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Abstract

The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the
endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are
sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182
localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC).
While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host
response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan
(GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the
slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced
silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi
(VSR).
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Introduction

The human immunodeficiency virus type 1 (HIV-1) expresses

structural (Env, Gag), regulatory (Rev, Tat) and accessory (Nef,

Vif, Vpr, Vpu) proteins, of which the last group of proteins are

dispensable for virus infection and replication in vitro, but are

essential for disease progression in the susceptible host [1]. Nef is

an ,27-kDa myristoylated protein that is expressed early during

infection and functions as a multifunctional pathogenic factor [2].

It localizes to endosomal and plasma membranes and affects

multiple cellular pathways, principally cellular activation, cell

survival and apoptosis, and expression of cell surface receptors by

virtue of its interaction with multiple cellular proteins [3,4].

The RNA interference (RNAi) pathway is an innate response

that limits viral replication in plants, insects and higher animals

[5–7]. Unlike in plants where the siRNA pathway is deployed as

an antiviral response, animals utilize miRNAs to prevent virus

establishment. Many recent reports suggest that the mammalian

miRNA pathway functions in antiviral RNA-silencing to restrict

the replication of infecting viruses [8]. The knockdown of Dicer, a

key miRNA biogenesis protein enhances the replication of

influenza A virus [9] and VSV [10]. Interactions between HIV-

1 and cellular RNAi pathways not only restrict viral replication but

can also promote latency. Human miR-28, miR-29a, miR-125b,

miR-150, miR-223, and miR-382 have all been shown to target

the 39 untranslated region (UTR) of HIV-1 transcripts [11–13],

potentially taking productive infection towards latency. Recent

advances in deep sequencing technology have also identified small

RNA species derived from the viral genome in HIV-1 infected

cells [14]. Further, the knockdown of miRNA biogenesis proteins -

Dicer, Drosha or DGCR8 result in increased viral replication

[13,15]. Finally, viral transcripts have been co-localized with

RNAi effector proteins in the P bodies [13]. Thus, cellular

miRNAs affect HIV-1 replication, either through direct targeting

of viral RNAs [16] or through targeting of cellular RNAs

necessary for viral replication [17].

Naturally then, these viruses are also expected to encode

silencing suppressors to counter this host defense [18]. The HIV-1

Tat protein was reported to suppress RNAi through a direct,

RNA-dependent interaction and inhibition of Dicer or, alterna-

tively, through the sequestration of mature miRNAs [17]. It has

been suggested that binding of the cellular protein TRBP to the

structured TAR elements present in HIV-1 transcripts competi-

tively inhibits the activity of TRBP as a co-factor for Dicer, leading

to reduced miRNA processing [19]. However, other evidence

supports Tat only as a transcriptional activator, but not as a

suppressor of RNAi [20].

The Argonaute protein Ago2, which is an integral component

of the miRNA-mediated silencing pathway in animals, localizes

predominantly to endosomal membranes [21]. It was recently

shown to be present on multivesicular body (MVB) membranes

together with GW182, miRNAs and repressed mRNAs [22,23].

Blocking the maturation of MVBs into lysosomes resulted in

enhanced miRNA-mediated silencing, whereas reduced silencing

was observed on depletion of the ESCRT proteins, which are

required for the maturation of early endosomes to MVBs [24].

Thus, GW-bodies and MVBs appear to be physically and
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functionally connected with efficient RNAi activity. Together

these studies highlight the impact of endosomal pathways on

miRNA-mediated silencing [23].

The Nef protein is secreted in the extracellular medium as part

of nanovesicles called exosomes [25]. These originate from MVB

membranes, contain proteins, mRNAs and miRNAs, and are

believed to act as intercellular messengers [26]. Since Nef also

localizes to endosomal and plasma membranes and increases the

formation of MVBs [27], which are the sites for virus assembly and

budding in macrophages [28], we asked whether Nef associates

with components of the RISC and perturbs miRNA-mediated

silencing. We demonstrate here that Nef directly binds Ago2

through its conserved GW motifs, inhibits its slicing activity and

redistributes components of the RISC between cells and exosomes.

Thus, Nef acts as a viral suppressor of RNAi (VSR) through a

novel mechanism hitherto not observed for any other mammalian

VSR protein.

Materials and Methods

Plasmids and Cell Lines
Plasmids pMSCV-Puro, pMLV-GagPol, pEYFPN1 and

pVSVg were from Clontech. The pEYFPN1-Nef expression

vector was previously described [29]. Plasmids pRL-TK-let7a(wt),

pRL-TK-let7a(mut) and GW182-EGFP were obtained from

Addgene. U937 cells were maintained in RPMI 1640 medium

with 10% FBS and antibiotics at 37uC with 5% CO2; 350 ng/ml

Puromycin was added to this for U937/Nef-EYFP and U937/

EYFP stable cell lines. The HEK293T cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) containing 10%

FBS and antibiotics. All cell lines were procured from ATCC.

Antibodies and Other Reagents
The polyclonal antibody to Nef has been described earlier [29].

The anti-human MHC I hybridoma culture supernatant was from

Dr. Satyajit Rath (National Institute of Immunology, New Delhi,

India). Anti-Nef MAb-AE6 was from Dr. James Hoxie obtained

through the NIH AIDS Research and Reference Reagent

Program and human sera 18033 and IC6 for detecting GW and

P bodies, respectively, were from Dr. Marvin Fritzler (University

of Calgary, Canada). The Ago2 (#32381), GFP (#6556) and

GW182 (#84403) antibodies were purchased from Abcam and the

Dicer (NBP1-06520) antibody was from Novus Biologicals. The

commercial sources for the other antibodies were as follows - anti-

CD4-PerCP from BD Biosciences; Biotin anti-CD80 and anti-

CD86, and Streptavidin-PE from EBiosciences; antibodies to

Actin, Calnexin, VDAC, GAPDH, Alix, Tsg101 and CD81 were

from Santa Cruz Biotechnology. For the secondary antibody

conjugates, anti-human DyLight 594 was purchased from Abcam,

all HRP-conjugated secondary antibodies were from Santa Cruz

Biotechnology (USA), and the Alexa dye-conjugated secondary

antibodies were from Molecular Probes (USA). Double-stranded

siRNA was purchased from Dharmacon (SA). Sephacryl S200HR

beads were from GE Healthcare. All PCR primers were purchased

from Sigma; common laboratory reagents were from Sigma and

Merck.

Generation of Retroviruses and Stable Cell Lines
Plasmids pEYFP-N1 and pEYFP-Nef-F2 [29] were digested

with BamHI and HpaI, and the released fragments containing the

eyfp and nef-eyfp genes respectively were cloned into BglII and HpaI

sites in the pMSCV retroviral transfer plasmid. The positive clones

were confirmed by restriction digestion and analyzed for EYFP or

Nef-EYFP expression by transient transfection in HEK293T cells

and western blotting with anti-GFP antibody. Retroviruses

expressing Nef-EYFP or EYFP were generated by cotransfection

of HEK293T cells in a T25 flask with 2 mg of the transfer plasmid,

1 mg of pGag-Pol and 0.5 mg of pVSVg using the calcium

phosphate method. The culture supernatants were collected after

36 hr and used as the source of recombinant retroviruses. Human

monocytic U937 cells were washed with RPMI, starved for 90 min

without serum and then transduced with 500 ml of culture

supernatants per 16106 cells. After a 4 hr adsorption step, the

cells were washed and kept in complete medium for 48 hr prior to

the addition of 350 ng/ml puromycin. The cells were split every

48 hr and those surviving after 5 passages were used for the

analysis. The clones were sorted for the EYFP positive population

using a Becton Dickinson Aria Cell Sorter in the Central Facility

of the National Institute of Immunology, New Delhi, India. The

sorted clones were cultured for 4–5 passages and checked for

purity and YFP expression using Cyan-ADP flow cytometer

(Beckman Coulter). Data was analyzed using Summit 4.3 software.

Characterization of Cell Lines for Surface Markers
Functional characterization of the Nef-EYFP and EYFP stable

cell lines was done by assessing the surface expression of various

molecules on monocytes that are down regulated by the Nef

protein. These include CD4, MHC I, CD80 and CD86; CD54

was used as a negative control. The cells were washed twice with

FACS buffer and an appropriate concentration of the primary

antibody was added for 45 min on ice. The cells were again

washed twice with FACS buffer and stained with 100 ml of

1:10,000 diluted Streptavidin PE-conjugated secondary antibodies

or 1:5,000 diluted anti-mouse PE-conjugate for 15 min at room

temperature. After two washes with PBS the cells were suspended

in 500 ml PBS and acquired on a Cyan-ADP flow cytometer

(Beckman Coulter). Data was analyzed using the Flow-Jo

Software.

Confocal Microscopy and Colocalization Studies
Multivesicular bodies were labeled in U937 cells by exogenous

delivery of the fluorescently labeled lipid marker N-rhodamine-

labeled phosphatidylethanolamine (NRhPE) [30]. Briefly, U937

cells stably expressing Nef-EYFP or EYFP were cultured in

complete RPMI at 37uC and 5% CO2 for 30 min in the presence

of 5 mMNRhPE. Cells were harvested and washed twice with PBS

at 2000 rpm and 4uC for 5 min each. Live cells were mounted

using antifade containing DAPI (Invitrogen, Carlsbad, CA, USA).

To study the colocalization of Nef with Ago2, the U937 cells stably

expressing Nef-EYFP were permeabilized using the FACS

permeabilizing buffer for 20 min on ice. Cells were pelleted at

2000 rpm for 5 min at 4uC. Primary antibodies (rabbit anti-Ago2,

mouse anti-Nef or human IC6 sera) were added at a 1:100 dilution

in the same buffer and incubated on ice for 45 min. Cells were

then washed twice with permeabilizing buffer and stained with

Alexa-conjugated secondary antibody diluted 1:500 in the same

buffer. After washing, the cells were fixed in 0.5% paraformalde-

hyde and mounted using antifade containing DAPI (Invitrogen,

Carlsbad, CA, USA). Images were acquired using a Nikon A1/R

confocal microscope at 606 magnification. To determine

colocalization of Nef-EYFP with MVBs, Ago2 and P Bodies, the

images were quantified using the JACoP plugin in Image J

software.

Immunoprecipitation Studies
About 6 million cells were lysed in 600 ml of lysis buffer (Cell

Signaling Technology). Lysates were normalized for protein

content and 500 mg of total proteins in 500 ml of lysis buffer were

HIV Nef as RNAi Suppressor

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e74472



incubated with 25 ml of Protein A-agarose beads for 1 hr at 4uC.
The pre-cleared lysate was then incubated with 2 mg of the

antibody overnight at 4uC, followed by 40 ml of Protein A-agarose

beads for 2 hr at 4uC. After five washes with lysis buffer, the beads

were boiled in 26SDS-PAGE sample buffer and western blotting

was performed.

Construction Nef GW Mutants
Mutagenesis of the Nef GW motifs was carried out using the

Quick-Change site-directed mutagenesis kit (Stratagene) following

the manufacturer’s protocol. Two single mutants W13A and

W141A and a double mutant W13,141A were generated using the

pMT3-Nef plasmid as a template, and the following primers:

W13A-F, GCATAGTTGGAGCGCCTGATATAAGA; W13A-

R, CTTATATCAGGCGCTCCAACTATG CTG; W141A-F,

CACTGACTTTTGGGGC GTGCTTCAAGC; and W141A-R,

GCTTGAAGCACGCCCCAAAAGTCAG. All mutants were

subsequently verified by sequencing.

Gel Filtration Assay
Sephacryl S200HR beads (GE Healthcare) were packed in a

3 ml column. Total lysates were prepared from ,10 million cells

in 50 ml Buffer D that contained 20 mM HEPES, pH 7.9,

0.2 mM EDTA, 0.5 mM DTT, 50 mM KCl, 10% glycerol,

0.2 mM PMSF and 0.56Protease inhibitor cocktail (Roche). The

cells were lysed with 5 cycles of sonication on ice, each with 25%

power for 5 sec followed by cooling for 55 sec. The lysates were

clarified by centrifugation at 10,0006g for 10 min at 4uC. The
protein content was estimated by the Bradford assay and 150 mg
protein in a volume of 50 ml was passed through the column pre-

equilibrated with PBS. Fractions of 3 drops (,120 ml) each were

collected, precipitated with acetone and separated by SDS-PAGE.

Western blotting was done with anti-Ago2 and anti-EYFP

antibodies.

HIV-1 p24 Assay
The p24 levels in transfected culture supernatants were

quantified using the HIV-1 p24CA Antigen Capture Assay Kit

(NCI-Frederick Cancer Research and Development Center),

according to the supplier’s instructions.

HIV-1 Infectivity Assay
About 0.5 million 1G5-Jurkat indicator cells were infected with

100 ng p24 equivalents of various viruses in 1 ml of RPMI lacking

serum. After a 4 hr incubation at 37uC in a 5% CO2 incubator,

the cells were washed twice with this medium. The cells were then

incubated at 37uC in a 5% CO2 incubator in 12-well plates in

1 ml of RPMI-10% FBS. The cells were harvested after 48 hr,

lysates were prepared and luciferase activity was measured using

the Dual Luciferase Assay System (Promega Corporation,

Madison, USA), following the manufacturer’s protocol. The

luciferase activity was measured using a luminometer (Sirius,

Berthold, Germany).

Functional Assay for miRNA Activity
To study the functional effects of Nef on the miRNA pathway,

we performed co-transfection experiments using wild type and

GW mutants of Nef, with a plasmid expressing the Renilla mRNA

with a 39UTR containing two hsa-miR-let7a target sites (pRLTK-

let7a(wt)), or a negative control containing two seed mismatches

(pRLTK-let7a(mut)). Co-transfection of the luciferase reporter

plasmids and expression vectors for either wild type or GW mutant

Nef was carried out in 293T and U937 cells using Fugene 6 and

nucleofection, respectively, and plasmid pGL3 (containing firefly

luciferase) as a transfection control. Briefly, 100 ng of pRLTK-

let7a(wt) or let7a(mut) luciferase reporter DNA, 700 ng of Nef or

control DNA and 100 ng of pGL3 DNA were transfected in 293T

cells in 12-well plates. Nucleofection of exponentially growing

U937 cells was carried out using Amaxa nucleofector solution as

per supplier’s instructions, and the cells plated into wells of 6-well

plates in 3 ml RPMI-10% FBS. The cells were harvested 48 hr

post-transfection and luciferase assay was performed using the

Dual Luciferase Assay Kit (Promega, Madison, USA), according to

the supplier’s protocol.

RISC Loading Assay
Double stranded siRNA oligonucleotides (Dharmacon) were 59

end-labeled with 32P-c-ATP (Perkin Elmer) and polynucleotide

kinase (Fermentas) and purified using G-25 columns (GE

Healthcare). For the siRNA loading experiment, 1.25 pmole of

siRNA was incubated in a 35 ml reaction with 25 mg of the cell

lysate in binding buffer containing 50 mM Tris-HCl pH 8.8,

50 mM glycine, 8% glycerol and 2 mM DTT for 30 min at 4uC.
The lysate was prepared in Buffer D as described above. For

competition, a 50-fold molar excess of unlabeled siRNA duplex

was included in the reaction. The samples were mixed with

loading dye and resolved on a 6% non-denaturing polyacrylamide

gel in 16TBE for 2 hr at 200V and 4uC. The gel was dried and

imaged using a Typhoon scanner. For the immunodepletion assay,

400 mg of pre-cleared lysates were first incubated with 5 mg of

either anti-Ago2 or anti-Dicer antibody at 4uC overnight, followed

by precipitation with 50 ml Protein A/G beads. These immuno-

depleted lysates were then used in the binding assay described

above.

Slicer Assay
The slicer assay was performed with immunopurified Ago2 and

an in vitro transcribed, 32P-labelled 124 nt let7a target RNA as

described elsewhere [31] with some modifications. To immuno-

purify Ago2, 100 million U937/Nef-EYFP or U937/EYFP cells

were lysed with 365 sec pulses of sonication at 30% amplitude in

a buffer containing 30 mM HEPES, pH 7.4, 150 mM KOAc,

2 mMMg(OAc)2, 5 mM dithiothreitol (DTT), 0.1% Nonidet P-40

and EDTA-free Protease Inhibitor Cocktail (Roche). The lysate

was pre-cleared with Protein G Sepharose beads before incubation

with an anti-Ago2 antibody (Abcam) for overnight at 4uC.
Thereafter, 50 ml of Protein G Sepharose was added and mixed

for 2 hr at 4uC. The beads were washed twice with lysis buffer

containing 5M NaCl followed by a wash with 16cleavage buffer,

which contained 25 mM Hepes-KOH, pH 7.5, 50 mM KOAc,

5 mM Mg(OAc)2, 5 mM DTT, 10 mM creatine phosphate and

0.5 mM ATP. For in vitro synthesis of the target RNA, the 39UTR

of let7a was first cloned as a SacII-SpeI fragment in plasmid

pGEMTEasy. The plasmid was linearized with NdeI and in vitro

transcription was carried out at 37uC for 2 hr in a 20 ml reaction
containing 0.5 mg linear DNA, 0.5 mM all rNTPs except UTP,

which was added at a concentration of 15 mM, 5 ml a32P UTP

(10 mCi/ml) and 2 ml T7 RNA polymerase (Epicenter). The

124 nt RNA was purified from a 8% polyacrylamide gel

containing 7M urea. A 20 ml cleavage reaction was set up at

37uC for 90 min with 5,000 cpm of the 32P-labelled let7a RNA

and Ago2 immunoprecipitates in 16cleavage buffer containing 40

units RNAsin, 0.5 ug yeast RNA and 10 units of Creatine

phosphokinase (Sigma). The cleavage products were separated on

an 8% polyacrylamide gel containing 7 M urea, and the gel

exposed on a phosphorimager screen in the Typhoon scanner. A

59 end-labeled 59 nt oligonucleotide was run on the gel as a size

HIV Nef as RNAi Suppressor

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e74472



marker. The gel image was quantified with the NIH Image J

software and densitometric analysis was carried out to determine

the percentage of cleaved products.

Preparation and Characterization of Exosomes
Exosomes were prepared from cells that were cultured in media

depleted of exosomes present in fetal calf serum. For preparing

exosome-depleted media, RPMI containing 50% FCS was

subjected to ultracentrifugation at 100,0006g and 4uC for 16 hr,

followed by filtration through a 0.22 mm filter. This was stored at

4uC and diluted appropriately with RPMI prior to use. The

U937/Nef-EYFP and U937/EYFP cells were grown in RPMI-

10% FCS. Culture supernatants were collected after two days and

exosomes were prepared following the basic protocol-1 described

elsewhere [32]. All steps were carried out at 4uC. Briefly the

culture supernatant was first centrifuged at 3006g for 10 min to

pellet cells. Dead cells were removed by centrifugation at 2,0006g

for 10 min followed by removal of cell debris by centrifugation for

30 min at 10,0006g. The clarified supernatant was centrifuged at

100,0006g in a SW28 rotor for 1 hr. The exosome pellet was

washed by suspension in 30 ml of PBS and pelleting as above. The

final pellet was suspended in 100 to 200 ml of PBS and frozen at

270uC.
The protein content of exosomes was estimated using the

Bradford assay. The appropriate amount of exosomes was mixed

with 66 SDS loading dye, boiled for 5 min and the proteins

separated by SDS-PAGE. Western blotting was then carried out

using antibodies against standard exosomal marker proteins - Alix,

Tsg101 and CD81, at 1:1000 dilutions. Antibodies against various

other proteins were used to rule out any contamination from

subcellular organelles and membranes - Calnexin (ER), VDAC

(mitochondria) and Cytochrome C (apoptotic bodies), at 1:4000

dilutions. Rabbit anti-Nef and anti-GFP were used at 1:3000 and

1:4000 dilutions, respectively.

For electron microscopy, carbon-coated Formvar grids of

300 mm mesh size were floated on a drop of 5 mg/ml exosome

sample for 30 sec. Excess solution was wicked away from the grids

with Whatman paper and these were then placed for 60 sec on a

drop of 1% uranyl acetate that had been filtered through a

0.45 mm filter. Excess stain was wicked away and grids were

imaged on a FEI, Tecnai, T-12 (G2 Spirit) Transmission Electron

Microscope operating at 120 kv.

Results

Nef Colocalizes with MVBs and Argonaute 2 in U937 Cells
We generated U937 human monocytic cells that stably

expressed either a Nef-EYFP fusion protein or EYFP. Western

blotting with anti-GFP antibodies showed several independent cell

pools to express proteins of the expected size (Fig. 1A). The surface

levels of CD4, MHC I, CD80 and CD86 estimated by flow

cytometry were reduced on U937/Nef-EYFP cells compared to

U937/EYFP cells (Fig. 1B). As a control, surface CD54 levels

showed no reduction on U937/Nef-EYFP cells. This confirmed

that the Nef-EYFP fusion protein expressed in U937 cells was

functional. Since Nef localizes to intracellular membranes [27], we

examined its colocalization with MVBs and Ago2. Nef-EYFP

(Fig. 1C–i) but not EYFP (not shown) colocalized with NRhPE in

the U937 stable cell lines and also in HEK293T cells that

ectopically expressed Nef-EYFP (Fig. S1A). Endogenous Ago2 also

showed significant colocalization with Nef-EYFP in the cell lines

(Fig. 1C–ii) as well as in activated U1 human monocytic cells [33]

that produce infectious HIV and express Nef from the proviral

genome (Fig. 1C–iii). However, Nef did not colocalize with P

bodies that are also sites for miRNA-mediated silencing [34]

(Fig. 1C–iv). Another important component of miRISC is GW182,

which is present in association with Ago2 in GW bodies on MVB

membranes [13,24]. Since Ago2 interacts directly with GW182

[34], we checked whether Nef and GW182 also colocalize. In

HEK293T cells co-transfected with plasmids expressing the Nef-

DsRed and GW182-EGFP fusion proteins, no colocalization was

observed (not shown). These results suggest that Nef is closely

associated with some components of GW bodies on MVB

membranes. We carried out quantitative analysis by determining

the Pearson correlation and Manders correlation for colocalization

of Nef with Ago2 in the U937/Nef-EYFP cells (Fig.1D–i) and

activated U1 cells (Fig.1D–ii). The Pearson coefficient (PC) of 0.83

in U937/Nef-EYFP cells and 0.77 in activated U1 cells indicates

colocalization of Nef and Ago2 in both cell lines. The Manders

coefficient M1 represents the fraction of Ago2-red overlapping

with Nef-green and M2 represents the fraction of Nef-green

overlapping with the Ago2- red. These values also indicate similar

levels of Ago-2 colocalizing with Nef and vice-versa in cells that

either express Nef-EYFP alone or express Nef from the viral

genome together with HIV-1 proteins.

Nef Interacts with Ago2 but not GW182
To test whether Nef and Ago2 interact, we performed co-

immunoprecipitations with Nef, Ago2 and EYFP antibodies. Anti-

Nef antibodies precipitated Ago2 but not GW182 from Nef-EYFP

cells; no such precipitation was observed from control EYFP cells

(Fig. 2A–i). To rule out an EYFP-Ago2 interaction, we performed

immunoprecipitation with anti-EYFP antibodies and obtained

similar results as with anti-Nef antibodies (Fig. 2A–ii). When

immunoprecipitations were carried out with anti-Ago2 antibodies,

Nef was detected in the precipitates from Nef-EYFP cells but not

from control cells (Fig. 2A–iii). Anti-Ago2 antibodies also

precipitated GW182 from Nef-EYFP as well as control cells

(Fig. 2A–iii). Finally, anti-GW182 precipitated Ago2 from both cell

lines, but did not precipitate Nef (Fig. 2A–iv). These results show

that Nef interacts with Ago2 but not with GW182 or the Ago2-

GW182 complex. We then validated the Nef-Ago2 interaction in

HIV-1 infected cells. Latently infected U1 (monocytic) and J1.1

(CD4+ T) cells when activated with phorbol-3-myristic acid (PMA)

expressed high levels of p55Gag, its processing intermediates, the

p24 capsid and Nef proteins (Fig. 2B–i,ii). Immunoprecipitates of

Nef from activated U1 and J1.1 cells also contained Ago2 (Fig. 2B–

iii,iv). Finally, lysates prepared from U937/Nef-EYFP, U937/

EYFP or activated U1 cells were fractionated on a Sephacryl

S200HR gel permeation column and the eluted fractions were

western blotted to detect Ago2 and Nef. A significant fraction of

Nef-EYFP co-eluted with Ago2 at the column void volume, while

this was not the case with EYFP (Fig. 2C). Similarly, Nef expressed

from the virus background in U1 cells also co-eluted with Ago2 at

the column void volume (Fig. 2D). Together these experiments

show that Nef interacts with Ago2, either when stably expressed in

U937 cells, or when expressed from integrated HIV-1 genomes in

cells of monocytic and CD4+ T lineages.

Conserved GW Motifs in Nef are Required for Ago2
Binding and Efficient Viral Replication
Proteins such as mammalian GW182 that interact with

Argonaute have multiple GW/WG motifs [35]. Some plant and

insect viruses that encode VSR proteins, which bind Argonaute,

require at least two GW motifs for the interaction [36,37]. Two

Trp-binding pockets were also characterized in the recently

elucidated structure of mammalian Ago2 [38]. The HIV-1 NL4-3

Nef sequence contains two GW motifs at residues 12–13 and 140–

HIV Nef as RNAi Suppressor
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141, respectively. To test for conservation, we compared 2660 Nef

amino acid sequences belonging to HIV-1 of different clades and

recombinant circulating forms within Group M as well as HIV-1

Groups N and O, available in the Los Alamos HIV Sequence

Database. The N-terminal and C-terminal GW motifs showed

92% and 95% conservation, respectively, but were completely

conserved in consensus and ancestral sequences for various HIV-1

subtypes and recombinant circulating forms (Fig. 3A).

To investigate the importance of GW motifs in the Nef-Ago2

interaction, we generated single and double GWRGA mutants in

the Nef protein by site-directed mutagenesis. Expression plasmids

for wild type Nef, the two single mutants (W13A; W141A) and the

double mutant (W13,141A) were transiently transfected into

HEK293T cells. While all the proteins expressed at comparable

levels, only the wild type Nef but neither the single nor double GW

mutants pulled down Ago2 from transfected cell lysates (Fig. 3B).

This confirmed that both the GW motifs in Nef are important for

its interaction with Ago2, and a mutation in either abrogates this

binding.

We then explored if the Nef-Ago2 interaction has functional

effects on HIV-1 replication and infectivity. For this, we

transfected HEK293T cells with pNL4-3 or pNL4-3DNef; the

latter was also cotransfected with expression vectors for wild type

or GW mutant Nef, and virus yields were estimated by

quantifying p24 in the transfected cell supernatants. As reported

earlier [39], the nef-deleted infectious clone showed ,50%

Figure 1. Characterization of Nef-expressing cell lines. U937 cells stably expressing either a Nef-EYFP fusion protein or EYFP were established
as described in Materials and Methods. (A) Western blot for expression of EYFP (lanes Y6-A to -D) and Nef-EYFP (lanes NY-19 and -20) in selected U937
stable clones. (B) Flow cytometric analysis of U937/Nef-EYFP and U937/EYFP cells for surface expression of the indicated proteins. (C) The U937/Nef-
EYFP cells were (i) cultured with 5 mM NRhPE, or (ii) stained with anti-Ago2 as described in Materials and Methods. U1 cells were activated with PMA
and labeled with anti-Nef and either (iii) anti-Ago2 or (iv) anti-P bodies as described in Materials and Methods. The white arrowheads in the merged
image represent colocalization points. The images are representative of three independent experiments. The boxed regions are expanded. (D)
Correlation analysis of the colocalization of Nef with Ago2 in (i) U937/Nef-EYFP cells and (ii) activated U1 cells showing Pearson’s coefficient (PC) and
Manders coefficients (M1, M2). The coefficients represent an average of three independent images, each consisting of at least 10 cells, calculated
using the JACoP plugin within the Image J software. M1 represents the fraction of Ago2-red overlapping with Nef-green and M2 represents the
fraction of Nef-green overlapping with Ago2- red. Bars represent 6 SD.
doi:10.1371/journal.pone.0074472.g001
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reduction in virus yield, which was trans-complemented by wild

type but not GW-mutant Nef proteins (Fig. 3C). To assess for the

infectivity of these viruses we infected the 1G5 Jurkat indicator

cell line with equal p24 amounts of virus and carried out

luciferase reporter assays after 2 days as described in Methods.

Compared to the wild type virus, the nef-deleted virus showed

only about 30% infectivity. However, the infectivity was almost

completely restored when the nef-deleted virus was trans-

complemented with wild type Nef but not with any of the

mutant Nef constructs (Fig. 3C). Thus, Nef mutants that do not

interact with Ago2 are also neither fully replication competent

nor fully infectious, suggesting that the Nef-Ago2 interaction is

important for HIV-1 replication and infectivity.

Nef Suppresses miRNA-induced Silencing
To study the effects of Nef on miRNA-mediated silencing, we

carried out a Renilla luciferase (RLuc)-let-7a reporter assay as

outlined in Figure 4A [15]. The let-7a miRNA was chosen because

it is enriched at MVB membranes [22]. U937 (Fig. 4B) or

HEK293T (Fig. 4C) cells co-transfected with the Nef expression

vector and the RLuc-let7a reporter showed ,70% increase in

luciferase activity compared to the empty vector, which implies a

reduction in let7a activity in the presence of Nef. Such an increase

was observed neither with the mutant let7a reporter nor with the

Nef GW mutants. To test this silencing suppression activity of Nef

in the context of HIV-1 replication, we co-transfected the RLuc-

let7a reporters with either pNL4-3 or pNL4-3DNef in U937 or

HEK293T cells. There was ,40% suppression in U937 cells

(Fig. 4D) or ,60% suppression in HEK293T cells (Fig. 4E) of

let7a miRNA activity by wild type HIV-1 compared to nef-deleted

HIV-1. There was no effect of Nef or its mutants on ectopically

expressed luciferase mRNA (not shown). Together these results

show that Nef suppresses miRNA-mediated silencing and its GW

motifs are required for this activity. We conclude that through its

interaction with Ago2, Nef alters miRISC activity at the MVB

surface.

Nef Inhibits the Slicing Activity of Ago2
To understand the mechanism of suppression, we checked

whether Nef affects loading of small RNAs in the RISC and/or

mRNA slicing activity of Ago2. Extracts from the U937/Nef-

EYFP and U937/EYFP cells were incubated with 32P-labeled

duplex siRNA and the complexes were analyzed on a 6%

polyacrylamide gel. Two complexes were observed as reported

earlier [40], but neither showed reduction in the presence of Nef

(Fig. 5A). While both complexes were competed out with an excess

of unlabeled duplex siRNA (Fig. 5A), only Complex 2 was reduced

following immunodepletion of Ago2 or Dicer (Fig. 5B), suggesting

that this represented the RISC. Thus, Nef does not affect the

loading of Ago2 with small RNAs. This observation also supports

the hypothesis that loading of Ago2 with miRNA occurs on

membranes other than MVBs [23]. The effect of Nef on the slicing

activity of Ago2 was then tested with Ago2 immunoprecipitates

from U937/Nef-EYFP and U937/EYFP cell lysates, using a

radiolabeled 124 nt let-7a mRNA. Besides the intact let-7a RNA,

three other RNA species were observed, which included the two

Figure 2. Nef interacts with Ago2. (A) Lysates of U937/Nef-EYFP or U937/EYFP cells were subjected to immunoprecipitation (IP) followed by
immunoblotting (IB) with the indicated antibodies. The lane marked NIC represents IP of U937/Nef-EYFP lysates with an irrelevant antibody. (B) U1
and J1.1 cells were treated with DMSO (–) or PMA (+) and cell lysates were either immunoblotted for p24 and Nef (i, ii), or IP/IB with anti-Nef and anti-
Ago2 (iii, iv), as described in Materials and Methods. U937 and Jurkat cells served as background controls and antibody heavy chain as loading
control. (C) Lysates were prepared from the U937 stable cell lines using Buffer D as described in Materials and Methods. From this, 150 mg lysate was
passed through a pre-equilibrated Sephacryl S200HR column with a 3 ml bed volume. The column was eluted and fractions of 3 drops (,120 ml)
were collected, which were then precipitated with acetone, separated by SDS-PAGE and western blotting was done with Ago2 and GFP antibodies.
(D) Lysates from activated U1 cells were prepared and fractionated as in (C) followed by SDS-PAGE and western blotting with Ago2 and Nef
antibodies. The profiles shown are representative of three separate experiments.
doi:10.1371/journal.pone.0074472.g002
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Figure 3. Mutations in Nef GW motifs abrogate its interaction with Ago2 and reduce virus yield and infectivity. (A) Alignment of Nef
sequences. All 2660 Nef amino acid sequences available in the Los Alamos HIV database were analyzed. Regions encompassing the two conserved
GW motifs (bold and underline) at positions 12–13 and 140–141 are shown for consensus and ancestral (.anc) sequences for various HIV-1 M group
clades (A–H), and consensus sequences for various recombinant circulating forms. (B) HEK293T cells were transiently transfected to express wild type
or GW mutant Nef proteins. Cell lysates were precipitated with anti-Nef and blotted with anti-Ago2. Nef and Actin were expression and loading
controls, respectively. (C) HEK293T cells were transfected with either pNL4-3 or pNL4-3DNef; cells were also co-transfected with pNL4-3DNef and
expression vectors for either the wild type or GW mutant Nef proteins. After 36 hr the culture supernatants were quantified for p24. Purified viruses
equivalent to 100ng p24 were also used to infect 0.5 million 1G5 Jurkat indicator cells, and 48 hr later the cells were harvested, lysed and luciferase
assay was performed as described in Methods. Error bars represent mean 6 SD from three independent experiments, and p-values calculated using
the Student’s t-test were as follows: * 0.002; # 0.023.
doi:10.1371/journal.pone.0074472.g003
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expected cleavage products of 70 nt and 54 nt (Fig. 5C). The

cleavage was quantified by dividing the combined intensities of the

70 nt and 54 nt bands by the total intensities of all four bands in

the two lanes. This analysis showed less than 50% cleavage of let-

7a RNA by Ago2 immunoprecipitates from U937/Nef-EYFP cells

compared to U937/EYFP cells (Fig. 5D). Thus, while Nef does not

appear to affect the loading of miRNA in the miRISC, it reduces

the ability of Ago2 to slice the target mRNA.

Nef Perturbs the Sorting of GW182 into Exosomes
The physical association of GW bodies and MVBs allows for the

sorting of GW182 into exosomes; blocking this secretion results in

accumulation of inactive RISC and reduced miRNA activity [22–

24]. The absence of GW182 in Nef immunoprecipitates led us to

investigate the distribution of Ago2 and GW182 in Nef-expressing

cells and exosomes released from these cells. Exosomes were

isolated from the culture supernatants of the two cell lines and

characterized for identity and purity by western blotting. The

exosome preparation was positive for the proteins Alix, Tsg101

and CD81, which are exosomal markers, but was negative for

markers of mitochondria (VDAC), endoplasmic reticulum (Cal-

nexin) and apoptotic bodies (Cytochrome C) (Fig. 6A). Cellular

GAPDH, Actin and Nef, previously shown to be present in

exosomes, were also detected in our preparation. The exosomes

were visualized by negative staining transmission electron micros-

copy as 50–100 nm membrane limited vesicles (data not shown).

Besides the U937 stable cell line, Nef was also present in exosomes

prepared from HEK293T cells that transiently expressed this

protein (Fig. S1B).

While there was no significant size difference between exosomes

secreted by U937/Nef-EYFP and U937/EYFP cells, the former

secreted about 50–75% more exosomes than the latter (data not

shown). This was observed earlier for T cells as well [25,41]. The

expression of Ago2 and GW182 and their distribution into

exosomes were then compared for Nef-expressing and control

cells. There were higher levels of Ago2 and GW182 in U937/Nef-

EYFP cells compared to U937/EYFP cells, but similar amounts of

the Ago2 proteins were detected in the exosomes from these cells

(Fig. 6B). However, compared to exosomes from U937/EYFP cells

that are rich in GW182, exosomes from U937/Nef-EYFP cells

had very low levels of GW182, even though high amounts are

expressed in these cells (Fig. 6C). This aberrant distribution of

GW182 is also likely to affect miRISC turnover and activity.

Discussion

In this study we show that HIV-1 Nef functions as a viral

suppressor of RNA interference (VSR). This is attributed to its

localization to MVBs and its interaction with Ago2, a critical

component of the miRISC. Nef increases the proliferation of

MVBs in various cell types [27], and these are also the sites for

HIV assembly in monocytes and macrophages [28]. The virus

buds into the MVB lumen and is stored protected from immune

surveillance, thus making monocytes and macrophages important

viral reservoirs. A significant fraction of the Nef-EYFP protein

colocalizes with NRhPE, a lipid marker for MVBs. We also found

Nef to colocalize with Alix, a component of the ESCRT complex

(data not shown), which is present on the MVB surface and is

important for vesicular trafficking in late endosomes. Interestingly,

Nef was shown earlier to interact with AIP, another ESCRT

complex protein, and to promote virus release [39]. Recently,

MVBs were also suggested to be sites of miRNA-mediated

silencing. It was shown that GW bodies containing Ago2 and

GW182 physically interact with MVBs and are independent RNAi

sites in addition to P bodies [22,24]. Our results show that Nef and

Ago2 interact and are part of a larger complex.

The GW182 protein interacts with Ago2 through its multiple

GW motifs that are also called AGO hooks [37]. Turnip Crinckle

Virus p38 is a newly identified VSR that has two GW-motifs at its

N- and C-termini [36]. Similarly, we found two highly conserved

GW motifs in Nef from HIV-1 types M, N and O and SIVcpz.

Close to the N-terminal GW motif, a cluster of highly conserved

arginine residues in Nef at amino acid positions 17, 19, 21 and 22

Figure 4. Nef suppresses miRNA-mediated silencing. (A) Schematic representation of the luciferase based miRNA functional assay using
plasmid pRLTK-let7a containing the Renilla luciferase gene with wild type or mutant miRNA let7a binding sites in the 39UTR, and expression plasmids
for wild type or GW mutant Nef proteins. The transfections were carried out in (B) U937 and (C) HEK293T cells. Transfections of pRLTK-let7a and either
pNL4-3 or pNL4-3DNef were also carried out in (D) U937 or (E) HEK293T cells. After 48 hr the cell lysates were prepared and assayed for luciferase
activity. Constitutively expressed firefly luciferase readings were used for normalization. Error bars represent mean 6 SD from three independent
experiments. P-values were calculated using Student’s t-test.
doi:10.1371/journal.pone.0074472.g004
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mediate its RNA binding activity and its secretion in exosomes

[42,43]. The interaction of Nef with Ago2 was lost when either

one or both of its GW motifs were mutated. These mutations also

affected the replication and infectivity of HIV produced from an

infectious molecular clone. Being one of the earliest viral proteins

to be expressed, we propose that Nef attenuates host RNA

interference and thus promotes HIV replication.

Other VSR proteins inhibit RNAi either by interfering with

RISC loading through small RNA sequestration or by binding and

inhibiting the slicing activity of Argonaute. For example, the

influenza virus NS1 and vaccinia virus E3L proteins sequester

small interfering RNAs, thus inhibiting the loading of RISC [44].

The cricket paralysis virus 1A protein inhibits the Ago2 slicing

activity associated with the RISC [45]. We did not find any

significant effect of Nef on the loading of a small double-stranded

in the RISC, but found it to inhibit the slicing activity of the RISC.

The partial effect of Nef on the overall slicing activity within the

RISC (,50% inhibition) can be explained by its subcellular

Figure 5. Nef does not affect siRNA loading into RISC, but inhibits its slicing activity. (A) Lysates from the U937 stable cell lines were
prepared in Buffer D as described in Materials and Methods. From this, 25 mg of lysate was incubated with 32P-labeled duplex siRNA (without or with
50-fold molar excess of unlabeled siRNA) in binding buffer for 30 min at 4uC. The complexes were separated on a 6% non-denaturing polyacrylamide
gel. (B) The gel shift assay was set up as in (A) except that lysates immunodepleted for either Ago2 or Dicer were also included. The positions of the
mobility shifted complexes and free probe are indicated. (C) Slicer activity was assayed using immunoprecipitated Ago2 from U937/Nef-EYFP or
U937/EYFP cell lysates and a 32P-labeled in vitro transcribed let7a RNA, as described in Materials and Methods. The positions of full-length RNA and
the two sliced products are shown. The 59 nt marker oligonucleotide was run on the same gel, but a lower exposure is shown. (D) Densitometric
analysis of autoradiograms from three independent experiments was carried out using Image J (version 1.4.1). The slicing activity in Nef-EYFP lysates
is represented as a percentage of that in EYFP lysates.
doi:10.1371/journal.pone.0074472.g005
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localization, thus affecting only the silencing associated with GW

bodies present on MVBs. However, in the context of HIV

infection, this might significantly suppress the silencing effects of

hitherto unidentified cellular antiviral miRNAs that function

preferentially within GW bodies to restrict HIV replication. A

recent study on the role of RNAi proteins in HIV infection showed

that viral replication is not affected by the knockdown of some P

body proteins except Ago2 [39]. This suggests that even when P

bodies are disrupted, the AGO proteins in GW bodies can

modulate HIV infection.

The secretion of GW182 into exosomes is important for the

turnover of RISC and effective miRNA-mediated silencing in

mammalian and insect cells [22,24]. Nef increases exocytosis and

is itself secreted into exosomes [25,39]. We now show that

exosomes from Nef-expressing cells carry reduced levels of

GW182, a majority of which is retained in the cells; however,

Nef did not significantly affect the partitioning of Ago2 between

cells and exosomes. Thus, Nef competes with GW182 for binding

to Ago2 and affects the sorting and release of GW182 into

exosomes. The Nef-Ago2/miRNA complex is akin to an inactive

RISC. This was established through a functional miRNA silencing

suppression assay, in which only Nef proteins that could bind Ago2

suppressed the silencing of a luciferase mRNA carrying let-7a

binding sites in its 39UTR.

In conclusion, our results identify Nef as a viral suppressor of

miRNA-mediated silencing. This can be attributed to its MVB

localization and binding to Ago2 through conserved GW motifs,

previously observed only in VSR proteins from plant and insect

viruses. We propose that this interaction destabilizes the miRNA-

mRNA-Ago2 complex, inhibits the slicing activity of Ago2 and

hinders the sorting of GW182 into exosomes. This would be a

novel mechanism for RNAi suppression, hitherto not observed in

any mammalian virus. Since exosomes also package mRNAs and

miRNAs [46], it would be interesting to see whether Nef regulates

the exosomal sequestration and export of specific RNAs towards

comprehensive effects on HIV-infected cells and on intercellular

communication. We are currently exploring these effects of Nef

towards its role in HIV pathogenesis.

Supporting Information

Figure S1 Nef colocalizes with MVBs and is secreted in
exosomes from HEK293T cells. (A) HEK293T cells were

transiently transfected with the Nef-EYFP expression vector and

36 hr post-transfection cells were cultured in the presence of 5 mM
NRhPE for 30 min. Imaging was performed on live cells without

fixation. (B) HEK293T cells were transfected with the Nef

expression plasmid pMT3-Nef or the control plasmid pMT3.

After 48 hr, culture supernatants were harvested and exosomes

were isolated using the differential centrifugation protocol. Total

exosomal protein (40 ug) was separated by SDS-PAGE followed

by western blotting to detect either CD81 (exosomal marker) or

Nef.
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