundary value condition problems, when p(r)

is a general function. The proof of our main result is based upon Gaines and Mawhin’s

coincidence degree theory. Since the nonlinear term f in (5) is independent on the

first-order derivative, and the impulsive conditions are simpler than (2), our main

results partly generalized the results of [30,32,34,39]. Since the mixed type boundary

value problems are different from periodic-like or multi-point boundary value condi-

tions, and this paper gives two kinds of mixed type boundary value conditions (linear

and nonlinear), our discussions are different from [24,25] and have more difficulties.

Moreover, we obtain the existence of nonnegative solutions. This paper was motivated

by [24-26,38,40].

Let N ≥ 1, the function f: J × ℝN × ℝN ® ℝN is assumed to be Caratheodory; by this,

we mean:

(i) for almost every t Î J, the function f(t, ·, ·) is continuous;

(ii) for each (x, y) Î ℝN × ℝN, the function f(·, x, y) is measurable on J;

(iii) for each R > 0, there is a aR Î L1 (J, ℝ), such that, for almost every t Î J and

every (x, y) Î ℝN × ℝN with |x| ≤ R, |y| ≤ R, one has∣∣f (t, x, y)∣∣ ≤ αR(t).

We say a function u: J ® ℝN is a solution of (1) if u Î PC1 with w(·) |u’|p(·)-2 u’(·)

absolutely continuous on every Joi , i = 0, 1,..., k, which satisfies (1) a.e. on J.

This paper is divided into three sections; in the second section, we present some pre-

liminary. Finally, in the third section, we give the existence of solutions and nonnega-

tive solutions of system (1)-(4).

2 Preliminary
Let X and Y be two Banach spaces and L: D(L) ⊂ X ® Y be a linear operator, where D

(L) denotes the domain of L. L will be a Fredholm operator of index 0, i.e., ImL is

closed in Y and the linear spaces KerL and coImL have the same dimension which is

finite. We define X1 = KerL and Y1 = coImL, so we have the decompositions X = X1 ⊕
coKerL and Y = Y1 ⊕ ImL. Now, we have the linear isomorphism Λ: X1 ® Y1 and the

Yin et al. Boundary Value Problems 2011, 2011:42
http://www.boundaryvalueproblems.com/content/2011/1/42

Page 3 of 22



continuous linear projectors P: X ® X1 and Q: Y ® Y1 with KerQ = ImL and ImP =

X1.

Let Ω be an open bounded subset of X with Ω ∩ D(L) ≠ ∅. Operator S : � → Y be a

continuous operator. In order to define the coincidence degree of (L, S) in Ω, as in

[40,41], denoted by d(L - S, Ω), we assume that

Lx �= Sx for all x ∈ ∂�.

It is easy to see that the operator M : � → X, M = (L + ΛP)-1 (S + ΛP) is well

defined, and

Lx∗ = Sx∗ if and only if x∗ = Mx∗.

If M is continuous and compact, then S is called L-compact, and the Leray-Schauder

degree of IX - M (where IX is the identity mapping of X) is well defined in Ω, and we

will denote it by dLS (IX - M, Ω, 0). This number is independent of the choice of P, Q

and Λ (up to a sign) and we can define

d(L − S,�) := dLS(IX − M,�, 0).

Definition 2.1. (see [40,41]) The coincidence degree of (L, S) in Ω, denoted by d(L -

S, Ω), is defined as d(L - S, Ω) = dLS (IX - M, Ω, 0).

There are many papers about coincidence degree and its applications (see [40-43]).

Proposition 2.2. (see [40]) (i) (Existence property). If d(L - S, Ω) ≠ 0, then there

exists x Î Ω such that Lx = Sx.

(ii) (Homotopy invariant property). If H : � × [0, 1] → Y is continuous, L-compact

and Lx ≠ H(x, l) for all x Î ∂Ω and l Î [0, 1], then d(L - H (·, l), Ω) is independent

of l.
The effect of small perturbations is negligible, as is proved in the next Proposition

(see [41] Theorem III.3, page 24).

Proposition 2.3. Assume that Lx ≠ Sx for each x Î ∂Ω. If Sε is such that supxÎ∂Ω||

Sεx||Y is sufficiently small, then Lx ≠ Sx + Sεx for all x Î ∂Ω and d(L - S - Sε, Ω) = d(L

- S, Ω).

For any (r, x) Î (J × ℝN), denote �p(r)(x) = |x|p(r)-2x. Obviously, � has the following

properties

Proposition 2.4 (see [41]) � is a continuous function and satisfies

(i) For any r Î [0, T], �p(r)(·) is strictly monotone, i.e.,

〈ϕp(r)(x1) − ϕp(r)(x2), x1 − x2〉 > 0, ∀x1, x2 ∈ RN, x1 �= x2;

(ii) There exists a function h: [0, +∞) ® [0, +∞), h(s) ® +∞ as s ® +∞, such that

〈ϕp(r)(x), x〉 ≥ η(|x|)|x|, for all x ∈ RN.

It is well known that �p(r)(·) is a homeomorphism from ℝN to ℝN for any fixed r Î J.

Denote

Yin et al. Boundary Value Problems 2011, 2011:42
http://www.boundaryvalueproblems.com/content/2011/1/42

Page 4 of 22



ϕ−1
p(r)(x) = |x|

2−p(r)
p(r)−1 x, for x ∈ RN\{0}, ϕ−1

p(r)(0) = 0.

It is clear that ϕ−1
p(r)(·) is continuous and sends bounded sets to bounded sets, and

ϕ−1
p(r)(·) = ϕq(r)(·) where 1

p(r) +
1

q(r) ≡ 1. Let X = {(x1, x2) | x1 Î PC, x2 Î PC} with the

norm ||(x1, x2)||X = || x1||0 + ||x2||0, Y = L1 × L1 × ℝ2(k + 1)N, and we define the norm

on Y as

||(y1, y2, z1, . . . , z2(k+1))||Y = ||y1||L1 + ||y2||L1 +
2(k+1)∑
m=1

|zm|, ∀(y1, y2, z1, . . . , z2(k+1)) ∈ Y,

where y1, y2 Î L1, zm Î ℝN, m = 1,..., 2(k + 1), then X and Y are Banach spaces.

Define L: D(L) ⊂ X ® Y and S: X ® Y as the following

Lx = (x′
1, x

′
2,
x1(ri),
x2(ri), 0, 0),

Sx =
(
ϕq(r)

(
x2/w(r)

)
, f (r, x1,ϕq(r)(x2)),Ai,Bi,

ax1(0) − bϕq(0)(x2(0)), cx1(T) + dx2(T)
)
,

where


xj(ri) = xj(r+i ) − xj(r−i ), j = 1, 2, i = 1, . . . , k;

Ai = Ai(x1(r
−
i ),ϕq(ri)(x2(r

−
i ))), Bi = Bi(x1(r

−
i ),ϕq(ri)(x2(r

−
i ))), i = 1, . . . , k.

(6)

Obviously, the problem (1)-(4) can be written as Lx = Sx, where L: X ® Y is a linear

operator, S: X ® Y is a nonlinear operator, and X and Y are Banach spaces.

Since

ImL = {(y1, y2, ai, bi, 0, 0)|∀y1, y2 ∈ L1,∀ai, bi ∈ RN, i = 1, . . . , k},

we have dimKerL = dim(Y/ImL) = 2N < +∞ is even and ImL is closed in Y, then L is

a Fredholm operator of index zero. Define

P : X → X, (x1, x2) → (x1(0), x2(0)),

Q : Y → Y, (y1, y2, ai, bi, h1, h2) → (0, 0, 0, 0, h1, h2),∀y1, y2 ∈ L1,∀ai, bi, h1, h2 ∈ RN, i = 1, . . . , k,

at the same time the projectors P: X ® X and Q: Y ® Y satisfy

dim(ImP) = dim(KerL) = dim(Y/ImL) = dim(ImQ).

Since ImQ is isomorphic to KerL, there exists an isomorphism Λ: KerL ® ImQ. It is

easy to see that L |D(L)∩KerP : D(L) ∩ KerP ® ImL is invertible. We denote the inverse

of that mapping by Kp, then Kp : ImL ® D(L) ∩ KerP as

Kpz =

⎛⎝ t∫
0

y1(r)dr +
∑
ri<t

ai,

t∫
0

y2(r)dr +
∑
ri<t

bi

⎞⎠ , ∀z = (y1, y2, ai, bi, 0, 0) ∈ ImL,
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then

Kp(I − Q)Sx =

⎛⎝ t∫
0

ϕq(r)((w(r))
−1x2)dr +

∑
ri<t

Ai(x1(r
−
i ),ϕq(ri)(x2(r

−
i ))),

t∫
0

f (r, x1,ϕq(r)(x2))dr +
∑
ri<t

Bi(x1(r−i ),ϕq(ri)(x2(r
−
i )))

⎞⎠ .

Proposition 2.5 (i) Kp(·) is continuous;

(ii) Kp (I - Q)S is continuous and compact.

Proof. (i) It is easy to see that Kp(·) is continuous. Moreover, the operator

�(y) =
∫ t
0 y(r)dr sends equi-integrable set of L1 to relatively compact set of PC.

(ii) It is easy to see that Kp(I - Q)Sx Î X, ∀x Î X. Since (w(r))
−1

p(r)−1 ∈ L1 and f is

Caratheodory, it is easy to check that S is a continuous operator from X to Y, and the

operators (x1, x2) ® �q(r) ((w(r))
-1 x2) and (x1, x2) ® f (r, x1, �q(r) ((w(r))

-1 x2)) both

send bounded sets of X to equi-integrable set of L1. Obviously, Ai, Bi and QS are com-

pact continuous. Since f is Caratheodory, by using the Ascoli-Arzela theorem, we can

show that the operator Kp(I − Q)S : � → X is continuous and compact. This com-

pletes the proof.

Denote

S(x,λ) =
(
λϕq(r)

(
x2/w(r)

)
,λp(r)f (r, x1,ϕq(r)(x2)),λ2Ai,λp(ri)Bi,

ax1(0) − bϕq(0)(x2(0)), cx1(T) + dx2(T)
)
,

where Ai, Bi are defined in (6), i = 1,..., k.

Consider

Lx = S(x,λ).

Define M(·, ·) : � × [0, 1] → X as M(·, ·) = (L + ΛP)-1 (S(·, ·) + ΛP), then

M(·,λ) = (L + �P)−1(S(·,λ) + �P)

= (Kp + �−1)((I − Q)S(·,λ) +QS(·,λ) + �P)

= Kp(I − Q)S(·,λ) + �−1(QS(·,λ) + �P)

= Kp(I − Q)S(·,λ) + �−1QS(·,λ) + P.

Since (I - Q)S(·, 0) = 0 and Kp (0) = 0, we have

d(L − S(·, 0),�) = dLS(IX − M(·, 0),�, 0) = dLS(IX − �−1QS(·, 0) − P,�, 0).

It is easy to see that all the solutions of Lx = S(x, 0) belong to KerL, then

dLS(IX − �−1QS(·, 0) − P,�, 0) = dB(IKerL − �−1QS(·, 0) − P|KerL,� ∩ KerL, 0).

Notice that P |KerL = IKerL, then

d(L − S(·, 0),�) = dLS(IX − M(·, 0),�, 0) = dB(�−1QS(·, 0),� ∩ KerL, 0).

Proposition 2.6 (continuation theorem) (see [40]). Suppose that L is a Fredholm

operator of index zero and S is L-compact on �, where Ω is an open bounded subset
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of X. If the following conditions are satisfied,

(i) for each l Î (0, 1), every solution x of

Lx = S(x,λ)

is such that x ∉ ∂Ω;

(ii) QS(x, 0) ≠ 0 for x Î ∂Ω ∩ KerL and dB(Λ
-1 QS(·,0), Ω ∩ KerL, 0) ≠ 0, then the

operator equation Lx = S(x, 1) has one solution lying in �.

The importance of the above result is that it gives sufficient conditions for being able

to calculate the coincidence degree as the Brouwer degree (denoted with dB) of a

related finite dimensional mapping. It is known that the degree of finite dimensional

mappings is easier to calculate. The idea of the proof is the use of the homotopy of

the problem Lx = S(x, 1) with the finite dimensional one Lx = S(x, 0).

Let us now consider the following simple impulsive problem

(w(r)ϕp(r)(u′(r)))′ = g(r), r ∈ J′,
lim
r→r+i

u(r) − lim
r→r−i

u(r) = ai, i = 1, . . . , k,

lim
r→r+i

w(r)ϕp(r)(u′(r)) − lim
r→r−i

w(r)ϕp(r)(u′(r)) = bi, i = 1, . . . , k,

au(0) − b lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0, and cu(T) + d lim
r→T−

w(r)|u′|p(r)−2u′(r) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

where J’ = [0, T]\{r0, r1, ..., rk+1}, ai, bi Î ℝN; g Î L1.

If u is a solution of (7), then we have

w(r)ϕp(r)(u′(r)) = w(0)ϕp(0)(u′(0)) +
∑
ri<r

bi +

r∫
0

g(t)dt, ∀r ∈ J′. (8)

Denote r0 = w(0)�p(0) (u’(0)). Obviously, r0 is dependent on g, ai, bi. Define F: L1 ®
PC as

F(g)(r) =

r∫
0

g(t)dt, ∀r ∈ J, ∀g ∈ L1.

By (8), we have

u(r) = u(0) +
∑
ri<r

ai + F

{
ϕq(r)

[
(w(r))−1

(
ρ0 +

∑
ri<r

bi + F(g)(r)

)]}
(r), ∀r ∈ J. (9)

If a ≠ 0, then the boundary condition au(0) − b lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0 implies that

u(r) =
b
a
ϕq(0)(ρ0)+

∑
ri<r

ai+F

{
ϕq(r)

[
(w(r))−1

(
ρ0 +

∑
ri<r

bi + F(g)(r)

)]}
(r), ∀r ∈ J.
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The boundary condition cu(T) + d lim
r→T−

w(r)|u′|p(r)−2u′(r) = 0 implies that

c baϕq(0)(ρ0) + c
k∑
i=1

ai + cF

{
ϕq(r)

[
(w(r))−1

(
ρ0 +

∑
ri<r

bi + F(g)(r)

)]}
(T)

+d

(
ρ0 +

k∑
i=1

bi + F(g)(T)

)
= 0.

Denote H = L1 × ℝ2kN with the norm

||h||H = ||g||L1 +
k∑
i=1

|ai| +
k∑
i=1

|bi|,∀h = (g, ai, bi) ∈ H,

then H is a Banach space. For fixed h Î H, we denote

�h(ρ) = c baϕq(0)(ρ) + c
k∑
i=1

ai + cF

{
ϕq(r)

[
(w(r))−1

(
ρ +

∑
ri<r

bi + F(g)(r)

)]}
(T)

+d

(
ρ +

k∑
i=1

bi + F(g)(T)

)
.

Lemma 2.7 The mapping Θh(·) has the following properties

(i) For any fixed h Î H, the equation

�h(ρ) = 0 (10)

has a unique solution r(h) Î ℝN.

(ii) The mapping r: H ® ℝN, defined in (i), is continuous and sends bounded sets

to bounded sets. Moreover,
∣∣ρ(h)∣∣ ≤ 3N[(2NE+1

E

∑k
i=1 |ai|)p#−1 +

∑k
i=1 |bi| + ||g||L1 ],

where h = (g, ai, bi) Î H, E =
∫ T
0 (w(r))

−1
p(r)−1 dr, the notation p# means

Cp#−1 =
{
Cp+−1, C > 1
Cp−−1, C ≤ 1

.

Proof. (i) From Proposition 2.4, it is immediate that

〈�h(ρ1) − �h(ρ2),ρ1 − ρ2〉 > 0, for ρ1 �= ρ2,

and hence, if (10) has a solution, then it is unique.

Let R0 = 3N[(2NE+1
E

∑k
i=1 |ai|)p#−1 +

∑k
i=1 |bi|+ ‖ g‖L1 ]. Since (w(r))

−1
p(r)−1 ∈ L1(0,T)

and F(g) Î PC, if |r| >R0, it is easy to see that there exists a j0 such that, the j0-th

component ρ j0 of r satisfies

|ρ j0 | ≥ 1
N

|ρ| . (11)

Obviously,∣∣∣∣∣∑
ri<r

bi + F(g)(r)

∣∣∣∣∣ ≤
∑
ri<r

|bi| +
∣∣F(g)(r)∣∣ ≤

k∑
i=1

|bi| + ||g||L1 , ∀r ∈ 0,T],
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then∣∣∣∣∣∑
ri<r

bi + F(g)(r)

∣∣∣∣∣ ≤
k∑
i=1

|bi| + ||g||L1 ≤ R0

3N
<

|ρ|
3N

, ∀r ∈ [0,T], (12)

and ∣∣∣∣∣ρ +
∑
ri<r

bi + F(g)(r)

∣∣∣∣∣ ≤ |ρ| +
∣∣∣∣∣∑
ri<r

bi + F(g)(r)

∣∣∣∣∣ < 4 |ρ|
3

, ∀r ∈ [0,T]. (13)

By (11) and (12), the j0-th component of ρ +
∑
ri<r

bi + F(g)(r) keeps the same sign of

ρ j0 on J and∣∣∣∣∣ρ j0 +
∑
ri<r

bj0i + F(g)j0(r)

∣∣∣∣∣ ≥ ∣∣ρ j0
∣∣− ∣∣∣∣∣∑

ri<r

bj0i + F(g)j0(r)

∣∣∣∣∣ >
2 |ρ|
3N

, ∀r ∈ J. (14)

Combining (13) and (14), the j0-th component ϕ
j0
q(r)

[
(w(r))−1

(
ρ +

∑
ri<r

bi + F(g)(r)
)]

of ϕq(r)

[
(w(r))−1

(
ρ +

∑
ri<r

bi + F(g)(r)
)]

satisfies

∣∣∣∣∣ϕj0
q(r)(ρ +

∑
ri<r

bi + F(g)(r))

∣∣∣∣∣ =
∣∣∣∣∣ρ +

∑
ri<r

bi + F(g)(r)

∣∣∣∣∣
q(r)−2 ∣∣∣∣∣ρ j0 +

∑
ri<r

bj0i + F(g)j0(r)

∣∣∣∣∣
>

2
3N

∣∣∣∣∣ρ +
∑
ri<r

bi + F(g)(r)

∣∣∣∣∣
q(r)−2

|ρ|

>
1
2N

∣∣∣∣∣ρ +
∑
ri<r

bi + F(g)(r)

∣∣∣∣∣
q(r)−1

.

From the definition ϕq(r)(·) = ϕ−1
p(r)(·), we have 1

p(r) +
1

q(r) ≡ 1, then q(r) − 1 = 1
p(r)−1,

and ∣∣∣∣∣ϕj0
q(r)

(
ρ +

∑
ri<r

bi + F(g)(r)

)∣∣∣∣∣ > 1
2N

∣∣∣∣∣ρ +
∑
ri<r

bi + F(g)(r)

∣∣∣∣∣
1

p(r)−1

≥ 1
2N

∣∣∣∣∣|ρ| −
∣∣∣∣∣∑
ri<r

bi + F(g)(r)

∣∣∣∣∣
∣∣∣∣∣

1
p(r)−1

≥ 1
2N

∣∣∣∣∣∣
(
2N

E + 1
E

k∑
i=1

|ai|
)p#−1

∣∣∣∣∣∣
1

p(r)−1

≥ 1
2N

2N
E + 1
E

k∑
i=1

|ai| = E + 1
E

k∑
i=1

|ai|.

Without loss of generality, we may assume that ρ j0 > 0, then we have

Fj0
{

ϕq(r)

[
(w(r))−1

(
ρ +

∑
ri<r

bi + F(g)(r)

)]}
(T) > (E + 1)

k∑
i=1

|ai| ≥
k∑
i=1

aj0i .
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Therefore, the j0-th component of
∑k

i=1 ai + F{ϕq(r)[(w(r))−1(ρ +
∑

ri<r bi + F(g)(r))]}(T)
keeps the same sign of ρ j0. Since the j0-th component of ρ +

∑k
i=1 bi + F(g)(T) keeps the

same sign of ρ j0, a, b, c, d Î [0, +∞) and ad + bc > 0, we can easily see that the j0-th com-

ponent of Θh(r) keeps the same sign of ρ j0, and thus

�h(ρ) �= 0.

Let us consider the equation

λ�h(ρ) + (1 − λ)ρ = 0,λ ∈ [0, 1]. (15)

According to the above discussion, all the solutions of (15) belong to b(R0 + 1) = {x

Î ℝN| |x| <R0 + 1}. So, we have

dB[�h(ρ), b(R0 + 1), 0] = dB[I, b(R0 + 1), 0] �= 0.

It means the existence of solutions of Θh(r) = 0.

In this way, we define a mapping r(h): H ® ℝN, which satisfies

�h(ρ(h)) = 0.

(ii) By the proof of (i), we also obtain r sends bounded set to bounded set, and

∣∣ρ(h)∣∣ ≤ 3N

⎡⎣(2NE + 1
E

k∑
i=1

|ai|
)p#−1

+
k∑
i=1

|bi| + ||g||L1
⎤⎦ .

It only remains to prove the continuity of r. Let {un} is a convergent sequence in H

and un ® u, as n ® +∞. Since {r(un)} is a bounded sequence, it contains a convergent

subsequence {ρ(unj)} satisfies ρ(unj) → ρ∗ as j ® +∞. Since Θh(r) consists of continu-
ous functions, and

�unj
(ρ(unj)) = 0,

Letting j ® +∞, we have

�u(ρ∗) = 0,

from (i) we get r* = r(u), it means that r is continuous.

This completes the proof.

If a = 0, the boundary condition au(0) − blimr→0+ (w(r))
1

p(r)−1 u′(r) = 0 implies that

lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0.

Since ad + bc > 0, we have c > 0. Thus,

u(r) = u(0) +
∑
ri<r

ai + F

{
ϕq(r)

[
(w(r))−1

(∑
ri<r

bi + F(g)(r)

)]}
(r), ∀r ∈ J,

the boundary condition cu(T) + dlimr→T−w(r)|u′|p(r)−2u′(r) = 0 implies that

u(0)+
k∑
i=1

ai+F

{
ϕq(r)

[
(w(r))−1

(∑
ri<r

bi + F(g)(r)

)]}
(T)+ d

c

(
k∑
i=1

bi + F(g)(T)

)
= 0.
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Denote G: H ® ℝN as

G(h) = −
k∑
i=1

ai−F

{
ϕq(r)

[
(w(r))−1

(∑
ri<r

bi + F(g)(r)

)]}
(T)−d

c

(
k∑
i=1

bi + F(g)(T)

)
.

It is easy to see that

Lemma 2.8 The function G(·) is continuous and sends bounded sets to bounded

sets. Moreover,∣∣G(h)∣∣ ≤ 3N(c+d)
c [

∑k

i=1
|ai| + E(

∑k

i=1
|bi| + ||g||L1 )

1
p∗−1 +

∑
i=1

k |bi| + ||g||L1 ], where

E =
∫ T
0 (w(r))

−1
p(r)−1 dr, the notation p* means C

1
p∗−1 =

⎧⎨⎩C
1

p+−1 , C ≤ 1

C
1

p−−1 , C > 1
.

3 Main results and proofs
In this section, we will apply coincidence degree to deal with the existence of solutions

for (1)-(4). In the following, we always use C and Ci to denote positive constants, if it

cannot lead to confusion.

Theorem 3.1 Assume that Ω is an open bounded set in X such that the following

conditions hold.

(10) For each l Î (0, 1) the problem

Lx = S(x,λ) (16)

has no solution on ∂Ω.

(20) (0, 0) Î Ω.

Then, problem (1)-(4) has a solution u satisfies (u, v) ∈ �, where v = w(r)�p(r)(u’(r)),

∀r Î J’.

Proof. Let us consider the following operator equation

Lx = S(x,λ). (17)

It is easy to see that x = (x1, x2) is a solution of Lx = S(x, 1) if and only if x1(r) is a

solution of (1)-(4) and x2(r) = w(r)ϕp(r)(x′
1(r)), ∀r Î J’.

According to Proposition 2.5, we can conclude that S(·, ·) is L-compact from X × [0,

1] to Y. We assume that for l = 1, (16) does not have a solution on ∂Ω, otherwise we

complete the proof. Now from hypothesis (10), it follows that (16) has no solutions for

(x, l) Î ∂Ω × (0, 1]. For l = 0, (17) is equivalent to Lx = S(x, 0), namely the following

usual problem

x′
1 = 0, r ∈ (0,T),

x′
2 = 0, r ∈ (0,T),

ax1(0) − bϕq(0)(x2(0)) = 0, cx1(T) + dx2(T) = 0.

⎫⎬⎭
The problem (??) is a usual differential equation. Hence,

x1 ≡ c1, x2 ≡ c2,

where c1, c2 Î ℝN are constants. The boundary value condition of (??) holds,

ac1 − bϕq(0)(c2) = 0, cc1 + dc2 = 0.
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Since (ad + bc) > 0, we have

c1 = 0, c2 = 0,

which together with hypothesis (20), implies that (0, 0)Î Ω. Thus, we have proved

that (16) has no solution on ∂Ω × [0, 1]. It means that the coincidence degree d[L - S

(·, l), Ω] is well defined for each l Î [0, 1]. From the homotopy invariant property of

that degree, we have

d[L − S(·, 1),�] = d[L − S(·, 0),�]. (18)

Now, it is clear that the following problem

Lx = S(x, 1) (19)

is equivalent to problem (1)-(4), and (18) tells us that problem (19) will have a solu-

tion if we can show that

d[L − S(·, 0),�] �= 0.

Since by hypothesis (20), this last degree

d[L − S(·, 0),�] = dB[ω∗,� ∩ R2N, 0] �= 0,

where ω*(c1, c2) = (ac1 - b�q(0)(c2), cc1 + dc2). This completes the proof.

Our next theorem is a consequence of Theorem 3.1. Denote

z− = min
r∈J

z(r), z+ = max
r∈J

z(r), for z ∈ C(J,R).

Theorem 3.2 Assume that the following conditions hold

(10) a > 0;

(20) lim|u| + |v| ® +∞ (f(r, u, v)/(|u| + |v|)b(r) -1) = 0, for r Î J uniformly, where b(r) Î
C(J, ℝ), and 1<b - ≤ b + <p -;

(30)
∑k

i=1 |Ai(u, v)| ≤ C1(|u| + |v|)θwhen |u| + |v| is large enough, where

0 < θ <
p−−1
p+−1 ;

(40)
∑k

i=1 |Bi(u, v)| ≤ C2(|u| + |v|)εwhen |u| + |v| is large enough, where 0 ≤ ε <b + - 1.

Then, problem (1)-(4) has at least one solution.

Proof. Now, we consider the following operator equation

Lx = S(x,λ). (20)

For any l Î (0, 1], x = (x1, x2) = (u, v) is a solution of (20) if and only if

v(r) = 1
λp(r)−1w(r)ϕp(r)(u′(r))(∀r ∈ J′) and u(r) is a solution of the following

1
λp(r)−1w(r)ϕp(r)(u′(r)))′ = λp(r)f (r, u, 1

λ
(w(r))

1
p(r)−1 u′) r ∈ (0,T), r �= ri,

lim
r→r+i

u(r) − lim
r→r−i

u(r) = λ2Ai( lim
r→r−i

u(r), 1
λ
lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

lim
r→r+i

1
λp(r)−1w(r)ϕp(r)(u′(r)) − lim

r→r−i

1
λp(r)−1w(r)ϕp(r)(u′(r))

= λp(ri)Bi( lim
r→r−i

u(r), 1
λ
lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

au(0) − b1
λ
(w(0))

1
p(0)−1 u′(0) = 0, and cu(T) + d 1

λp(T)−1w(T)|u′|p(T)−2u′(T) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)
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We claim that all the solutions of (21) are uniformly bounded for l Î (0, 1]. In fact,

if it is false, we can find a sequence (un, ln) of solutions for (21), such that ||un||1 > 1

and ||un||1 ® +∞ when n ® +∞, ln Î (0, 1]. Since (un, ln) are solutions of (21), we

have

w(r)|u′
n|p(r)−2u′

n(r) = λ
p(r)−1
n

⎡⎣ 1

λ
p(0)−1
n

ρn +
∑
ri<r

λ
p(ri)
n Bi +

r∫
0

λ
p(t)
n f

(
t, un,

1
λn

(w(t))
1

p(t)−1 u′
n

)
dt

⎤⎦ ,

for any r Î J’, where ρn = w(0)ϕp(0)(u′
n(0)) and

Ai = Ai

(
lim
r→r−i

un(r),
1
λn

lim
r→r−i

(w(r))
1

p(r)−1 u′
n(r)

)
,Bi = Bi

(
lim
r→r−i

un(r),
1
λn

lim
r→r−i

(w(r))
1

p(r)−1 u′
n(r)

)
.

By computation, we have∣∣∣∣∣∑
ri<r

λ2
nAi

∣∣∣∣∣ ≤ C1λ
2
n

(
||un||0 + 1

λn
||(w(r))

1
p(r)−1 u′

n||0
)θ

≤ λnC3||un||θ1,∣∣∣∣∣∑
ri<r

λ
p(ri)
n Bi

∣∣∣∣∣ ≤ C2λ
p(ri)
n

(
||un||0 + 1

λn
||(w(r))

1
p(r)−1 u′

n||0
)β+−1

≤ C4||un||β
+−1

1 ,

∣∣∣∣∣∣
T∫

0

λ
p(r)
n f

(
r, un,

1
λn

(w(r))
1

p(r)−1 u′
n

)
dr

∣∣∣∣∣∣ ≤ C5λ
p−
n

(
||un||0 + 1

λn
||(w(r))

1
p(r)−1 u′

n||0
)β+−1

≤ C5||un||β
+−1

1 .

(22)

Denote

�n(r) =
1

λ
p(0)−1
n

ρn +
∑
ri<r

λ
p(ri)
n Bi +

r∫
0

λ
p(t)
n f

(
t, un,

1
λn

(w(t))
1

p(t)−1 u′
n

)
dt, ∀r ∈ J.

We claim that

1

λ
p(0)−1
n

|ρn| ≤ 3NC6

[
||un||θ∗(p+−1)

1 + ||un||β
+−1

1

]
, n = 1, 2, . . . , where θ∗ ∈

(
θ ,

p− − 1
p+ − 1

)
. (23)

If it is false, without loss of generality, we may assume that

1

λ
p(0)−1
n

|ρn| > 3N(C4 + C5)
[
||un||θ∗(p+−1)

1 + ||un||β
+−1

1

]
, n = 1, 2, . . . ,

then for any n = 1, 2, ..., there is a jn Î {1, ..., N} such that the jn-th component ρ
jn
n of

rn satisfies

1

λ
p(0)−1
n

|ρ jn
n | > 3(C4 + C5)

[
||un||θ∗(p+−1)

1 + ||un||β
+−1

1

]
, n = 1, 2, . . .

Thus, when n is large enough, the jn-th component �
jn
n (r) of Γn(r) keeps the same

sign as ρ
jn
n and satisfies∣∣∣�jn
n (r)

∣∣∣ > (C4 + C5)
[
||un||θ∗(p+−1)

1 + ||un||β
+−1

1

]
, ∀r ∈ J′, n = 1, 2, . . .

When n is large enough, we can conclude that the jn-th component

Fjn{ϕq(r)[�n(r)]}(T) of F{�q(r)[Γn(r)]} (T) keeps the same sign as ρ
jn
n and satisfies
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∣∣Fjn{ϕq(r)[�n(r)]}
∣∣ > C7||un||θ∗

1 , ∀r ∈ J. (24)

Since

un(r) = un(0) +
∑
ri<r

λ2
nAi + λnF{ϕq(r)

[
(w(r))−1

�n(r)
]
}

=
b

a
ϕq(0)

(
1

λ
p(0)−1
n

ρn

)
+
∑
ri<r

λ2
nAi + λnF{ϕq(r)[(w(r))−1�n(r)]}, ∀r ∈ J, n = 1, 2, . . . ,

from (22) and (24), we can see that ujnn (r)(∀r ∈ J) keeps the same sign as ρ
jn
n , when n

is large enough.

But the boundary value conditions (4) mean that

cun(T) + d
1

λ
p(T)−1
n

lim
r→T−

w(r)|u′
n|p(r)−2u′

n(r) = cun(T) + d�n(T) = 0, n = 1, 2, . . .

It is a contradiction. Thus (23) is valid. Therefore,

w(r)
∣∣u′

n(r)
∣∣p(r)−1 ≤ C7

(
||un||θ∗(p+−1)

1 + ||un||β
+−1

1

)
, ∀r ∈ J′.

It means that

||(w(r))
1

p(r)−1 u′
n||0 ≤ o(1)||un||1, where o(1) tends to 0 uniformly as n → ∞.(25)

From (22), (23) and (25), for any r Î J, we have

|un(r)| =
∣∣∣∣∣∣un(0) +

r∫
0

u′
n(t)dt +

∑
ri<r

λ2
nAi

∣∣∣∣∣∣ ≤ ∣∣un(0)∣∣ +
∣∣∣∣∣∣

r∫
0

u′
n(t)dt

∣∣∣∣∣∣ +
∣∣∣∣∣∑
ri<r

λ2
nAi

∣∣∣∣∣
≤ ∣∣un(0)∣∣ + r∫

0

(w(t))
−1

p(t)−1

∣∣∣∣(w(t)) 1
p(t)−1 u′

n(t)

∣∣∣∣ dt + C3||un||θ1

≤ b
a

∣∣∣∣ 1λn
(w(0))

1
p(0)−1 u′

n(0)

∣∣∣∣ + E ‖ (w(r))
1

p(r)−1 u′
n(r)||0 + C3||un||θ1

≤ o(1)||un||1, where o(1) tends to 0 uniformly as n → ∞,

then

||un||0 ≤ o(1)||un||1, where o(1) tends to 0 uniformly as n → ∞. (26)

From (25) and (26), we get that all the solutions of (20) are uniformly bounded for

any l Î (0, 1].

When l = 0, if (x1, x2) is a solution of (20), then (x1, x2) is a solution of the following

usual equation⎧⎨⎩
x′
1 = 0, r ∈ (0,T),

x′
2 = 0, r ∈ (0,T),

ax1(0) − bϕq(0)(x2(0)) = 0, cx1(T) + dx2(T) = 0,

we have

(x1, x2) = (0, 0).
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Thus, there exists a large enough R0 > 0 such that all the solutions of (20) belong to

B(R0) = {x Î X | || x ||X <R0}. Thus, (20) has no solution on ∂B (R0). From theorem

3.1, we obtain that (1)-(4) has at least one solution. This completes the proof.

Theorem 3.3 Assume that the following conditions hold

(10) a = 0;

(20) lim|u| + |v| ® +∞ f(r, u, v)/(|u| + |v|)ε = 0 for r Î J uniformly, where 0 ≤ ε min(1,

p- - 1);

(30)
∑k

i=1 |Ai(u, v)| ≤ C1(|u| + |v|)θwhen |u| + |v| is large enough, where 0 <θ < 1;

(40)
∑k

i=1 |Bi(u, v)| ≤ C2(|u| + |v|)εwhen |u| + |v| is large enough, where 0 ≤ ε < min

(1, p- - 1).

Then, problem (1)-(4) has at least one solution.

Proof Now, we consider the following operator equation

Lx = S(x,λ). (27)

If (x1, x2) is a solution of (27) when l = 0, then (x1, x2) is a solution of the following

usual equation⎧⎨⎩
x′
1 = 0, r ∈ (0,T),

x′
2 = 0, r ∈ (0,T),

ax1(0) − bϕq(0)(x2(0)) = 0, cx1(T) + dx2(T) = 0.

Then, we have

(x1, x2) = (0, 0).

For any l Î (0, 1], x = (x1, x2) = (u, v) is a solution of (27) if and only if

v(r) = 1
λp(r)−1w(r)ϕp(r)(u′(r))(∀r ∈ J′) and u(r) is a solution of the following

( 1
λp(r)−1w(r)ϕp(r)(u′(r)))′ = λp(r)f (r, u, 1

λ
(w(r))

1
p(r)−1 u′), r ∈ (0,T), r �= ri,

lim
r→r+i

u(r) − lim
r→r−i

u(r) = λ2Ai( lim
r→r−i

u(r), 1
λ
lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

lim
r→r+i

1
λp(r)−1w(r)ϕp(r)(u′(r)) − lim

r→r−i

1
λp(r)−1w(r)ϕp(r)(u′(r))

= λp(ri)Bi( lim
r→r−i

u(r),
1
λ

lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0, and cu(T) + d 1
λp(T)−1 lim

r→T−
w(r)

∣∣u′∣∣p(r)−2
u′(r) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

We only need to prove that all the solutions of (28) are uniformly bounded for l Î
(0, 1].

In fact, if it is false, we can find a sequence (un, ln) of solutions for (28), such that ||

un||1 > 1 and ||un||1 ® +∞ when n ® +∞. Since (un, ln) are solutions of (28), we have

w(r)|u′
n|p(r)−2u′

n(r) = λ
p(r)−1
n

⎡⎣∑
ri<r

λ
p(ri)
n Bi +

r∫
0

λ
p(t)
n f

(
t, un,

1
λn

(w(t))
1

p(t)−1 u′
n

)
dt

⎤⎦ , ∀r ∈ J′,

where Bi = Bi( lim
r→r−i

un(r), 1
λn

lim
r→r−i

(w(r))
1

p(r)−1 u′
n(r)).
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From conditions (20) and (40), we have∣∣∣∣∣∑
ri<r

λ
p(ri)
n Bi

∣∣∣∣∣ ≤ C2λ
p−
n

(
||un||0 + 1

λn
||(w(r))

1
p(r)−1 u′

n||0
)ε

≤ C4||un||ε1,∣∣∣∣∣∣
T∫

0

λ
p(r)
n f (r, un(r),

1
λn

(w(r))
1

p(r)−1 u′
n(r))dr

∣∣∣∣∣∣ ≤ C5λ
p−
n

(
||un||0 + 1

λn
||(w(r))

1
p(r)−1 u′

n||0
)ε

≤ C5||un||ε1.

Thus,

w(r)|u′
n(r)|p(r)−1 ≤ C6||un||ε1, ∀r ∈ J′, n = 1, 2, . . . ,

||(w(r))
1

p(r)−1 u′
n||0 ≤ o(1)||un||1, n = 1, 2, . . .

(29)

Denote

ϒn(r) =
∑
ri<r

λ
p(ri)
n Bi+F

(
λ
p(r)
n f (r, un(r),

1
λn

(w(r))
1

p(r)−1 u′
n(r))

)
(r), ∀r ∈ J, n = 1, 2, . . .

By solving un(r), we have

un(r) = un(0) +
∑
ri<r

λ2
nAi + λnF

{
ϕq(r)

[
(w(r))−1

ϒn(r)
]}

, ∀r ∈ J, x (30)

where Ai = Ai(limr→r−i
un(r), 1

λn
limr→r−i

(w(r))
1

p(r)−1 u′
n(r)).

From condition (30), we have∣∣∣∣∣∑
ri<r

λ2
nAi

∣∣∣∣∣ ≤ C1λ
2
n

(
||un||0 + 1

λn
||(w(r))

1
p(r)−1 u′

n||0
)θ

≤ λnC3||un||θ1.

The boundary value condition implies

un(0) +
k∑
i=1

λ2
nAi + λnF

{
ϕq(r)

[
(w(r))−1

ϒn(r)
]}

(T) = −d
c
ϒn(T). (31)

From (31) and conditions (20), (30) and (40), we have∣∣un(0)∣∣ ≤ o(1)||un||1, where o(1) tends to 0 uniformly as n → ∞. (32)

From (30) and (32), we have

||un||0 ≤ o(1)||un||1, n = 1, 2, . . . (33)

From (29) and (33), we can conclude that {||un||1} is uniformly bounded for l Î (0,

1]. This completes the proof.

Now, let us consider the following mixed type boundary value condition

au(0) − b lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0, and cu(T) + d lim
r→T−

(w(r))
1

p(r)−1 u′(r) = 0.(34)

Theorem 3.4 Assume that the following conditions hold

(10) lim
|u|+|v|→+∞

(f (r, u, v)/(|u| + |v|)β(r)−1) = 0, for r Î J uniformly, where b(r) Î C(J, ℝ),

and 1 <b - ≤ b +< p-;
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(20)
k∑
i=1

|Ai(u, v)| ≤ C1(|u| + |v|)θwhen |u| + |v| is large enough, where 0 < θ <
p−−1
p+−1 ;

(30)
k∑
i=1

|Bi(u, v)| ≤ C2(|u| + |v|)εwhen |u| + |v| is large enough, where 0 ≤ ε <b + - 1.

Then, problem (1) with (2), (3) and (34) has at least one solution.

Proof. It is similar to the proof of Theorem 3.2 and Theorem 3.3, we omit it.

Denote

fδ(r, u, v) = f (r, u, v) + δf∗(r, u, v),

where f* (r, u, v) is Caratheodory.

Let us consider

−(w(r)|u′|p(r)−2u′(r))′ + fδ(r, u(r), (w(r))
1

p(r)−1 u′(r)) = 0, ∀r ∈ J′. (35)

Theorem 3.5 Under the conditions of Theorem 3.2, Theorem 3.3 or Theorem 3.4,

then (35) with (2), (3) and (4) or (34) has at least a solution when δ is small enough.

Proof We only need to prove the existence of solutions under the conditions of The-

orem 3.2, the rest is similar. If δ = 0, the proof of Theorem 3.2 means that all the solu-

tions of (35) with (2), (3) and (4) are bounded and belong to U(R0) = {u Î PC1| ||u||1
<R0}. Define Sδ : X ® Y as

Sδx =
(

ϕq(r)

(
x2
w(r)

)
, fδ(r, x1,ϕq(r)(x2)),Ai,Bi, ax1(0) − bϕq(0)(x2(0)), cx1(T) + dx2(T)

)
,

where Ai = Ai(x1(r−i ),ϕq(ri)(x2(r
−
i ))), Bi = Bi(x1(r−i ),ϕq(ri)(x2(r

−
i ))).

Since f* (r, u, v) is a Caratheodory function, we have ||Sδx - S0x||Y ® 0 as δ ® 0, for

x ∈ U(R0) uniformly. According to Proposition 2.3, we get the existence of solutions.

In the following, we will consider the existence of nonnegative solutions. For any x =

(x1, ..., xN) Î ℝN, the notation x ≥ 0 means xi ≥ 0 for any i = 1, ..., N.

Theorem 3.6 We assume

(i) f(r, u, v) ≤ 0, ∀(r, u, v) Î J × ℝN × ℝN;

(ii) for any i = 1, ..., k, Bi(u, v) ≤ 0,∀(u, v) Î ℝN × ℝN;

(iii) for any i = 1, ..., k, j = 1, ..., N, Aj
i(u, v)v

j ≥ 0∀(u, v) Î ℝN × ℝN.

Then, the solution u in Theorem 3.2, Theorem 3.3 or Theorem 3.4 is nonnegative.

Proof We only need to prove that the solution u in Theorem 3.2 is nonnegative, and

the rest is similar. Denote

Nf (u) = f (r, u(r), (w(r))
1

p(r)−1 u′(r)),

D = c
b
a
ϕq(0)(ρ) + c

k∑
i=1

Ai + cF

{
ϕq(r)

[
(w(r))−1

(
ρ +

∑
ri<r

Bi + F(Nf (u))(r)

)]}
(T)

+ d

[
ρ +

k∑
i=1

Bi + F(Nf (u))(T)

]
,
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where

Ai = Ai( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

Bi = Bi( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k.

Similar to (8) and (9), we have

w(r)ϕp(r)(u′(r)) = ρ +
∑
ri<r

Bi + F(Nf (u))(r), ∀r ∈ J′,

u(r) = u(0) +
∑
ri<r

Ai + F

{
ϕq(r)

[
(w(r))−1

(
ρ +

∑
ri<r

Bi + F(Nf (u))(r)

)]}
(r), ∀r ∈ J,

(36)

where

u(0) =
b
a
ϕq(0)(ρ),

and r is the solution (unique) of

D = 0. (37)

Denote

�(r) = w(r)ϕp(r)(u′(r)), ∀r ∈ J′.

From (i), (ii) and (36), we can see that F(r) is decreasing, namely

�(t2) − �(t1) ≤ 0, ∀t2, t1 ∈ J′, t2 > t1. (38)

We claim that

ρ ≥ 0. (39)

If it is false, then there exists some j0 Î {1, ..., N}, such that the j0-th component ρ j0

of r satisfies

ρ j0 < 0. (40)

Combining (i), (ii), (iii) and (40), we can see that the j0-th component Dj0 of D is

negative. It is a contradiction to (37). Thus, (39) is valid. So, we have

u(0) =
b
a
ϕq(0)(ρ) ≥ 0.

We claim that

�(T) ≤ 0. (41)

If it is false. Then, there exists some j1 Î {1,..., N}, such that the j1-th component

�j1 (T) of F(T) satisfies

�j1(T) > 0. (42)

From (38) and (42), we have

�j1(t) > 0,∀t ∈ J′.
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Combining (i), (ii), (iii) and (42), we can see that the j1-th component Dj1 of D is

positive. It is a contradiction to (37). Thus, (41) is valid.

If c > 0. We have

u(T) = −d
c
�(T) ≥ 0.

Since F(r) is decreasing, F(0) = r ≥ 0 and F(T) ≤ 0, for any j = 1, ..., N, there exists

ξj Î J such that

�j(r) ≥ 0,∀r ∈ (0, ξj) and �j(r) ≤ 0, ∀r ∈ (ξj,T).

Combining condition (iii), we can conclude that uj(r) is increasing on [0, ξj], and uj(r)

is decreasing on (ξj, T]. Notice that u(0) ≥ 0 and u(T) ≥ 0, then we have u(r) ≥ 0,∀r Î
[0, T].

If c = 0, boundary condition (4) means that F(T) = 0. Since F(r) is decreasing, we

get that F(r) ≥ 0. Combining condition (iii), we can conclude that u(r) is increasing on

J, namely u(t2) - u(t1) ≥ 0,∀t2, t1 Î J, t2 >t1. Notice that u(0) ≥ 0, then we have u(r) ≥

0,∀t Î J. This completes the proof.

Corollary 3.7 We assume

(i) f(r, u, v) ≤ 0,∀(r, u, v) Î J × ℝN × ℝN with u ≥ 0;

(ii) for any i = 1, ..., k, Bi(u, v) ≤ 0,∀(u, v) Î ℝN × ℝN with u ≥ 0;

(iii) for any i = 1, ..., k, j = 1, ..., N, Aj
i(u, v)v

j ≥ 0,∀(u, v) Î ℝN × ℝN with u ≥ 0.

Then, we have

(10) Under the conditions of Theorem 3.2 or Theorem 3.3, (1)-(4) has a nonnegative

solution.

(20) Under the conditions of Theorem 3.4, (1) with (2), (3) and (34) has a nonnega-

tive solution.

Proof We only need to prove that (1)-(4) has a nonnegative solution under the con-

ditions of Theorem 3.2, and the rest is similar. Define

φ(u) = (φ∗(u1), . . . ,φ∗(uN)),

where

φ∗(t) =
{
t, t ≥ 0
0, t < 0

.

Denote

f̃ (r, u, v) = f (r,φ(u), v), ∀(r, u, v) ∈ J × RN × RN,

then f̃ (r, u, v) satisfies Caratheodory condition, and f̃ (r, u, v) ≤ 0 for any (r, u, v) Î J

× ℝN × ℝN.

For any i = 1, ..., k, we denote

Ãi(u, v) = Ai(φ(u), v), B̃i(u, v) = Bi(φ(u), v),∀(u, v) ∈ RN × RN,
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then Ãi and B̃i are continuous and satisfy

B̃i(u, v) ≤ 0,∀(u, v) ∈ RN × RN for any i = 1, . . . , k,

Ãj
i(u, v)v

j ≥ 0,∀(u, v) ∈ RN × RN, for any i = 1, . . . , k, j = 1, . . . ,N.

Obviously, we have

(20)’ lim
|u|+|v|→+∞

(̃f (r, u, v)/(|u| + |v|)β(r)−1) = 0, for r Î J uniformly, where b(r) Î C(J, ℝ),

and1 <b - ≤ b +< p- ;

(30)’
k∑
i=1

∣∣̃Ai(u, v)
∣∣ ≤ C1(|u| + |v|)θ when |u| + |v| is large enough, where 0 < θ <

p−−1
p+−1 ;

(40)’
k∑
i=1

∣∣̃Bi(u, v)
∣∣ ≤ C2(|u| + |v|)ε when |u| + |v| is large enough, where 0 ≤ ε <b + - 1.

Let us consider

(w(r)ϕp(r)(u′(r)))′ = f̃ (r, u(r), (w(r))
1

p(r)−1 u′(r)), r ∈ J′,

lim
r→r+i

u(r) − lim
r→r−i

u(ri) = Ãi( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

lim
r→r+i

w(r)ϕp(r)(u′(r)) − lim
r→r−i

w(r)ϕp(r)(u′(r))

= B̃i( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)), i = 1, . . . , k,

au(0) − b lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0, and cu(T) + d lim
r→T−

w(r)|u′|p(r)−2u′(r) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)

From Theorem 3.2 and Theorem 3.6, we can see that (43) has a nonnegative solution

u. Since u ≥ 0, we have j(u) = u, and then

f̃ (r, u(r), (w(r))
1

p(r)−1 u′(r)) = f (r, u(r), (w(r))
1

p(r)−1 u′(r)),

Ãi( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)) = Ai( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)),

B̃i( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)) = Bi( lim
r→r−i

u(r), lim
r→r−i

(w(r))
1

p(r)−1 u′(r)).

Thus, u is a nonnegative solution of (1)-(4). This completes the proof.

4 Examples
Example 4.1. Consider the following problem

(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w(r)ϕp(r)(u′(r)))′ = −g(r) − |u|q(r)−2u − σw(r)|u′|q(r)−2u′ − δue
|u|+

∣∣∣∣∣∣(w(r))
1

p(r)−1 u′

∣∣∣∣∣∣, r ∈ J′,

lim
r→r+i

u(r) − lim
r→r−i

u(r) = σ lim
r→r−i

∣∣u(r)∣∣−1
2 u(r) + lim

r→r−i

∣∣∣∣(w(r)) 1
p(r)−1 u′(r)

∣∣∣∣
−1
2
(w(r))

1
p(r)−1 u′(r),

lim
r→r+i

w(r)|u′|p(r)−2u′(r) − lim
r→r−i

w(r)|u′|p(r)−2u′(r)

= σ lim
r→r−i

(w(r))
3

p(r)−1
∣∣u′(r)

∣∣2u′(r) − lim
r→r−i

∣∣u(r)∣∣2u(r),
u(0) − lim

r→0+
(w(r))

1
p(r)−1 u′(r) = 0, and u(T) + lim

r→T−
w(r)

∣∣u′∣∣p(r)−2
u′(r) = 0,

where p(r) = 5 + cos 3r, q(r) = 3 + 1
2 sin 2r, 0 ≤ g(r) Î L1, e0, e1 Î ℝN, w(r) = 3 + sin

r, s is a nonnegative parameter.
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Obviously,
g(r) + |u|q(r)−2u + σw(r)|u′|q(r)−2u′ + δue

|u|+
∣∣∣∣∣∣(w(r))

1
p(r)−1 u′

∣∣∣∣∣∣ is Caratheodory, q
(r) ≤ 3.5 < 4 ≤ p (r) ≤ 6, then the conditions of Theorem 3.5 are satisfied, then (P1)

has a solution when δ > 0 is small enough. Moreover, when s = 0, the conditions of

Corollary 3.7 are satisfied, then (P1) has a nonnegative solution.

Example 4.2. Consider the following problem

(P2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w(r)ϕp(r)(u′(r)))′ = −g(r) − |u|q(r)−2u − σw(r)|u′|q(r)−2u′ − δue
|u|+

∣∣∣∣∣∣(w(r))
1

p(r)−1 u′

∣∣∣∣∣∣, r ∈ J′,

lim
r→r+i

u(r) − lim
r→r−i

u(r) = σ lim
r→r−i

∣∣u(r)∣∣−1
2 u(r) + lim

r→r−i

∣∣∣∣(w(r)) 1
p(r)−1 u′(r)

∣∣∣∣
−1
2
(w(r))

1
p(r)−1 u′(r),

lim
r→r+i

w(r)|u′|p(r)−2u′(r) − lim
r→r−i

w(r)|u′|p(r)−2u′(r)

= σ lim
r→r−i

(w(r))
3

p(r)−1
∣∣u′(r)

∣∣−1
3 u′(r) − lim

r→r−i

∣∣u(r)∣∣−1
3 u(r),

lim
r→0+

(w(r))
1

p(r)−1 u′(r) = 0, and u(T) + lim
r→T−

w(r)|u′|p(r)−2u′(r) = 0,

where p(r) = 5 + cos 3r, q(r) = 3
2 + 1

4 sin 2r, 0 ≤ g(r) Î L1, e0, e1 Î ℝN, w(r) = 3+sin r,

s is a nonnegative parameter.

Obviously,
g(r) + |u|q(r)−2u + σw(r)|u′|q(r)−2u′ + δue

|u|+
∣∣∣∣∣∣(w(r))

1
p(r)−1 u′

∣∣∣∣∣∣ is Caratheodory, 1
<q(r) < 2 < 4 ≤ p (r) ≤ 6, then conditions of Theorem 3.5 are satisfied, then (P2) has a

solution when δ > 0 is small enough. Moreover, when s = 0, the conditions of Corol-

lary 3.7 are satisfied, and (P2) has a nonnegative solution.
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