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1 Introduction and preliminaries
Let (22, F,FF,P) be a complete filtered probability space on which a d-dimensional standard
Brownian motion W (-) is defined such that F = {F;};> is its natural filtration augmented
by all the P-null sets.

In this paper, for given 7' > 0, we consider the continuity and differentiability of solutions
to the following stochastic Volterra integral equations (SVIEs) with respect to a parame-

ter o:
X (t) = @ (t) + /tba (£:5,Xo(s)) ds + /taa (:5,Xu(s))dW(s), tel0,T], (1.1)
0 0

and backward stochastic Volterra integral equations (BSVIEs) with respect to «:

T
Vult)= )+ [ ot Yal0) Zu05), Zus )
‘ (1.2)

T
+/ Zy(t,8)dW (s), te€l0,T].

Here o € R and, for any given «, ¢, : [0,T] x Q — R™, b, : [0, T]?> x R" — R™, o, =
(0},02,...,08):[0, T x R™ — R"™4 £ .10, T]* x R" x R"™4 x R"™4 — R" are Borel
measurable functions.

The theory of stochastic differential equations (SDEs), including SDEs with parameters,
is an important topic in stochastic processes. There exists much research work on this
topic (see, e.g., [1-4]). SVIEs, as a natural and nontrivial extensions of SDEs, not only have
their distinctive features (e.g., containing memories), but they also have interesting appli-
cations such as in stochastic control (see, e.g., [5, 6]). The theory for SVIEs is much richer
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than that of SDEs. SVIEs with regular kernels and driven by Brownian motions were first
studied in the 1970s and early-1980s (see, e.g., [7-9]). Later, Protter in [10] studied SVIEs
driven by general semimartingales. BSVIEs also can be viewed generalizations of BSDEs,
first studied by Lin ([11]); and then deeply investigated by Yong ([12]).

Building on previous work concerning SDEs and BSDEs with a parameter ([1-4, 13]),
this article is devoted to studying properties of solutions to SVIE (1.1) and BSVIE (1.2)
with respect to a parameter, mainly continuity and differentiability. For the continuity of
solutions to SVIEs with respect to a parameter, the reader can refer to [7, 8]; and for the
differentiability the reader can refer to [14]. In this work, we presents more general and
complete results on this topic.

We now introduce some basic notations. Let H = R"”, R"*", etc.

. LZFT(Q;H ) is the set of all Fr-measurable random variables & valued in H such that

112, i = (BIEP )? <o

« L2(Q2 x (0, T); H) is the set of all F-progressively measurable processes ¢(-) valued in
H such that

T 3
Hw(.)”L%(QX(O,T);H) = [Efo |9"(t)|2dt} <00.

+ Cr([0, T); L*(2; H)) is the set of all F-progressively measurable processes ¢(-) valued
in H such that, for almost all w € ©,  — (¢, ®) is continuous and

ST

sup E(|X(t| )] < 00.

H(p(')||C]F([0,T];L2(Q;H)) = [ o]

o L?(0, T;L3(Q x (0, T); H)) is the set of all processes Z : [0, T]*> x Q — H such that, for
almost ¢ € [0, T, Z(¢,-) € LA(R2 x (0, T); H) and

|z )||L2(0TL2(Q><OT |: / / |Z(ts| det] <00

o H2[0,T) =L4(Q x (0, T);R") x L2(0, T; L(Q2 x (0, T); R™9)).

In what follows, we will make use of the following elementary assumptions:

(Al) Forany & € R, ¢,(-) is an F-adapted continuous process, and there exists a
positive constant L (independently on &), such that

sup Elg,(0)|* <12,
0<t<T

|ba(t)s’x) - ba(tys’y)| + |0a(t;srx) —Ua(t,S;)’)| §L|x—)’|¢

t,s€[0,T),x,y€ R,

and

|Ba (- 0)| + |oa(-, - 0)| < L.
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(A2) There exists a positive constant L, such that, for any « € R,

sup Ely. ()| <12,

0<t<T
Vot 8,912, v1) = fa (6,8, 52,22, v2) | < L(Iy1 = 32| + &1 — 22| + [v1 = 2l),

d
t,S € [0, T])yl,yZ € Rmrzbzb Vi, V2 € Rmx ’

and
m('; 5 0) 0) O)| = L.

The rest of this paper is organized as follows. In Section 2, we review the well-posedness
and continuity results for SVIEs depending on a parameter, and give the property of solu-
tions’ differentiability with respect to that parameter. Section 3 is devoted to studying the
continuity and differentiability of solutions to BSVIEs with respect to a parameter.

2 SVIEs with a parameter
Firstly, we present the definition of solution to SVIE (1.1).

Definition 2.1 For any o € R, a stochastic process X, (-) € Cr([0, T]; L?(2; R™)) is called
an adapted solution to SVIE (1.1) on [0, T] if (1.1) holds in the usual Itd’s sense for all
te[0,T].

In the following, the well-posedness result comes from [7—9] and the property of con-
tinuity of solutions to (1.1) with respect to the parameter & comes from [7, 8].

Theorem 2.2 Let assumption (Al) hold. Then, for any « € R, SVIE (1.1) admits a unique
solution X, (). Furthermore, we have

sup ]E|Xo((t)f2 <C sup
0<t=<T 0<t<T

¢ 2 . ,
+E(/0 !ba(t,s,0)|ds) +E</O |aa(t,s,0)| ds)},

{E|¢a(t)12

where C is a constant.

Theorem 2.3 Assume that the coefficients ¢, (-), by (-, +,-), 0a (-, -) in (1.1) satisfy assump-
tion (Al), and

lim sup E’(pa/(t)—<pa(t)|2 =0,

o —a 0<t<T

and that, forany N >0, s,t € [0,T],s <tand ¢ >0,

l/im P( sup ({ba/(t,s,x) —ba(t,s,x)| + |oo,/(t,s,x) —oa(t,s,x)|) > 8) =0.
o' —a |x|<N

Then

lim sup E’xa/(t) —x(,t(t)|2 =0.

o/ >0 0<s<T
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Now, we are in the step to study the differentiability of solutions to SVIEs with respect

to a parameter. Firstly, we give the definition of derivative of random variables.

Definition 2.4 A random variable 7 is called the derivative of a family of random variables

{4} in L?-norm if the following holds:

2

‘i:a+Aot - got -0.

Ao

lim E

Aa—0

For convenience, we denote 1 by 9,&,. The following result states the solutions’ differen-

tiability with respect to a parameter.

Theorem 2.5 Suppose assumption (A1) hold. Let X, (-) be solution to

t

Xo(2) = 0o (t) + / b (8,5, Xo(s)) ds + /tcra (t:5,Xo(5))dW(s), tel0,T],
0 0

whereby the following conditions are satisfied:
(1) 9y pq(t) exists, and

2
— 0;

lim sup E|0,¢,(t)

Aa—0 0<t<T

! (‘pa+Aa(t) - (Pot(t))

" Aa

(2) 0yby(t,s,x) and 0,04 (t,s,x) exist, and

T
lim IE/ {
Aa—0 0

Ou+Aa (t, S, er (S)) — Oq (t’ S, Xot (S))
+
Ao

B nar(t,5, X (5)) = b (£5, X (5)) 2

Ao

= 0ube (8,5, Xa(5))

2
}ds:O;

— 0000 (2,5, X4(5))

(3) 0xby(t,s,x) and 0,04(t, s, x) exist and are continuous with respect to all arguments,

and for some K
P(|osba(t,s,%)| <K) =1,  P(|owolt,s,%)] <K)=1, i=12,...,d.

Then X, (-) is differentiable with respect to o, and 3,X,(-), the derivative of X, (-) with re-
spect to «, solves the following SVIE:

00X (t) = 0 0a(£) + /Ot[axba (5, X)) 0aXo (8) + 0u b (2,5, X (5)) ] dis

+ / t[(axoa(t,s,Xa(s)),80,Xa(s))+8aaa(t,s,Xa(s))]dW(s), te[0,T], (2.1)
0

where <ax6a¢ aaXa> = (axo—ol;aozXa)lfigd'
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Proof For notational convenience, we can assume that m = d = 1. Denote X, rq() =
A%(Xm Ax(*) = X4 (). Then this stochastic process satisfies

_ Do+ A (t) — Pu (t)

Xa,Aa(t) A
£ ba+Aa(t: S;Xa+Aot(S)) - bot(t: SyXa(S))
+ /(; o ds (2.2)
+ /t Ua+Ao¢(t: SyXoHAa(S)) —O'a(t,S,Xa(S)) dW(S) te [0 T]
0 Aa ’ ’ ’

Denote by X, o(-) the solution to
t t
Xaol®) =80u(0)+ [ 065, X9 Xap0)ls + [ 0,00, (65,09 X)W O
0 0

+ /t 0uba (t,s,Xa (s)) ds + /t 040 (t, 8, Xg (s)) aw(s), te][0,T]. (2.3)
0 0

To simplify the above two equations, we introduce the following functions: for Aa #0,

~ _ Pa+Aa (t) - (pat(t) ! bcx+Aa(tr51Xa(S)) - ba(t7 S;Xa(s))
Paa(t) = + ds
Ao 0 Ao
+ /t Oa+na(t: 8, Xy (5)) — 0o (L, 5, Xy (5)) AW (s);
0 Ax

by s Ag (68 Xe+ A () =Dy + Ag (£:8:Xa ()
by | PR X 09 4,06,

axszAa (t; S, Xa (s))x, XDt+AOt (S) = Xot (S);

for Aa =0,

Fo(t) =D () + / b (b5, Xa(s)) ds + / B0 (65, X (5)) AW (5);
0 0
bo(t,s,%) = dyby, (t, $, X (5)) .

Similarly, we can define Ga,(t,s,%) and Gy(¢,s,x). Using these functions we can express
(2.2) and (2.3) in the form

t t
Xa,Aa(t) = aAot (t) + / bAa (tr SrXa,Aot (S)) dS + / gAa (t’ S, Xa,Aa (S)) dW(S)
0 0

and
t ~ t
Xao®) =Fo0) + [ Boltr5, Xuo®) ds + [ 5(t:5,Xe0ls) dW )
0 0
To prove the theorem, it is sufficient to show that
Jim E|X,a0(8) - Xao0)] = 0. (2.4)
To obtain (2.4), due to Theorem 2.3, it is only necessary to verify that

. ~ ~ 2
AI;IEOOiltJETJE!sDM(t) - %@ =0, 2.5)
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and that, for each N > 0, ¢ > 0,

Aloillllopgj&%ﬂzm(t,s,x) —bo(t,s, x)|2 + |Gaalt,s, %) - Eo(t,s,x)|2) > 8) =0. (2.6)

Equation (2.6) can be obtained by Condition (3), and (2.5) can be obtained by Condition (1)
and Condition (2). That completes the proof. O

The next result is an immediate consequence of Theorem 2.5.

Corollary 2.6 Suppose that X(-) solves SVIE:

X@t)=x+ /tb(t,s,X(s)) ds + /td(t,s,X(s)) dw(s), tel0,T], (2.7)
0 0

where b(-,+,-), o (-,+, ) satisfy assumption (Al), and 9,b(t,s,x) and 3,0 (¢,s,x) exist and are
continuous with respect to all arguments, and for some K

P(|oub(t,s,%)| <K) =1,  P(|oxo’(t,s,%) <K)=1, i=12,...,d.

Then VX(-) (= (05,X)1<ij<m) solves the following SVIE:
t
VX(¢t) =1, + / 8xb(t,s,X(s))VX(s) ds
0
t
- / (0,0 (t,5,X(s)), VX(s))dW(s), te[0,TI,
0

where I, € R™" s the unit matrix.

3 BSVIEs with a parameter
In this section, we consider the continuity and differentiability of solutions to BSVIEs of
the form (1.2) with respect to «. Firstly, we give the definition of solution to (1.2).

Definition 3.1 Let S € [0, T). For any « € R, stochastic processes pair (Y, (), Z4(:,")) €
H2[S, T is called an adapted M-solution to BSVIE (1.2) on [S, T if (1.2) holds in the usual
Ito’s sense for almost all £ € [S, T] and, in addition, the following holds:

Y, (t) = E(Yy ()| Fs) + /S tZa(t,s)dW(s), aetelST]

The following result comes from [12, Theorem 3.7].

Theorem 3.2 For any «, let (A2) hold. Then BSVIE (1.2) admits a unique adapted M-
solution (Yy(-), Zo (-, -)) € H2[0, T]. Moreover, the following estimate holds:

T T T
E{/S |Ya(t)|2dt+/s /S |Zo,(t,s)|2dsdt}

T
§C<1+E/ |1ﬁa(t)|2dt>, VS e [0, T1.
S

| (), Za ) 150
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Let f,, and v, also satisfy (A2), and (Y,(-), Zy(-,-)) € H?[0, T] be the adapted M-solution
to (1.2) with f,, and , replaced by f, and v, respectively. Then there exists a constant C
such that, for any S € [0, T,

|| (Ya() - }_fa('); Za(': ) - Zot('r )) ”?Hz[S,T]
T - 2
SCIE{/ [V (6) — T 0) | e
S

T T B
+ / / o (65 Yo 8), Za(t,5), Za(5 1)) ~ o (65, Ya(5), Za(6,5), Zus, t))|2dsdt}.
S t

In the sequel, we study the properties of continuity and differentiability of solutions
to BSVIEs depending on a parameter. For notational convenience, for fixed «g, we write
(Yo(:), Zo(+,-)) for (Yo, (+), Zyy (-, -)). Let us make the following assumptions:
(A3) The function @ — (fy, ¥ ) is continuous; i.e., for any oy,
Jalt,8,Y0(5), Zo(t, 8), Zo(s, 1)) — faro (£, 8, Yo (5), Zo (2, 5), Zo (s, £)) converges to 0 in
L*(0, T; LA(2 x (0, T);R™)) and /4 — Yo, converges to 0 in Cr(£2;L2(0, T;R")) as
a— ag.

(A4) For any o € R, f, is differentiable with respect to (,z, v) with uniformly bounded
derivatives denoted by 9,f, 9/, and d,f, which are uniformly continuous; i.e., for
any & > 0, there exists & such that, for any ¢,s € [0, T], y € R, z,v € R**¢,

|0fat, s,y + 1, 2,v) = 0o (85,352, V)| <&, |h| <6,

and the same holds for z, v parts and for 9,f,, 9,f.

(A5) The function o — (fy, V) is differentiable; i.e., for any «p, the functions
o > Yo (t), R — Cp(;L%(0, T;R™)) and a > £, (t, s, Yo(s), Zo(t, ), Zo(s, 1)),
R — L*(0, T; LA(2 x (0, T);IR™)) are differentiable at ag with derivatives
Aofaro (8, Yo (5), Zo(t,5), Zo (s, 1)) and g g, (2).

Theorem 3.3 Let the coefficients fy, Yo (o € R) of BSVIEs (1.2) satisfy assumption (A2),
and (Yy(+), Zy(+,+)) be solutions.
1. Suppose that f,, W, satisfy assumption (A3). Then the function o +— (Yy(-), Z4 (-, ),
R — H2[0, T] is continuous.
2. Suppose that fy, Wy satisfy assumptions (A4)-(A5). Then the function
a > (Yy(), Zo(+ ), R — H2[0, T] is differentiable with derivatives given by
(00 Yo (+), 00 Z4 (-, -)), which is the solution to the following BSVIE:

T
O Ya(t) = 80(Woz(t) + Oyfaltss, ch(s)rZa(t:s)rZa(Sr t) Oy Ya(s)
o

+ (0 (8, Yo (8), Za (£,5), Zo (5, 8)), 0 Zo (£ 9))
+ (avﬁx (t,s, Yo (5), Zo(2,8), Zy (s, L‘)), 002 (s, t))
+ 0gfe (t,s, Yo (5), Zo(2,8), Zy (s, t))] ds

T
+/ 00 Zo(t,8)dW (s), te][0,T], (3.1)

where (3fy, 80 Za) = (05, fa 9 Zi h1<iza and (3fe, 0aZa) = (8, fadaZi1<i<a-
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Proof Property 1 is an immediate consequence of Theorem 3.2. Now, let us prove prop-
erty 2.
For simplicity, we can assume that og = 0 and m = d = 1. For any « # 0, put
YO((')_YO(') Z, ("')_ZO("')

ALY ()= — AZ(,) = “7

Then

Aa Y(t) _ ch(t) ; lﬁo(t)

n /Tﬁx(t’ S, Ya(s)’Za(t»S)’Za(Sx t)) —ﬁ)(t,S, YO(S)’ Z()(t,S),Z()(S, t)) ds

o

T
+/ Ay Z(t,s)dW(s), te[0,T]. (3.2)

For any o # 0, define

Jor (6,5, Yo (), Zo (£,5): Zax (5:8))~for (£, Y0 (), Zar (£:5) Zex (5,2)) Y, (s) # Yo(s)

Ay(t,s) = Yo (s)-Yo(s)
ayﬁx (t: S, YO (S); Zot (tr S); Za (S, t))r Ya (S) = YO (S)r
S (65, Y0(8),Za (,5),Za (5:8))~fa (2,5, Y0 (5), 20 (£:5). Za (5:1))

Ba (t, S) = Za (6:8)=Z0(6,5) ) Za(t¢ S) #Zo(t!s)1
azﬁx (t; S, YO (S), ZO(t) s)r Za (51 t))) Zot (t, S) = ZO(tr S),
Ja(6:5,Y0(5),Z0 (:5),Za (5,£)) ~fa (£, Y0 (5),Z0 (£:5),Z0 (5:1))

Cultys) = 2602  Lalsb) 7 Zols0),
8|4f(v1 (tr S, YO (S)) ZO(t» S)r ZO (S» t)): Zot (Sr t) = ZO (S; t):

and

= f(;z(t’ S, YO (S)’ ZO(t» S)r ZO(S» t)) _f()(t) S, YO (S)r ZO(t’ S)rZO (S’ t)) )
o

hy(t,s)

By virtue of A, (-, ), By(+,+), By(+>+), hy(:,-), we can define
Fa(t: $ 9,2, V) = Aa(t,S)J/ + Ba(t: S)Z + Ca(tr S)V + hot(tx S)'

Hence, BSVIE (3.2) can be written as

ALY () = Fo(t,5, A Y (5), Ao Z(t,8), Ao Z(s, 1)) ds

Vo) =o®) [T

re |
T

+ / A Z(t,s)dW (s), telo,T]. (3.3)

On the other hand, denote

Fo(t,5,9,2,v) = 9yfo (£,5, Yo(8), Zo(£,5), Zo (s, £) )y + 0o (155, Yo (), Zo(t, 8), Zo (s, 1))z

+0ufo (2,8, Yo(s), Zo(8,5), Zo(s, £))v + 0afo (£:5, Yo(5), Zo (£, 5), Zo (s, 1)),



Wang Advances in Difference Equations (2017) 2017:333 Page 9 of 12

and introduce the following BSVIE:

T
aoz YO(t) = 30[ w()(t) + / FO (t, S, 80( YO (S)r 8aZO(t: S)y aozZO (S; t)) dS
T
+ / 3. Zo(t,s)dW(s), te][0,T]. (3.4)

By property 1 of this theorem, we know that (Y(-), Z, (-, -)) converges to (Yo(-), Zo(-,-))
in H2[0, T]. We now have to prove that (A, Y(-), A, X(-,-)), the solution to BSVIE (3.3),
converges to (9, Y(-), 3,Z(-,-)), the solution to BSVIE (3.4), in #2[0, T], as « tends to 0.
Also by property 1, it is sufficient to check

Fo(t,5,00Y0(8), 0aZo(t, ), 0 Zo (8, £)) —> Fo(£:$, 0 Yo (8), 0aZo (£,5), 0aZo (s, 1))
in L*(0, T; LE (2 x (0, 7))) 3.5)
and
w —> Bo(-) in L3(S2 x (0, T)). (3.6)

Equation (3.6) can be gotten by assumption (A5). Now, we check (3.5).
Notice that

1
Ayt s) / Ofa (8,5, Yo () + A(Ya(s) = Yo(9)), Za (£, 8), Zo (5, 1)) d.
0

Consequently,

/ / o(8,5) = Ofer (8,5, Yo(5), Za(,5), Zo (5,0)) [*| 0 Yo s) | ds dt

E// !

—aﬂg(t $, Yo (s), Zy(t,8), Zg( s,t)) \8 Yo(s)| dsdt

8,(}‘0[ (65, Yo(s) + A(Ya(s) = Yo(5)), Zo(£,5), Za s, 1)) dA

T T 1
S]Efo /0 /oiayﬁx(t,s,Yo(s)+)L(Ya(s)—Yo(s)),Za(t,s),Za(s,t))

= 0t (85, Yo Zat5) Zu(5, ) [0 Yo o) i d e (3.7)
Set Q) = {| Y, (s) — Yy(s)| < 8}. Hence, by assumption (A4),
T T 1
E aa ’,Y )"YD( —Y ’Zax;Za;
fo /0 /0 | o (t s, Yo(s) + ( (s) o(S)) (t,8), Zy(s t))
— 0 (8,5, Yo(9), Za(t,5), Za(s,) |* |9 Yo (s) |* dr ds dt
T T
le/ / [82|3aY0(S)‘2+2L2X9f|8aYo(s)|2]dsdt
0 0

T T
<&’TE / |0, Yo(s)|* ds + 2L*TE / xex |90 Yo(s)|” ds. (3.8)
0 0
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Now, we estimate the second term on the right side of the above inequality. For given
M >0, define 2, = {|0,Yy(s)| < M}. Then

T
IEI/ Xes |8 Yo(s)| ds
0

T T
:IE/ XQTXQZ|8QY0(S)|2ds+E/ XQ{XQ§|8QYO(S)i2dS
0 0

T 2 T
|Yot(S) =Y (5)|
< JEf XQ{XQzMziodS"' E | xeg
0 0

= 3 Yo(s)|” ds

T T
< B [ 150 - Y6 ds+E [ e o] ds (39)
0 0

By the Lebesgue dominated convergence theorem, since 9, Yy (:) € L]ZF(SZ x (0, T)), one de-
duces that

T
2
]E/ X{19a Yo 50| 9 Yo (s)|” ds — 0. (3.10)
0

By property 1, Y, (-) = Y,(-) in L%(2 x (0, T)), one gets

MZ T
S—Z]E/O |Ya(s) - Yo(s)|* ds — 0. (3.11)

Equation (3.7), together with (3.8)-(3.11), yields

T T
E / / |Aa(t,5) = ufer (8,5, Yo (5), Za(t,5), Zo (5,0)) |* |8 Yo 9) |* dsdt — 0. (3.12)
0 0

Denote Q3 = {|Z,(t,s) — Zo(¢,8)| < 8}. Then

T T
Efo /0 |3ya(t»sxYO(S),Za(t,S),Za(s,t))

— 3 (8,5, Yo(9), Zo(,5), Zo(5,0)) "] 00 Yo s) | ds dt

T T T
582TEf |8aY0(s)|2ds+LZIEf / Xe |90 Yo(s)|" dsdt
0 0 0 (3.13)
L*M?
82

T T T
§£2TE/ |8aY0(s)|2ds+ IE/ / |Za(t,s)—Zo(t,s)|2dsdt
0 o Jo

T
2
+L2TE/ X{19a Yo(s)>m) |0a Yo (s) | ds
0

— 0.

Similarly, we can check that

T T
E/O /0 |0yfa (2,5, Yo(5), Zo (£, ), Za (s, 1))

— 3 (8,5, Yo(9), Zo(t,5), Zo(s, 1)) |0 Yo (s)|* ds dt — 0. (3.14)
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Combining (3.12) with (3.13), (3.14), we can obtain

T T
E / f |Aa(t,5) = fa (8,5, Yo (5), Zo(t,5), Zo(s, ) |*| 0 Yo (s)| dsdt — 0. (3.15)
0 0

With a similar procedure, we can get

T T
E / / 1Bu(t,5) — 3ufe (15 Yo(s), Zo(ts5), Zo(s, ) | 9aZo(t,)| dsd — 0,
0 0

S (3.16)
E / / 1Caltys) = 3ufe (65, Yo5), Zo(6,), Zols, 1) | 9uZols, ) st — 0,
o Jo
and
T pT )
E/ / |ha(t, s) — /0 (t, s, Yo(s), Zo (2, ), Zo(s, t))| dsdt — 0. (3.17)
o Jo
By (3.15)-(3.17), we prove (3.5). That completes the proof. O
An immediate consequence of Theorem 3.3 is now the following.
Corollary 3.4 Suppose that (Y(-), Z(-,-)) is the solution to BSVIE:
T
YOy (X0) + [ (6502069, 201
t
T
+ / Z(t,s)dW (s), te[0,T], (3.18)
t

formly bounded derivatives. Here X(-) solves SVIE (2.7) and the coefficients b(-,-,-), o (-,+, ")
satisfy the assumptions in Corollary 2.6. Then (VY (-), VZ(.,-)) solves the following BSVIE:

T
VY (£) = 0,9 (X(6) VX(£) + / f (5, Y(s), Z(t,5), Z(s, D) VY (5)

+(0f (65, Y (5), Z(t,8), Z(s, 1)), VZ(2,5))
+(0,f (8,5, Y(5), Z(t,5), Z(s, 1)), VZ(s, 1)) ds

T
+/ VZ(t,s)dW(s), tel0,T]. (3.19)

4 Conclusions

In this paper, we consider the properties of continuity and differentiability of solutions
to two kinds of stochastic Volterra integral equations: forward equations (Theorem 2.5)
and backward equations (Theorem 3.3). As an application, we obtain the deeper well-
posedness results on the structure of the solution to forward/backward stochastic Volterra

integral equations (Corollaries 2.6 and 3.4).
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