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Abstract
Let H1, H2, H3 be real Hilbert spaces, let A : H1 → H3, B : H2 → H3 be two bounded
linear operators. Moudafi introduced simultaneous iterative algorithms (Trans. Math.
Program. Appl. 1:1-11, 2013) with weak convergence for the following split common
fixed-point problem:

find x ∈ F(U), y ∈ F(T ) such that Ax = By, ()

where U : H1 → H1 and T : H2 → H2 are two firmly quasi-nonexpansive operators with
nonempty fixed-point sets F(U) = {x ∈ H1 : Ux = x} and F(T ) = {x ∈ H2 : Tx = x}. Note
that by taking H2 = H3 and B = I, we recover the split common fixed-point problem
originally introduced in Censor and Segal (J. Convex Anal. 16:587-600, 2009). In this
paper, we will continue to consider the split common fixed-point problem (1)
governed by the general class of generalized asymptotically quasi-nonexpansive
mappings. To estimate the norm of an operator is a very difficult, if it is not an
impossible task. The purpose of this paper is to propose a simultaneous iterative
algorithm with a way of selecting the stepsizes such that the implementation of the
algorithm does not need any prior information as regards the operator norms.
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1 Introduction and preliminaries
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let T :H → H be a mapping. A point x ∈H is said to be
a fixed point of T provided Tx = x. In this paper, we use F(T) to denote the fixed point set
and use → and ⇀ to denote the strong convergence and weak convergence, respectively.
We use ωw(xk) = {x : ∃xkj ⇀ x} stand for the weak ω-limit set of {xk}.
©2014 Zhao and He; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Let C and Q be nonempty closed convex subset of real Hilbert spaces H and H, re-
spectively. The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈Q, (.)

where A : H → H is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was first introduced byCensor and Elfving [] formodeling inverse problemswhich
arise from phase retrievals and in medical image reconstruction []. Recently, it has been
found that the SFP can also be used in various disciplines such as image restoration, com-
puter tomograph and radiation therapy treatment planning [–]. Various algorithmshave
been invented to solve it, etc. (see [–] and references therein).
Note that if the split feasibility problem (.) is consistent (i.e., (.) has a solution), then

(.) can be formulated as a fixed point equation by using the fact

PC
(
I – γA∗(I – PQ)A

)
x∗ = x∗. (.)

That is, x∗ solves the SFP (.) if and only if x∗ solves the fixed point equation (.) (see
[] for the details). This implies that we can use fixed point algorithms (see [–]) to
solve SFP. A popular algorithm that solves the SFP (.) is due to Byrne’s CQ algorithm [],
which is found to be a gradient-projection method (GPM) in convex minimization.
In [], Censor and Segal consider the following split common fixed-point problem

(SCFP):

find x∗ ∈ F(U) such that Ax∗ ∈ F(T), (.)

where A : H → H is a bounded linear operator, U : H → H and T : H → H are two
nonexpansive operators with nonempty fixed-point sets. To solve (.), Censor and Segal
[] proposed and proved, in finite-dimensional spaces, the convergence of the following
algorithm:

xk+ =U
(
xk + γAt(T – I)Axk

)
, k ∈N ,

where γ ∈ (, 
λ
), with λ being the largest eigenvalue of the matrix AtA (At stands for ma-

trix transposition). SCFP (.) is in itself at the core of the modeling of many inverse prob-
lems in various areas of mathematics and physical sciences and has been used to model
significant real-world inverse problems in sensor networks, in radiation therapy treatment
planning, in resolution enhancement, in wavelet-based denoising, in antenna design, in
computerized tomography, in materials science, in watermarking, in data compression, in
magnetic resonance imaging, in holography, in color imaging, in optics and neural net-
works, in graph matching, etc. (see [, ]).
Let H, H, H be real Hilbert spaces, let A : H → H, B : H → H be two bounded

linear operators, let U :H → H and T :H → H be two firmly quasi-nonexpansive op-
erators. In [], Moudafi introduced the following split common fixed-point problem:

find x ∈ F(U), y ∈ F(T) such that Ax = By, (.)
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which allows asymmetric and partial relations between the variables x and y. The interest
is to covermany situations, for instance, in decompositionmethods for PDEs, applications
in game theory and in intensity-modulated radiation therapy (IMRT). In decision sciences,
this allows to consider agents who interplay only via some components of their decision
variables (see []). In IMRT, this amounts to envisaging a weak coupling between the
vector of doses absorbed in all voxels and that of the radiation intensity (see []). IfH =H

and B = I , then SCFP (.) reduces to SCFP (.).
For solving the SCFP (.), Moudafi [] introduced the following alternating algorithm:

⎧⎨
⎩
xk+ =U(xk – γkA∗(Axk – Byk)),

yk+ = T(yk + γkB∗(Axk+ – Byk))
(.)

for firmly quasi-nonexpansive operators U and T , where non-decreasing sequence γk ∈
(ε,min ( 

λA
, 

λB
) – ε), λA, λB stand for the spectral radiuses of A∗A and B∗B, respectively.

Very recently, Moudafi [] introduced the following simultaneous iterative method to
solve SCFP (.):

⎧⎨
⎩
xk+ =U(xk – γkA∗(Axk – Byk)),

yk+ = T(yk + γkB∗(Axk – Byk))
(.)

for firmly quasi-nonexpansive operators U and T , where γk ∈ (ε, 
λA+λB

– ε), λA, λB stand
for the spectral radiuses of A∗A and B∗B, respectively.
Note that in the algorithms (.) and (.) mentioned above, the determination of the

stepsize {γk} depends on the operator (matrix) norms ‖A‖ and ‖B‖ (or the largest eigen-
values of A∗A and B∗B). In order to implement the alternating algorithm (.) and the
simultaneous algorithm (.) for solving SCFP (.), one has first to compute (or, at least,
estimate) operator norms of A and B, which is in general not an easy work in practice.
To overcome this difficulty, López et al. [] and Zhao and Yang [] presented a helpful
method for estimating the stepsizes which do not need prior knowledge of the operator
norms for solving the split feasibility problems and multiple-set split feasibility problems,
respectively. Inspired by them, in this paper, we introduce a new choice of the stepsize
sequence {γk} for the simultaneous iterative algorithm to solve SCFP (.) governed by
generalized asymptotically quasi-nonexpansive operators as follows:

γk ∈
(
,

‖Axk – Byk‖
‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖

)
. (.)

The advantage of our choice (.) of the stepsizes lies in the fact that no prior information
as regards the operator norms of A and B is required, and still convergence is guaranteed.
Now let us recall some definitions, notations and conclusions which will be needed in

proving our main results.

Definition . A mapping T : H → H is called demiclosed at the origin if, for any se-
quence {xn} which weakly converges to x, if the sequence {Txn} strongly converges to ,
then Tx = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/73
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Definition . () A mapping T :H →H is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀(x, y) ∈H ×H .

() A mapping T :H → H is said to be firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(x – y) – (Tx – Ty)
∥∥, ∀(x, y) ∈H ×H .

() A mapping T :H →H is said to be quasi-nonexpansive if F(T) �= ∅ such that

‖Tx – q‖ ≤ ‖x – q‖, ∀(x,q) ∈H × F(T).

() A mapping T :H →H is said to be firmly quasi-nonexpansive if F(T) �= ∅ such that

‖Tx – q‖ ≤ ‖x – q‖ – ‖x – Tx‖, ∀(x,q) ∈H × F(T).

() A mapping T : H → H is said to be asymptotically nonexpansive if there exists a
nonnegative real sequence {lk} with lk →  such that for each k ≥ ,

∥∥Tkx – Tky
∥∥ ≤ ‖x – y‖ + lk‖x – y‖, ∀(x, y) ∈H ×H .

() A mapping T : H → H is said to be asymptotically quasi-nonexpansive if F(T) �= ∅
and there exists a nonnegative real sequence {lk} with lk →  such that for each k ≥ ,

∥∥Tkx – q
∥∥ ≤ ‖x – q‖ + lk‖x – q‖, ∀(x,q) ∈H × F(T).

() A mapping T : H → H is said to be generalized asymptotically quasi-nonexpansive
mapping with ({lk}, {μk}) if F(T) �= ∅, and there exist nonnegative real sequences {lk}, {μk}
with lk →  and μk →  such that for each k ≥ ,

∥∥Tkx – q
∥∥ ≤ ‖x – q‖ + lk‖x – q‖ +μk , ∀(x,q) ∈H × F(T).

It is clear from this definition that every firmly nonexpansive mapping is nonexpan-
sive, nonexpansive mapping with a fixed point is quasi-nonexpansive, each firmly quasi-
nonexpansive mapping is quasi-nonexpansive, and each quasi-nonexpansive mapping
is asymptotically quasi-nonexpansive. We remark that an asymptotically nonexpansive
mapping with a nonempty fixed point set F(T) is an asymptotically quasi-nonexpansive
mapping, but the converse may be not true. The class of generalized asymptotically
quasi-nonexpansive mappings is more general than the class of asymptotically quasi-
nonexpansivemappings and asymptotically nonexpansivemappings. The following exam-
ple shows that the inclusion is proper. Let K = [– 

π
, 

π
] and define (see []) Tx = x

 sin(

x )

if x �=  and Tx =  if x = . Then Tkx→  uniformly but T is not Lipschitzian. Notice that
F(T) = {}. For each fixed k, define fk(x) = ‖Tkx‖– ‖x‖ for x ∈ K . Set μk = supx∈K {fk(x), }.
Then limk→∞ μk =  and

∥∥Tkx
∥∥ ≤ ‖x‖ +μk .
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This shows that T is a generalized asymptotically quasi-nonexpansive but it is not asymp-
totically quasi-nonexpansive and asymptotically nonexpansive because it is not Lips-
chitzian.

Definition . AmappingT :H →H is said to be uniformly L-Lipschitzian if there exists
a constant L >  such that for each k ≥ ,

∥∥Tkx – Tky
∥∥ ≤ L‖x – y‖, ∀(x, y) ∈H ×H .

In real Hilbert space, we easily get the following equality:

〈x, y〉 = ‖x‖ + ‖y‖ – ‖x – y‖ = ‖x + y‖ – ‖x‖ – ‖y‖, ∀x, y ∈ H . (.)

In what follows, we give some preliminary results needed for the convergence analysis of
our algorithms.

Lemma . ([]) Let H be a real Hilbert space. Then for all t ∈ [, ] and x, y ∈ H ,

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖.

Lemma . ([]) Let {ak}, {bk} and {δk} be sequences of nonnegative real numbers satis-
fying

ak+ ≤ ( + δk)ak + bk , ∀k ≥ .

If
∑∞

k= δk < ∞ and
∑∞

k= bk < ∞, then the limit limk→∞ ak exists.

2 Simultaneous iterative algorithmwithout prior knowledge of operator
norms

In this section we introduce a simultaneous iterative algorithm where the stepsizes don‘t
depend on the operator norms ‖A‖ and ‖B‖ and prove weak convergence of the algorithm
to solve SCFP (.) governed by generalized asymptotically quasi-nonexpansive operators.
We always assume thatH,H,H are real Hilbert spaces and A :H →H, B :H →H

are two bounded linear operators. Let U : H → H and T : H → H be two generalized
asymptotically quasi-nonexpansive mappings with ({lk}, {μk}). In the sequel, we use 	 to
denote the set of solutions of SCFP (.), i.e.,

	 =
{
x ∈ F(U), y ∈ F(T) such that Ax = By

}
.

Algorithm . Let x ∈H, y ∈H be arbitrary and αk ∈ [, ]. Assume that the kth iter-
ate xk ∈H, yk ∈H has been constructed; then we calculate the (k + )th iterate (xk+, yk+)
via the formula:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – Byk),

xk+ = αkuk + ( – αk)Uk(uk),

vk = yk + γkB∗(Axk – Byk),

yk+ = αkvk + ( – αk)Tk(vk).

(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/73
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The stepsize γk is chosen in such a way that

γk ∈
(
,

‖Axk – Byk‖
‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖

)
, k ∈ �, (.)

otherwise, γk = γ (γ being any nonnegative value), where the set of indices � = {k : Axk –
Byk �= }.

Remark . Note that in (.) the choice of the stepsize γk is independent of the norms
‖A‖ and ‖B‖. The value of γ does not influence the considered algorithm, but it was in-
troduced just for the sake of clarity. Furthermore, we will see from Lemma . that γk is
well defined.

Lemma . If 	 is nonempty, then γk defined by (.) is well defined.

Proof Taking (x, y) ∈ 	, i.e., x ∈ F(U), y ∈ F(T) and Ax = By. We have

〈
A∗(Axk – Byk),xk – x

〉
= 〈Axk – Byk ,Axk –Ax〉

and

〈
B∗(Axk – Byk), y – yk

〉
= 〈Axk – Byk ,By – Byk〉.

By adding the two above equalities and by taking into account the fact that Ax = By, we
obtain

‖Axk – Byk‖ =
〈
A∗(Axk – Byk),xk – x

〉
+

〈
B∗(Axk – Byk), y – yk

〉
≤ ∥∥A∗(Axk – Byk)

∥∥ · ‖xk – x‖ + ∥∥B∗(Axk – Byk)
∥∥ · ‖y – yk‖.

Consequently, for k ∈ �, that is, ‖Axk–Byk‖ > , we have ‖A∗(Axk–Byk)‖ �=  or ‖B∗(Axk–
Byk)‖ �= . This leads to the conclusion that γk is well defined. �

Theorem . Assume that U – I , T – I are demiclosed at origin, and U , T are uni-
formly L-Lipschitzian. Let the sequence {(xk , yk)} be generated by Algorithm .. Assume
	 is nonempty and for small enough ε > ,

γk ∈
(

ε,
‖Axk – Byk‖

‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖ – ε

)
,

where k ∈ �. Then {(xk , yk)} weakly converges to a solution (x∗, y∗) of (.) provided that∑∞
k=(lk +μk) < ∞ and {αk} ⊂ (δ,  – δ) for small enough δ > .Moreover, {xk} and {yk} are

asymptotically regular and ‖Axk – Byk‖ → .

Proof From the condition on γk , we have

inf
k∈�

{
‖Axk – Byk‖

‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖ – γk

}
> . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/73
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On the other hand, from ‖A∗(Axk – Byk)‖ ≤ ‖A∗‖‖Axk – Byk‖ and ‖B∗(Axk – Byk)‖ ≤
‖B∗‖‖Axk – Byk‖ we obtain { ‖Axk–Byk‖

‖A∗(Axk–Byk )‖+‖B∗(Axk–Byk )‖ } is lower bounded by 
‖A‖+‖B‖

and so

inf
k∈�

{
‖Axk – Byk‖

‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖
}

≥ 
‖A‖ + ‖B‖ > –∞.

It follows from (.) that supk∈� γk < +∞ and {γk}k≥ is bounded.
Taking (x, y) ∈ 	, i.e., x ∈ F(U); y ∈ F(T) and Ax = By. We have

‖uk – x‖ = ∥∥xk – γkA∗(Axk – Byk) – x
∥∥

= ‖xk – x‖ – γk
〈
xk – x,A∗(Axk – Byk)

〉
+ γ 

k
∥∥A∗(Axk – Byk)

∥∥. (.)

Using equality (.), we have

–
〈
xk – x,A∗(Axk – Byk)

〉
= –〈Axk –Ax,Axk – Byk〉
= –‖Axk –Ax‖ – ‖Axk – Byk‖ + ‖Byk –Ax‖. (.)

By (.) and (.), we obtain

‖uk – x‖ = ‖xk – x‖ – γk‖Axk –Ax‖ – γk‖Axk – Byk‖

+ γk‖Byk –Ax‖ + γ 
k
∥∥A∗(Axk – Byk)

∥∥. (.)

Similarly, by (.) we have

‖vk – y‖ = ‖yk – y‖ – γk‖Byk – By‖ – γk‖Axk – Byk‖

+ γk‖Axk – By‖ + γ 
k
∥∥B∗(Axk – Byk)

∥∥. (.)

By adding the two last inequalities, and by taking into account fact that Ax = By, we obtain

‖uk – x‖ + ‖vk – y‖

= ‖xk – x‖ + ‖yk – y‖

– γk
[
‖Axk – Byk‖ – γk

(∥∥A∗(Axk – Byk)
∥∥ +

∥∥B∗(Axk – Byk)
∥∥)]. (.)

By the fact that U and T are generalized asymptotically quasi-nonexpansive mappings
with ({lk}, {μk}), it follows from Lemma . that

‖xk+ – x‖ = αk‖uk – x‖ + ( – αk)
∥∥Uk(uk) – x

∥∥ – αk( – αk)
∥∥Uk(uk) – uk

∥∥

≤ αk‖uk – x‖ + ( – αk)‖uk – x‖ + ( – αk)lk‖uk – x‖

+ ( – αk)μk – αk( – αk)
∥∥Uk(uk) – uk

∥∥

= ‖uk – x‖ + ( – αk)lk‖uk – x‖ + ( – αk)μk – αk( – αk)
∥∥Uk(uk) – uk

∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/73
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and

‖yk+ – y‖ ≤ ‖vk – y‖ + ( – αk)lk‖vk – y‖ + ( – αk)μk – αk( – αk)
∥∥Tk(vk) – vk

∥∥.

So, by (.), we have

‖xk+ – x‖ + ‖yk+ – y‖

≤ [
 + ( – αk)lk

](‖xk – x‖ + ‖yk – y‖) + ( – αk)μk

– γk
[
 + ( – αk)lk

][
‖Axk – Byk‖ – γk

(∥∥A∗(Axk – Byk)
∥∥ +

∥∥B∗(Axk – Byk)
∥∥)]

– αk( – αk)
∥∥Uk(uk) – uk

∥∥ – αk( – αk)
∥∥Tk(vk) – vk

∥∥. (.)

Now, by setting ρk(x, y) := ‖xk – x‖ + ‖yk – y‖, we obtain the following inequality:

ρk+(x, y)

≤ ( + ξk)ρk(x, y) + ηk

– γk( + ξk)
[
‖Axk – Byk‖ – γk

(∥∥A∗(Axk – Byk)
∥∥ +

∥∥B∗(Axk – Byk)
∥∥)]

– αk( – αk)
∥∥Uk(uk) – uk

∥∥ – αk( – αk)
∥∥Tk(vk) – vk

∥∥, (.)

where ξk = ( – αk)lk and ηk = ( – αk)μk . By the condition
∑∞

k=(lk + μk) < ∞, we have∑∞
k= ξk < ∞ and

∑∞
k= ηk <∞. It follows from the condition on {γk} that

ρk+(x, y)≤ ( + ξk)ρk(x, y) + ηk .

By Lemma ., the following limit exists:

lim
k→∞

ρk(x, y) := ρ(x, y).

So the sequences {xk} and {yk} are bounded. Now, we rewrite (.) as follows:

γk( + ξk)
[
‖Axk – Byk‖ – γk

(∥∥A∗(Axk – Byk)
∥∥ +

∥∥B∗(Axk – Byk)
∥∥)]

+ αk( – αk)
∥∥Uk(uk) – uk

∥∥ + αk( – αk)
∥∥Tk(vk) – vk

∥∥

≤ ρk(x, y) – ρk+(x, y) + ξkρk(x, y) + ηk . (.)

It follows from the assumption

γk ∈
(

ε,
‖Axk – Byk‖

‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖ – ε

)
, k ∈ �

that

lim
k→∞

(∥∥A∗(Axk – Byk)
∥∥ +

∥∥B∗(Axk – Byk)
∥∥) = . (.)
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(Note that Axk – Byk =  if k /∈ �.) So, we obtain

lim
k→∞

∥∥A∗(Axk – Byk)
∥∥ = lim

k→∞
∥∥B∗(Axk – Byk)

∥∥ = .

Similarly, by the conditions on {αk}, we obtain

lim
k→∞

∥∥Uk(uk) – uk
∥∥ = lim

k→∞
∥∥Tk(vk) – vk

∥∥ = . (.)

Using the assumption on γk , (.), (.), and the convergence of ρk(x, y) we have

lim
k→∞

‖Axk – Byk‖ = . (.)

Since

‖uk – xk‖ = γk
∥∥A∗(Axk – Byk)

∥∥

and {γk} is bounded, we have limk→∞ ‖uk–xk‖ = . It follows from limk→∞ ‖Uk(uk)–uk‖ =
 that limk→∞ ‖Uk(uk) – xk‖ = . So,

‖xk+ – xk‖ ≤ αk‖uk – xk‖ + ( – αk)
∥∥Uk(uk) – xk

∥∥ →  (.)

as k → ∞, fromwhich one infers that {xk} is asymptotically regular, namely limk→∞ ‖xk+–
xk‖ = . Noting

‖uk+ – uk‖ =
∥∥xk+ – xk – γk+A∗(Axk+ – Byk+) + γkA∗(Axk – Byk)

∥∥
≤ ‖xk+ – xk‖ + γk+

∥∥A∗(Axk+ – Byk+)
∥∥ + γk

∥∥A∗(Axk – Byk)
∥∥,

from (.) and (.) we have

lim
k→∞

‖uk+ – uk‖ = . (.)

Similarly, limk→∞ ‖vk – yk‖ = , {yk} and {vk} are asymptotically regular, too.
Next, we prove that ‖uk –U(uk)‖ →  and ‖vk –T(vk)‖ →  as k → ∞. In fact, since U

is uniformly L-Lipschitzian continuous, it follows from (.) and (.) that

∥∥uk –U(uk)
∥∥

≤ ∥∥uk –Uk(uk)
∥∥ +

∥∥Uk(uk) –U(uk)
∥∥

≤ ∥∥uk –Uk(uk)
∥∥ + L

∥∥Uk–(uk) – uk
∥∥

≤ ∥∥uk –Uk(uk)
∥∥ + L

(∥∥Uk–(uk) –Uk–(uk–)
∥∥ +

∥∥Uk–(uk–) – uk
∥∥)

≤ ∥∥uk –Uk(uk)
∥∥ + L

(
L‖uk – uk–‖ +

∥∥Uk–(uk–) – uk–
∥∥ + ‖uk– – uk‖

) → .

Since T is uniformly L-Lipschitzian continuous, in the same way as above, we can also
prove that ‖vk – T(vk)‖ →  as k → ∞.
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Taking (x∗, y∗) ∈ ωw(xk , yk), from limk→∞ ‖uk –xk‖ =  and limk→∞ ‖vk –yk‖ = , we have
x∗ ∈ ωw(uk) and y∗ ∈ ωw(vk). Combined with the demiclosednesses ofU – I and T – I at ,

lim
k→∞

∥∥U(uk) – uk
∥∥ = lim

k→∞
∥∥T(vk) – vk

∥∥ = 

yields Ux∗ = x∗ and Ty∗ = y∗. So, x∗ ∈ F(U) and y∗ ∈ F(T). On the other hand, Ax∗ –By∗ ∈
ωw(Axk – Byk) and weakly lower semicontinuity of the norm imply that

∥∥Ax∗ – By∗∥∥ ≤ lim inf
k→∞

‖Axk – Byk‖ = ,

hence (x∗, y∗) ∈ 	.
Finally, we will show the uniqueness of the weak cluster points of {xk} and {yk}. Indeed,

let x̄, ȳ be other weak cluster points of {xk} and {yk}, respectively, then (x̄, ȳ) ∈ 	. From the
definition of ρk(x, y), we have

ρk
(
x∗, y∗)
= ‖xk – x̄‖ + ∥∥x̄ – x∗∥∥ + 

〈
xk – x̄, x̄ – x∗〉 + ‖yk – ȳ‖ + ∥∥ȳ – y∗∥∥ + 

〈
yk – ȳ, ȳ – y∗〉

= ρk(x̄, ȳ) +
∥∥x̄ – x∗∥∥ +

∥∥ȳ – y∗∥∥ + 
〈
xk – x̄, x̄ – x∗〉 + 

〈
yk – ȳ, ȳ – y∗〉. (.)

Without loss of generality, we may assume that xk ⇀ x̄ and yk ⇀ ȳ. By passing to the limit
in relation (.), we obtain

ρ
(
x∗, y∗) = ρ(x̄, ȳ) +

∥∥x̄ – x∗∥∥ +
∥∥ȳ – y∗∥∥.

Reversing the role of (x∗, y∗) and (x̄, ȳ), we also have

ρ(x̄, ȳ) = ρ
(
x∗, y∗) + ∥∥x∗ – x̄

∥∥ +
∥∥y∗ – ȳ

∥∥.

By adding the two last equalities, we obtain x∗ = x̄ and y∗ = ȳ, which implies that the whole
sequence {(xk , yk)} weakly converges to a solution of problem (.). This completes the
proof. �

The following conclusions can be obtained from Theorem . immediately.

Theorem . Let U : H → H and T : H → H be two asymptotically quasi-
nonexpansive mappings with ({lk}). Assume that U – I , T – I are demiclosed at origin,
and U , T are uniformly L-Lipschitzian. Let the sequence {(xk , yk)} be generated by Algo-
rithm .. Assume 	 is nonempty and for small enough ε > ,

γk ∈
(

ε,
‖Axk – Byk‖

‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖ – ε

)
,

where k ∈ �. Then {(xk , yk)} weakly converges to a solution (x∗, y∗) of (.) provided that∑∞
k= lk < ∞ and {αk} ⊂ (δ, –δ) for small enough δ > .Moreover, {xk} and {yk} are asymp-

totically regular and ‖Axk – Byk‖ → .
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Theorem . Let U : H → H and T : H → H be two quasi-nonexpansive mappings.
Assume that U – I , T – I are demiclosed at origin, and U , T are uniformly L-Lipschitzian.
Let the sequence {(xk , yk)} be generated by Algorithm .. Assume 	 is nonempty and for
small enough ε > ,

γk ∈
(

ε,
‖Axk – Byk‖

‖A∗(Axk – Byk)‖ + ‖B∗(Axk – Byk)‖ – ε

)
,

where k ∈ �. Then {(xk , yk)} weakly converges to a solution (x∗, y∗) of (.) provided that
{αk} ⊂ (δ,  – δ) for small enough δ > .Moreover, {xk} and {yk} are asymptotically regular
and ‖Axk – Byk‖ → .

Remark . When B = I , Algorithm . becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk = xk – γkA∗(Axk – yk),

xk+ = αkuk + ( – αk)Uk(uk),

vk = ( – γk)yk + γkAxk ,

yk+ = βkvk + ( – βk)Tk(vk),

(.)

where the stepsize γk is chosen in such a way that

γk ∈
(
,

‖Axk – Byk‖
‖A∗(Axk – Byk)‖ + ‖Axk – Byk‖

)
, k ∈ �,

otherwise γk = γ (γ being any nonnegative value), where the set of indices � = {k :
Axk – yk �= }. This solves SCFP (.) for generalized asymptotically quasi-nonexpansive
operators, asymptotically quasi-nonexpansive operators, quasi-nonexpansive operators,
and firmly quasi-nonexpansive operators without prior knowledge of operator norm ‖A‖.
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