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1 Introduction
In this article, we investigate the nonlinear second-order impulsive g, -difference equation
with three-point boundary conditions

Dflkx(t) =f(t,x(t)), te]:=[0,T],t#k,

Ax(ty) = I(x(t)), k=1,2,...,m,

Dy, x(t) — Dy x(t) = I} (x(t)), k=1,2,...,m,
x(0) =0, x(T) = x(n),

(1.1)

whereO =ty <ty <ty<- <ty < <ty <tya=T,f:] xR — Risacontinuous function,
I, I} € C(R,R), Ax(tr) = x(t) —x(t) for k =1,2,...,m, x(t]) = limy_.o x(& + h), n € (¢}, tj11)
a constant for some j € {0,1,2,...,m} and O < gy <1 for k=0,1,2,...,m.

The theory of quantum calculus on finite intervals was developed recently by the authors
in [1]. In [1] the concepts of gx-derivative and gx-integral of a function f : Jy := [£x, £xs1] —
R, are defined and their basic properties proved. As applications, existence and unique-
ness results for initial value problems for first- and second-order impulsive g, -difference
equations are proved.

The book by Kac and Cheung [2] covers many of the fundamental aspects of the quan-
tum calculus. In recent years, the topic of g-calculus has attracted the attention of several
researchers and a variety of new results can be found in the papers [3—15] and the refer-
ences cited therein.
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Impulsive differential equations, that is, differential equations involving an impulse ef-
fect, appear as a natural description of observed evolution phenomena of several real-
world problems. For some monographs on impulsive differential equations we refer to
[16-18].

In the present paper we prove existence and uniqueness results for the impulsive bound-
ary value problem (1.1) by using Banach’s contraction mapping principle and Krasnosel-
skii’s fixed-point theorem. The rest of this paper is organized as follows: In Section 2 we
present the notions of gi-derivative and gj-integral on finite intervals and collect their
properties. The main results are proved in Section 3, while examples illustrating the re-
sults are presented in Section 4.

2 Preliminaries

In this section we present the notions of gi-derivative and g-integral on finite intervals.
For a fixed k € NU {0} let Ji := [£, txs1] C R be an interval and 0 < g < 1 be a constant. We
define gi-derivative of a function f : Jy — R at a point ¢ € J as follows.

Definition 2.1 Assume f : Jy — R is a continuous function and let ¢ € Ji. Then the ex-

pression
SO~ flgrt + (1 - qi)tx)

Dqkf(t) = (1 — qk)(t — tk) , #tk’ Dqkf(tk) = }g% Dqkf(t)’ (21)

is called the gi-derivative of function f at t.

We say that f is gx-differentiable on Jx provided Dy, f(t) exists for all £ € /. Note that if
tx = 0 and gx = g in (2.1), then D, f = D,f, where D, is the well-known g-derivative of the
function f(¢) defined by

f&-fat)

In addition, we should define the higher gx-derivative of functions.
Definition 2.2 Let f : Jy — R is a continuous function, we call the second-order g-
derivative D;kf provided Dy, f is gi-differentiable on J; with D;kf =Dy (Dgf) : Je = R.
Similarly, we define the higher-order gi-derivative D :Ji — R.

The properties of the g;-derivative are summarized in the following theorem.

Theorem 2.3 Assumef,g:Jx — R are q-differentiable on Ji. Then:
(i) Thesum f + g :Jx — R is qx-differentiable on Ji with

Dy, (f(t) +g(t)) =Dy, f(£) + Dy, g(2).

(ii) For any constant o, af : Jy = R is gi-differentiable on Ji with

Dy (af )(2) = aDg, f (2).
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(iii) The product fg : Jx — R is qx-differentiable on Jx with

Dy, (fo)(t) = f(©)Dg,g(t) + g(qut + A — qi)tx) Dy, f (2)
= g(6)Dg, f(0) + f (qit + (1 — qi)tx) Dy, g (0).

(iv) Ifg(t)ggt + (1 — qi)tx) #0, then i—, is qi-differentiable on Ji with

(L) - 2020 -0t

g gOglget + 1 —qte)

Definition 2.4 Assume f : Jy — R is a continuous function. Then the gi-integral is de-

fined by
[ FOdus=a-a)e-t0 > aifaie (1- @), (23)
Lk n=0

for t € Jx. Moreover, if a € (t, t) then the definite gx-integral is defined by

/atf(s)qus = lktf(s)qus—[kaf(s)qus

=(l-qt-u) Y aif (dit+ (1-q})a)
n=0

oo

—(-ga-u) Y qif (dia+ (1-q})t).

n=0

Note that if #x = 0 and gx = g, then (2.3) reduces to the g-integral of a function f(¢),
defined by fotf(s) dgs=1—-q)ty 20 q"f(q"t) for t € [0,00).

Theorem 2.5 For t € Ji, the following formulas hold:
() Dy, f; £(5) dgs =f(2);
(ii) Jy; Dypf (s) dges =f(0);
(iii) [’ Dy f(s)dys=f(t)—f(a)forae (t?).

3 Main results

Let J = [0,T1], Jo = [to,t1], Jx = (tx, trs1] for k = 1,2,...,m. Let PC(J/,R) = {x: ] > R :
x(t) is continuous everywhere except for some f; at which x(£;) and x(¢;) exist and x(;) =
x(tx),k=1,2,...,m}. PC(J,R) is a Banach space with the norm ||x| pc = sup{|x(¢)|; £ € J}.

Lemma 3.1 The unique solution of problem (1.1) is given by

j t
x(t) = —tz (/ ‘ f(s,x(s)) dg_s+1I} (x(tk)))
k=1

k-1
! < / ' / f(a,x(a))qu_laqu_ls+Ik(x(tk)))

T—n k=j+l
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m

t

— </ ‘ S(s,x(s)) dg, s+ I} (x(tk))> (T-t)
-1 k tr-1

=j+1

t '7/‘5
+— o,x(0))d,od,s
T_UL tjf( ) qj qj
t T s
- o,x(0))dg,,0d,,s
| Heso)duod,

+Z<

O<t<t k-1

73

/ flo,x(0))dy_ 0 dg s +Ix (x(tk))>
tk-1

£y < / ' £(s,%(s)) qu_ls+1;(x(tk))>(t—tk)

O<t<t N tk-1

+ /t /Sf(a,x(a)) dg, 0 dgs, (3.1)
tre Jitg

with Yy () = 0.

Proof For t € ]y, taking the go-integral for the first equation of (1.1), we get

Do x(t) = Dygyx(0) + /(; f(s,x(s)) Ay (3.2)
which yields
Dyox(t1) = Dgyx(0) + /0 1f(s,x(s)) dyos. (3.3)

For t € J we obtain by go-integrating (3.2),

t s
x(t) = %(0) + Dyyx(0)t + / / f(a,x(o)) A0 dyys
o Jo
t s
=A+Bt+ / / Sf(o,x(0)) dygyo dgys  (x(0) = A, Dgyx(0) = B).
o Jo
In particular, for £ =
n s
x(t1)) =A +Bt; + / / f(a,x(a)) A0 dy,s. (3.4)
o Jo
For t € J; = (t1,£2], q1-integrating (1.1), we have
t
Dy, x(t) = Dqlx(tf) + / f(s,x(s)) dy,s.
51
Using the third condition of (1.1) with (3.3), it follows that

D, x(t)=B + /0 1f(s,x(s)) dgys +1I7 (x(tl)) + / f(s,x(s)) dy,s. (3.5)
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Taking the ¢, -integral to (3.5) for ¢ € J;, we obtain

x(t) = x(t]) + |:B + / 1f(s,x(s)) dgos + I (x(tl)):| (t-1)
0

+ft/Sf(0,x(a)) dg 0 dys.
Hh Ju

Applying the second equation of (1.1) with (3.4) and (3.6), we get
x(t) =A+Bt; + /tl /sf(a,x(o)) dgo0 dgys + I (x(t1))
o Jo
+ |:B + /0 lf(s, x(s)) dgos + I (x(tl)):| (t—1)
+/ /f(a,x(a)) dgodys
=A+Bt+ /0 A f(o,x(o)) dgy0 dgys + Il(x(tl))
+ |:/ 1f(s,x(s)) dgys + 17 (x(tl))] (t-t)
0

+/:/;f(a,x(a)) dg, 0 dys.

Repeating the above process, for ¢ € /, we get

x(t)=A + Bt

</ / flo,x(0))dy,_ 0 dy,_ 1s+1k(x(tk)))
O<tk<t k-1 Y -1

73
+ Z </ f(s,x(s))qu 1s+Ik( (t )))(t—tk)

tk-1

O<ty<t

. / /t:f(o,xw)) dy dys.

The first boundary condition of (1.1) implies A = 0. The second boundary condition of

(1.1) yields

m tr s
flo.x(0))dy, o dy s+ Ik(x(tk))>
Y[ [ S o
+Z</ (s,%(s)) dg,_ 1s+1,’(‘(x(tk)))(T—L‘k)

+/t /tf(a,x(a))dqmadqms+BT

(/tk /tkl 0,%(0)) dg_,0 qu1S+Ik(x(tk)))

(3.7)

Page 5 of 14
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i o

2 (/ fls:x(9)) dyy s+ I (x(tk))> (n—tx)
k=1 \Yik-1

+ /bn /t f(0,%(0)) dgo dyys + B,

which implies

J

B=— Z (/t:klf(s,x(s)) dg_ S+ (x(tk)))

k=1

) T- " k= ]+1(/tk 1 v/tk 1 7 x(U)) U= loqu 1S+Ik(x(tk)))

- Z (f S)) dg, S +I,’(‘(x(tk))>(T— &)
tet

—n k=j+1
1 T ps
+ o)d.od.s——/ /fo,x(o)dmodms.
T-1n . ) E/a T-nJ,, ), ( ) q q
Substituting the constant B into (3.7), we obtain (3.1) as required. O

In view of Lemma 3.1, we define an operator A : PC(J,R) — PC(J,R) by

i o
(Ax)(t) = -t Z (/ S(s,x(5)) dg s+ I (x(tk))>
k=1 W

k-1
_ T— </ / flo,x(0)) dy,_ 0 dg, s +1k(x(tk)))
M —j+1 N b1 Yl
t m

- </ ‘ f(s,x(5)) dg, s+ I (x(tk))> (T -t)
k-1

T—n k=j+1

ﬁiffgx ) dyyo dys
ot / / F(022(0)) dyy0 dy,s

+ Z (V/tk—l '[tk_ o,%x O’)) qx10 qu 1S+Ik(x(tk))>

O<ty<t
+ Z (/ (s,%(5)) dyg,_ 1s+I,f(x(tk))>(t—L‘k)
O<tr<t NV bk-1
F(ox(0))dyy 0 dy . (3.8)
+/tk/tk (0,%(0))dy,0 dgs

It should be noticed that problem (1.1) has solutions if and only if the operator .4 has fixed
points.
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For convenience, we set

b — tr1)?
Py = [(tk )Tt + M}Ml My + (T = )M, (3.9)
1+qgxa
(tx — txr)?
W = | (t — e (T — i) + T Ly + Ly + (T — t)Ls, (3.10)
1

fork=1,...,m.

Theorem 3.2 Assume that:

(Hi1) The functionf :[0,T] x R — R is a continuous and there exists a constant L, > 0 such
that |f(¢,x) —f(t,9)| < Lilx —y|, foreach t € ] and x,y € R.

(Hy) The functions Iy, I} : R — R are continuous and there exist constants Ly, L3 > 0 such
that |Ir(x) = L(W)| < Lalx — y| and |I;(x) — ()| < Lslx — y| for each x,y € R, k =

1,2,...,m.
If
k=1 B T—T)k=}erl T-n\ l+g 1+
+kaI\I’k+ %Ll <é<l1, (3.11)

then the impulsive qi-difference boundary value problem (1.1) has a unique solution on J.

Proof First, we transform the problem (1.1) into a fixed-point problem, x = Ax, where the
operator A is defined by (3.8). By using Banach’s contraction principle, we shall show that
A has a fixed point which is the unique solution of problem (1.1).

Set sup,; |f(£,0)] = My < oo, sup{|[x(0)| : k = 1,2,...,m} = M < oo, sup{|[;(0)| : k =
1,2,...,m} = M3 < 00 and a constant

/ m
T
p=T Y (=)Mo s Mo+ 5 Y-
o1 k=j+1
L My (=) (Tt
T-n\ 1+¢q;  1+4qum
m T—t 2
e (T-t)f, (312)
= 1+qm,

Choosing r > 1%, where § < & <1, we show that .AB, C B,, where B, = {x € PC(J,R) :

[lx|l <r}. For x € B,, we have

[l Ax|l

J ¢
- sup[tz( [ 7659 5+ i o))
te] k=1 b1
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ax(o od, s+ |I x(tk))
g ”k,+1</rk1/tkl )|,y s+ | (x(8)|

m

t
T, T
1 k=j+1

t n S t T S
T /t/Lf(o,x(o))|dqjadqis+—T_n/tm tm[f(o,x(a))|dqmgdqms

S([F [ oo d oy s+ et
O<ty<t N thk=1 Y Tr-1
+ ( / I (5,%(5)) | dgy_y5 + |1;(x(rk))|>(t—tk)

O<ty<t

+/ V(o,x(o))|quo qus}
tre Jit

</t.kk1 If (5,2(5))| g5 + | I (%(8)) |) (T -t)

IA

T g k-/+1</;/< ‘/t‘k 1 0 x(a) f(a 0)| lf(a O)|) %19 qkl

+ I (x(t0)) = 1 (0) | + }Ik(O)l)

T < t
([ -l

k=j+1

+

+ |1 (x(20) - 1 0)] + |1:<o>|)<T— ”

Yo , If (0,%(c)) —f(0,0)| + [fa,O)’)dqjadqjs

tj

[f(a,x(a)) —f(o,0)| + V(o,0)|)dqmadqms

tm Jim

' Z(/ k / (Lf((f,x(g)) —f(G,O)i * V(G,O)|)qu_laqu_ls
k=1 tk-1 Y k-1
+ [Tk (x(8) = 1k(0)| + }Ik(0)|)
3 / (5:509) ~£(5.0) + 5,0 5
5 (x(60) -5 0] + |1:<o>|)<T- )
T s
+ f f (If (0,%(0)) —£(5,0)| + |f(5,0)|) dy,0 dy,s

]
< TZ((tk —tg_1)(Lqr + My) + Lar +M3)
k=1

TZ( /k If (5, %(5)) f(s,0)|+[f(s,0)|)quls+|I,f(x(tk))—1,f(0)|+|I,’f(0)|)

Page 8 of 14
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T & <(tk—tk—1)2

+ (L1r+M1) +L21"+M2>
T=nZ4\ 144

m

> (= tica)(Lar + My) + Lyr + M3)(T — ti)
k=j+1

T (n—rr;)2+(T—tm)2
T-n 1+g; 1+q,

(= )
+Z< ko L1r+M1)+L2r+M2>

1
k=1 + k-1

+

T —

)(Lli" + M)

(T - tm)z

qm

m
+ 3 (= tica)(Lar + My) + Lyr + M3)(T - ) + (Lir + M)
k=1

=rA+p=<@+1-¢g)r<r.

It follows that AB, C B,.
For x,y € PC(J,R) and for each ¢ € J, we have

I A% — Ayl

] te
< SUF[tZ</ f (5,(5)) = £ (5,9(5)) | dgy 5 + | I () = IZ(y(tk))D
te k=1

5[] oo sootodds
k1+1 -1 Y b1

+ [ Le(x(8) = I (v(&) |>

m

t

Fr 3 ([ 170550 =00 5 1 s60) - 0) ) 7 0
k k-1

=j+1

Lftfw (0))|dyyo dys
T-n [tm /m [f (0,2(0)) ~f(0,9(0)| dg,y0 g,
3 (ftk 1/;_1 [f(0%(0)) £ (0,3(0) | oy, ey s + [ L (x(24) -Ik(y(tk))o

O<tp<t

>y ( / I (5,%(5)) = f (5,(5)) | dgyy5 + |1;(x(tk))—1;(y(tk))|)(t—tk)

O<ty<t tk-1

+/ V(o,x(o)) —f(a,y(o))|quoqus}
tre Jt

J

Tllx =y < [ (& - tr_1)?
5TIIx—yIIZ[(tk—tk_l)L1+L3]+ | y”Z((l ) L1+L2>

k=1 T=n GA\ Haa

Tllx — m
' ;x_ S (6 i)t + La)(T - 10

k=j+1
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T|lx — —-t)? (T-t,)?
.\ lx=yll ((n—1t) +( m) L
T-n 1+g; 1+qm

m _ 2 m
+ Z(Mm ¥ L2) e =yl + (6 = tie)Ly + La)(T = ) [ =y

o\ 1t k=1

(T - tm)*
+ I—V”Llllx—yll
+qm

= Alx -yl

As A <1, Ais a contraction. Hence, by Banach’s contraction mapping principle, we find

that A has a fixed point which is the unique solution of problem (1.1). O
Our next result is based on Krasnoselskii’s fixed-point theorem.

Lemma 3.3 (Krasnoselskii’s fixed-point theorem) [19] Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax + By €
M whenever x,y € M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

Further, we use the notation

j m
T (tr — tr1)?
6, = Tkzl(tk—tk—l)+ T >

iom 1+
* T{ n él(T — i) (tx — ti1) + %
T y:: Srrt i(T ~ A=t 12
and
0y = jTN, + % +mN; + N, Zm:(T — ) + ]7:—]:[2” zm:(T — k). (3.14)
k=1 j+l

Theorem 3.4 Letf:] x R — R be a continuous function. Assume that (Hy) holds and in
addition suppose that:

(Hs) Ift,x)] < p(8),V(t,x) €] x R, and u € C(J,R*).
(H4) There exist constants N1, Ny > 0 such that |I(x)| < Ny and |Ij(x)| < N, for all x € R,

fork=1,2,...,m.
Then the impulsive qi-difference boundary value problem (1.1) has at least one solution
on ] provided that
A T(m—j)Ly -
jTLs + mL; + T——ﬂ + L3 Z(T — ) <1 (3.15)

k=1
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Proof Firstly, we define sup,.; |(¢)| = [|i|l. Choosing a suitable ball Bz = {x € PC(/,R) :
x|l <R}, where
R=||p]|6r + 65, (3.16)

and 0y, 6, are defined by (3.13), (3.14), respectively, we define the operators S; and S, on

l}R]Dy
(Six)(2)
J 173 s
=—t f(s,x(s)) dg s — f(o,x(o)) dg_0dg s
¢ nops
T— —_— , d,od,
gf ) / Fl5:36) 5+ 7 / / £(0,5(0)) dyo dys
t S S
f’? /tm /[mf(a,x(a)) adquJfO;t/[‘k 1 /:klf(a,x(a)) Ay 10 Aoy
+ (t-t) sx S5+ fax(a s, tel0,T],
and
j
(S2)(8) ==t Y I (w(80) - —— sz (&) = — Z(T BT} (x(t))
k=1 k—]+1 /<—1+1
0 L(xw) + D (-t (x(w)),  te[0,T].
O<ty<t O<ty<t

For any x,y € Bg, we have

j " 2
T b — b
IS1x + Soyll < IIMII[TX:(fk-tkl)Jr -1 Z (=)

k=1 iom 1t
T(n-t)*
4D )
- k=j+1 + q/
T(T-1,)" 8 ti-t1)
+ + + (T - tx)(t — tr-1)
(T =)+ ) kZ} L+ i1 Zl '
_ B TN m
+JTN + lm )T +mN; +NzZ(T t) +
T —
k=1 1+1
= [|ull6r + 6o
<R

Hence, Six + Syy € Bg.
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To show that S, is a contraction, for x,y € PC(J, R), we have

j
1825 = Soyll < T Y |1 (w(t)) = I ((2)) | + ~Le(y(®)|
k=1 k=j+1
+ Z|1(x(tk)) —Ie(y(t0) | + Z (& — ) [T (x(80)) — I (v(t)) |
k=1 k=1

' T(m—j)Ly <
< |/TLs+miy+ —p— = +Ls D (T -1 [llx-yl.
k7

From (3.15), it follows that S, is a contraction.
Next, the continuity of f implies that the operator & is continuous. Further, S; is uni-

formly bounded on By by
[Sixll < [l 161

Now we shall prove the compactness of S;. Setting sup(, )¢/, [f (£, %) = f* < 00, then for
each 11, 1y € (¢, t,1) for some [ € {0,1,...,m} with 75 > 79, we have

|(51x)(fz) - (Slx)(T1)|

J £
<l -ul Z[ k [f (5,%(5)) | g5
k=1 Vb1

|Tz - T1| / / If (0,%(0))| dgy 0 dgy_,s
tk-1 Y k-1

k =j+1

|‘E; ';1| Z(T tk)/ S,x(s))|qu 18

k=j+1

ITz—T1|f /[fax ‘djodq].s

|‘E —T | N / tr
LI / / [f(a,x(a)) | dy,,0 dg,,s+ |12 — 11l E / [f(s,x(s)) | Ay, S
fm k=1 ¥ k-1

tm

flos)|dydys= [ [ (00| dy dys
t b Jy

j 1 & (- tr)? -4’
< |-[2_1;1[f* |:Z(tk—tk—1) + T_}7 Z (]1<+q1;(_11) " (T(—nn)(11)+ q})

k=1 k=j+1
(T = t)? 1 &
+ + (T - ti) (b — tr-1)
(T = n)(1+ ) T—ng;1 '

(11 + 12 + 28)
+ tr — ¢ + .
E (tx — tr-1) Tra ]

As 11 — 1, the right hand side above (which is independent of x) tends to zero. Therefore,

the operator & is equicontinuous. Since S; maps bounded subsets into relatively compact
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subsets, it follows that S is relative compact on Bg. Hence, by the Arzeld-Ascoli theorem,
& is compact on Bg. Thus all the assumptions of Lemma 3.3 are satisfied. Hence, by the
conclusion of Lemma 3.3, the impulsive g, -difference boundary value problem (1.1) has at
least one solution on J. O

4 Examples
Example 4.1 Consider the following nonlinear second-order impulsive g,-difference
equation with three-point boundary condition:

—coi tlx( )| _ _ i
Dy 20) = opmny ¢ =101bt 4 te= 55
()| _
Ax(ty) = 7+|xlztk)\) k=1,2,...,9, 1)

D s x(tf) =D s x(ty) = g tan” (ga(ta)),  k=1,2,...,9,
x(0) =0, x(1) = x(i).

Here gy = 4/(5+ k) for k=0,1,2,...,9,m=9, T =1, =1/4,j = 2, f(t,x) = (e~ t|x])/
(6 +£)2(1 + |x|)), Ir(x) = |x|/(8(7 + |x|)) and Ix) = (1/6) tan™'(x/8). Since

[f (t,%) = f(t,)| < (1/36)x -y,
Ik (%) = ()| < (1/56)|x ] and | (x) = I ()| < (1/48)|x - y1,

then (H;) and (H;) are satisfied with L; = (1/36), L, = (1/56), L3 = (1/48). We can show that
A ~0.5730986482 < 1.

Hence, by Theorem 3.2, the three-point impulsive g, -difference boundary value problem
(4.1) has a unique solution on [0,1].

Example 4.2 Consider the following nonlinear second-order impulsive gx-difference
equation with three-point boundary condition:

2 _ sin’(rd) _Ix(0)| _ _ &
Dsikx(t) = S?;régz (pij’ te] =101t #t = 5
()| _
Ax(te) = 5oy k=129 4.2)
D s x(t{) =D s x(t) = ggrpary, k=12,...,9,
x(O) = , x(l) x( 20)

Set qx =3/(6 + k) for k=0,1,2,...,9,m=9, T =1, n = 9/20, j = 4, f(t,x) = (sin®(zwt)|x])/
((£+4)2 + |2]), Ir(x) = |%|/(9(7 + |x])) and I (x) = |%]/(4(5 + |%])). Since

L) - k()| < (1/63)lx -y and  |[i(x) - ;)| < (1/20)lx -y,
then (H,) is satisfied with L, = (1/63), L3 = (1/20). It is easy to verify that |f(¢,x)| < u(t) =1,

Ir(x) <Ny =1/9 and [j(x) <N, =1/4 forall £ € [0,1], x € R, k = 1,...,m. Thus (H3) and
(Hy) are satisfied. We can show that

, T(m —j)L, “ 19741
TL Ly+ —— 22 4L T-t)= 1
JTLs + mLy + T 1 + skZI:( %) 57730
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Hence, by Theorem 3.3, the three-point impulsive gi-difference boundary value problem
(4.2) has at least one solution on [0, 1].
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